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Abstract. This survey paper complements to our previous review papers on Lyapunov-type in-
equalities and contains some of the most recent results on these inequalities for fractional bound-
ary value problems involving a variety of fractional derivative operators and boundary conditions.
In precise terms, we have included the results related to Riemann–Liouville, Caputo, mixed
Riemann–Liouville and Caputo, Riesz-Caputo,  -Caputo, Hadamard, Katugampola, Hilfer,  -
Hilfer, proportional, variable order Hadamard, partial, systems of Riemann-Liouville, bi-ordinal
Hilfer-Katugampola, and  -Hilfer fractional derivative operators. The Lyapunov-type inequal-
ities for discrete fractional boundary value problems are also presented.

1. Introduction

Inequalities are found to be a valuable tool in developing many branches of mathe-
matics and handling a variety of problems of applied nature. Among the well-known
inequalities, the Lyapunov’s inequality is of fundamental importance as it has been
successfully applied to establish the theoretical aspects of ordinary and partial differ-
ential equations, difference equations, dynamic equations on time scales, oscillation
theory, disconjugacy, Hamiltonian systems, etc.; for details, see the text [2] and the
references cited therein. Concerning the application of Lyapunov-type inequalities to
eigenvalue problems, we refer the reader to the monograph [37]. For application of
Lyapunov’s inequality in control systems and stability of switched systems, for exam-
ple, see [14, 6] and [18], respectively. The role of generalized Lyapunov inequalities in
studying stochastic linear systems can be found in [5].

Let us recall that Lyapunov’s inequality was firstly proposed and proved by Lya-
punov [30], in which the necessary condition for the problem{

z′′(t)+ r(t)z(t) = 0, y1 < t < y2,
z(y1) = z(y2) = 0,

to have a nontrivial classical solution was∫ y2

y1

|r(s)|ds >
4

y2− y1
.
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During the last few decades, an overwhelming interest has been observed in devel-
oping the subject of fractional calculus. Numerous definitions of fractional derivatives
and integrals were introduced. Accordingly, initial and boundary value problems in-
volving different kinds of fractional differential operators were studied. This develop-
ment motivated many researchers to work on the Lyapunov-type inequalities for frac-
tional order boundary value problems. A fruitful technique for finding Lyapunov-type
inequality for the fractional differential equations is to convert the fractional boundary
value problem (FBVP for short) into an equivalent integral equation and then find the
maximum of the Green’s function involved in it.

Recently, in the survey [31], the Lyapunov-type inequalities for FBVP were dis-
cussed in detail. Here, it is imperative to mention that the survey in [31] is continuation
of the survey papers [32] and [33]. In the present survey, we continue our efforts to col-
lect the most recent results on Lyapunov-type inequalities for FBVP appearing in the
literature after the publication of the surveys [31, 32, 33]. Precisely, a comprehensive
and up-to-date review of Lyapunov-type inequalities for boundary value problems in-
volving different kinds of fractional derivative operators and boundary conditions will
be described.

The rest of the paper is organized as follows. We present Lyapunov-type inequal-
ities for the problems containing fractional derivative due to Riemann–Liouville in
Section 2, Caputo in Section 3, Riemann–Liouville and Caputo (mixed) in Section 4,
Riesz-Caputo in Section 5,  -Caputo in Section 6, Hadamard in Section 7, Katugam-
pola in Section 8, and Hilfer in Section 9. The Lyapunov-type inequalities for pro-
portional, variable order Hadamard type, and partial fractional derivative operators are
respectively discussed in Sections 10, 11 and 12. Section 13 deals with Lyapunov-type
inequalities for systems of Riemann-Liouville fractional differential equations, while
Lyapunov-type inequalities for bi-ordinal Hilfer-Katugampola and  -Hilfer fractional
derivative operators are described in Section 14. In Section 15, we present Lyapunov-
type inequalities for a discrete FBVP. We present all the results on Lyapunov-type in-
equalities without proofs. However, a complete reference for the details of each result
elaborated in this survey is mentioned for the convenience of the reader.

2. Lyapunov-type inequalities for FBVP involving
Riemann–Liouville fractional derivative

Let us first recall some basic definitions [22, 38].

DEFINITION 1. The left and right Riemann-Liouville fractional integrals Iy1+ and

Iy2− of order  > 0 for a function g ∈ L1[y1,y2] are respectively defined by

(Iy1+g)(x) =
1

( )

∫ x

y1

(x− t)−1g(t)dt,

(Iy2−g)(x) =
1

( )

∫ y2

x
(t− x)−1g(t)dt,
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where ( ) is the Euler Gamma function given by ( ) =
∫ 

0
t−1e−t dt and

(I0
y1−g)(x) = (I0

y1+g)(x) = g(x).

DEFINITION 2. The left and right Riemann-Liouville fractional derivatives D
y1+g

and D
y2−g of order  ∈ (n− 1,n] , where g,g(n) ∈ L1[y1,y2] , are respectively defined

by

(D
y1+g)(x) =

( d
dx

)n
(In−

y1+ g)(x) and (D
y2−g)(x) =

(
− d

dx

)n
(In−

y2− g)(x).

DEFINITION 3. The left and right Caputo fractional derivatives CD
y1+g and

CD
y2−g of order  ∈ (n− 1,n] for a function g ∈ ACn[y1,y2] are respectively given

by

(CD
y1+g)(x) = (In−

y1+ Dng)(x) and (CD
y2−g)(x) = (−1)n(In−

y2− Dng)(x).

In 2019, Y. Wang and Q. Wang [50] considered the following multi-point FBVP:⎧⎪⎪⎨⎪⎪⎩
D

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 2 <  � 3,

z(y1) = z′(y1) = 0, D+1
y1+ z(y2) =

m−2


i=1

i D
y1+z(i),

(1)

where D
y1+ denotes the standard Riemann-Liouville fractional derivative operator of

order  ,  >  + 2, 0 �  < 1, y1 < 1 < 2 < .. . < m−2 < y2, i � 0 (i =
1,2, . . . ,m−2), 0 �m−2

i=1 i(i−y1)−−1 < (−−1)(y2−y1)−−2 and r : [y1,y2]
→ R is a continuous function.

LEMMA 1. A function z ∈C([y1,y2],R) is a solution of the FBVP (1) if and only
if z satisfies the integral equation

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds+T (t)
∫ y2

y1

(m−2


i=1

i H(,s)r(s)z(s)
)
ds,

where

G(t,s) =
1

( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t− y1)−1(y2− s)−−2

(y2 − y1)−−2
− (t− s)−1, y1 � s � t � y2,

(t− y1)−1(y2− s)−−2

(y2 − y1)−−2
, y1 � t � s � y2,

H(t,s) =
1

( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t− y1)−−1(y2− s)−−2

(y2− y1)−−2
− (t− s)−−1, y1 � s � t � y2,

(t− y1)−−1(y2− s)−−2

(y2− y1)−−2
, y1 � t � s � y2,
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T (t) =
(t− y1)−1

( − −1)(y2− y1)−−2−
m−2


i=1

i(i − y1)−−1

, t � a.

LEMMA 2. The function G(t,s) defined in Lemma 1 satisfies the properties:

(i) G(t,s) � 0, for all (t,s) ∈ [y1,y2]× [y1,y2];

(ii) G(t,s) is non-decreasing with respect to the first variable;

(iii) 0 � G(y1,s) � G(t,s) � G(y2,s) =
1

( )
(y2− s)−−2

[
(y2− y1)+1−

(y2 − s)+1
]
, (t,s) ∈ [y1,y2]× [y1,y2];

(iv) For any s ∈ [y1,y2],

max
s∈[y1,y2]

G(y2,s) =
 +1
 −1

( − −2
 −1

) −−2
+1 (y2 − y1)−1

( )
.

LEMMA 3. The function H(t,s) defined in Lemma 1 satisfies the properties:

(i) H(t,s) � 0, for all (t,s) ∈ [y1,y2]× [y1,y2];

(ii) H(t,s) is non-decreasing with respect to the first variable;

(iii) 0 � H(y1,s) � H(t,s) � H(y2,s) =
1

( )
(y2−s)−−2(s−y1), (t,s)∈ [y1,y2]

× [y1,y2];

(iv) max
s∈[y1,y2]

H(y2,s) = H(y2,s
∗) =

( − −2)−−2

( )

( y2− y1

 − −1

)−−1
,

where s∗ =
 − −2
 − −1

y1 +
1

 − −1
y2.

Now, we are ready to give the Lyapunov-type inequality for the FBVP (1).

THEOREM 1. If a continuous nontrivial solution to the FBVP (1) exists, then∫ y2

y1

(y2− s)−−2
[
(y2− y1)+1− (y2− s)+1 +

m−2


i=1

iT (y2)(s− y1)
]
|r(s)|ds � ( ),

and ∫ y2

y1

|r(s)|ds � ( )
Q

,

where

Q =
 +1
 −1

( − −2
 −1

) −−2
+1 (y2 − y1)−1

+
m−2


i=1

iT (y2)( − −2)−−2
( y2− y1

 − −1

)−−1
.



FRACTIONAL LYAPUNOV-TYPE INEQUALITIES: A SURVEY 113

In 2022, Dhar and Neugebauer [8] studied the FBVP:⎧⎨⎩D
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = 0, D
y1+z(y2) = 0,

(2)

where  ∈ (1,2],  ∈ [0, −1], D
y1+, D

y1+ are Riemann-Liouville derivative opera-
tors of orders  and  , respectively, and r ∈C([y1,y2],R).

LEMMA 4. A function z ∈C([y1,y2],R) is a solution to the FBVP (2) if and only
if it satisfies the integral equation:

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds,

where G(t,s) is the Green’s functions given by

G(t,s) =
1

( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t− y1)−1(y2− s)−1−

(y2− y1)−1− − (t− s)−1, y1 � s � t � y2,

(t− y1)−1(y2− s)−1−

(y2− y1)−1− , y1 � t � s � y2.

LEMMA 5. The Green’s function G(t,s), defined in Lemma 4, satisfies the prop-
erties:

(1) G(t,s) � 0 for all (t,s) ∈ [y1,y2]× [y1,y2];

(2) maxt∈[y1,y2] G(t,s) � G(s,s) for s ∈ [y1,y2];

(3) G(s,s) has a unique maximum at s =
( −1)y2 +( −1− )y1

2 −2−
given by

G(s , s) =
1

( )

((y2 − y1)( −1)
2 −2−

)−1(  −1−
2 −2−

)−1−
;

(4)
∫ y2

y1

G(t,s)ds � ( −1)−1

( − )( +1)
(y2− y1) .

Now, we present a Lyapunov-type inequality for the FBVP (2).

THEOREM 2. If the FBVP (2) has a nontrivial continuous solution z∈C([y1,y2],R)
and z(t) �= 0 on (y1,y2), where q is a real and continuous function defined on [y1,y2],
then ∫ y2

y1

r+(s)ds � ( )
( 2 −2−

(y2 − y1)( −1)

)−1(2 −2−
 −1−

)−1−
,

where r+(s) = max{r(s),0}.
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REMARK 1. The FBVP (2) has no nontrivial solution if∫ y2

y1

r+(s)ds � ( )
( 2 −2−

(y2 − y1)( −1)

)−1(2 −2−
 −1−

)−1−
.

In 2023, Eloe et al. considered in [10] the (n, p)-type nonlinear FBVP:{
D

y1+z(t)+ �(t)Fz(t) = 0, y1 < t < y2,

y(i)(y1) = 0, i = 0,1, . . . ,n−2, Dp
y1+z(y2) = 0,

(3)

where y2 > y1,  ∈ (n−1,n] , n � 2 is an integer, p ∈ [0, −1] and D(·)
y1+ denotes the

Riemann-Liouville derivative operator, � ∈C([y1,y2],R) and F : [y1,y2] → [y1,y2].

LEMMA 6. Let x ∈C([y1,y2],R),  ∈ (n−1,n], where n � 2 denotes an integer,
and p ∈ [0, −1]. Then, z ∈C([y1,y2],R) is a solution to the FBVP:{

D
y1+z(t)+ x(t) = 0, y1 < t < y2,

y(i)(y1) = 0, i = 0,1, . . . ,n−2, Dp
y1+z(y2) = 0,

(4)

if and only if

z(t) =
∫ y2

y1

G (t,s)x(s)ds,

where

G (t,s) =
1

( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(y2− s)−p−1(t− y1)−1

(y2− y1)−p−1
− (t− s)−1, y1 � s � t � y2,

(y2− s)−p−1(t− y1)−1

(y2− y1)−p−1
, y1 � s � t � y2,

if p <  −1, and

G (t,s) =
1

( )

⎧⎨⎩(t− y1)−1− (t− s)−1, y1 � s � t � y2,

(t− y1)−1, y1 � s � t � y2,

if p =  −1.

Now, we find the bounds for the Green’s function G (t,s) for three cases:

(I) 1 <  � 2, and 0 � p �  −1;

(II) 2 <  , and 0 � p < 1;

(III) 2 <  , and 1 � p �  −1.

LEMMA 7. Assume that 1 <  � 2 and 0 � p � −1. Then, the Green’s function
defined in Lemma 6 has the properties:
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(i) G (t,s) � 0, for all t,s ∈ [y1,y2];

(ii) max
t∈[y1,y2]

G (t,s) = G (s,s)

=
1

( )

⎧⎪⎨⎪⎩
(y2 − s)−p−1(s− y1)−1

(y2− y1)−p−1
, ∀s ∈ [y1,y2], if p <  −1,

(s− y1)−1, ∀s ∈ [y1,y2], if p =  −1;

(iii) max
s∈[y1,y2]

G (s,s)

=

⎧⎪⎪⎨⎪⎪⎩
1

( )

[  − p−1
2( −1)− p

]−p−1[  −1
2( −1)− p

]−1
, if p <  −1,

(y2− y1)−1

( )
, if p =  −1.

LEMMA 8. Assume that 2 <  and 0 � p �  − 1. Then, the Green’s function
defined in Lemma 6 has the properties:

(i) G (t,s) � 0, for all t,s ∈ [y1,y2];

(ii) max
t∈[y1,y2]

G (t,s) = G (s∗,s), where s∗ =
s− y2D
1−D

and D =
( y2− s

y2− y1

) −p−1
−2 ;

(iii) max
s∈[y1,y2]

G (s∗,s) =
(y2 − y1)−p−1−p−1

 ,p (1− ,p)−1

( )
(
1−−p−1

 ,p

)−2
, where  ,p is the uni-

que solution of the nonlinear equation:


2−p−3
−2

 ,p −
(
2− p

 −1

)
 +

 − p−1
 −1

= 0,

in the interval
(
0,

[(
2− p

 −1

)(  −2
2 − p−3

)] −2
−p−1

)
⊂ (0,1).

LEMMA 9. Assume that 2 <  and 1 � p �  − 1. Then, the Green’s function
defined in Lemma 6 has the properties:

(i) G (t,s) � 0, for all t,s ∈ [y1,y2];

(ii) G (t,s) � G (y2,s) for t,s ∈ [y1,y2];

(iii) max
s∈[y1,y2]

G (y2,s) =
(y2− y1)−1

( )
.

We need the following assumptions to obtain Lyapunov-type inequalities for the
FBVP (3):
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(A1) F : C[y1,y2] → C[y1,y2] and there exists  > 0, independent of z such that, if
y ∈C[y1,y2], then ‖Fy‖ � ‖y‖;

(A2) � ∈C([y1,y2],R).

THEOREM 3. Assume that (A1) and (A2) hold. Then, for 1 <  < 2 and 0 �
p �  −1, the estimate∫ y2

y1

|�(s)|ds <
( )


[2( −1)− p
 − p−1

]−p−1[2( −1)− p
 −1

]−1( 1
y2− y1

)−1

implies that the FBVP (3) has only the trivial solution z(t) ≡ 0.

THEOREM 4. Let 2 <  and 0 � p < 1. If (A1) and (A2) hold, then the estimate

∫ y2

y1

|�(s)|ds <
( )

(
1−

−p−1
−2

 ,p

)−2

(y2− y1)−p−1−p−1
 ,p (1− ,p)−1

implies that the FBVP (3) has only the trivial solution z(t) ≡ 0, where  ,p is the
unique solution of the nonlinear equation:


2−p−3
−2 +

( p
 −1

−1
)
 +

 − p−1
 −1

= 0,

in the interval
(
0,

[(
2− p

 −1

)(  −2
2 − p−3

)] −2
 −p−1)

.

THEOREM 5. Suppose that (A1) and (A2) hold and 1 � p �  − 1 with 2 <  .
Then, the estimate ∫ y2

y1

|�(s)|ds <
( )

(y2− y1)−1
implies that the FBVP (3) has only the trivial solution z(t) ≡ 0.

In [42], Silva studied the following FBVP with (left) Riemann-Liouville fractional
derivative operator:{

(D
y1+z)(t)+ (D

y1+rz)(t) = 0, t ∈ [y1,y2],
z(y1) = z(y2) = 0,

(5)

with 0 � y1 < y2,  ∈ (1,2),  ∈ (0, −1) and r : [y1,y2] → R is a continuous func-
tion.

LEMMA 10. Let 1 <  < 2, 0 <  <  − 1 and r ∈ C([y1,y2],R). Then, the
integral solution z of FBVP (5) is

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds,
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where the Green’s function G(t,s) is defined by

G(t,s) =
1

( − )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t− y1)−1(y2 − s)−−1

(y2 − y1)−1
, y1 � t � s � y2,

(t− y1)−1(y2 − s)−−1

(y2 − y1)−1
− (t− s)−−1, y1 � s � t � y2.

LEMMA 11. For any (t,s) ∈ [y1,y2]× [y1,y2], the maximum value of the Green’s
function defined in Lemma 10 is given by

max
t,s∈[y1,y2]

|G(t,s)| = 1
( − )

(  −1
2 − −2

)−1(  − −1
2 − −2

)−−1
(y2− y1)−−1,

with  ∈ (1,2) and  ∈ (0, −1).

In the following theorem, we give a Lyapunov-type inequality for the FBVP (5).

THEOREM 6. Let z be a nontrivial continuous solution to the FBVP (5), then∫ y2

y1

|r(s)|ds � ( − )(y2− y1)1+−(
−1

2−−2

)−1( −−1
2−−2

)−−1
.

3. Lyapunov-type inequalities for FBVP involving
Caputo fractional derivative operator

In [46], Toprakseven studied the Liouville-Caputo type FBVP:{
CD

y1+z(t)+ r(t)z(t) = 0, 2 <  � 3, y1 � t � y2,

z(y1) = z(y3) = z(y2) = 0, y1 < y3 < y2,
(6)

where CD
y1+ is the Liouville-Caputo derivative and r ∈C([y1,y2],R).

LEMMA 12. Let  =  + 1 ∈ (2,3] with  ∈ (1,2]. Then, z ∈ C3[y1,y2] is a
solution to the FBVP (6) if and only if z is a solution of the integral equation

z(t) =
∫ x2

x1

(∫ t

b
G( ,s)d

)
p(s)z(s)ds, x1 ∈ [y1,y3], x2 ∈ [y3,y2],

where the Green’s function G(t,s) is given by

G(t,s) =
1

( −1)

⎧⎪⎨⎪⎩
t − x1

x2− x1
(x2− s)−2− (t− s)−2, x1 � s � t � x2,

t − x1

x2− x1
(x2− s)−2, x1 � t � s � x2.
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We now present Hartman-Wintner-type inequalities for the FBVP (6).

THEOREM 7. If the FBVP (6) has a solution z(t) �≡ 0 for t ∈ (y1,y3)∪ (y3,y2),
then one of the following Hartman-Wintner-type inequalities holds:

(A)
∫ y2

y1

(s− y1)(y2 − s)−2r−(s)ds > ( −1)( −1),

(B)
∫ y2

y1

(s− y1)(y2 − s)−2r+(s)ds > ( −1)( −1),

(C)
∫ y3

y1

(s− y1)(y2− s)−2r−(s)ds+
∫ y2

y3

(s− y1)(y2 − s)−2r+(s)ds

> ( −1)( −1),

where r−(s) = max{−r(s),0} and r+(s) = max{r(s),0}.
As the first consequence of Theorem 7, we have the following Lyapunov-type

inequalities.

COROLLARY 1. If the problem (6) has a nontrivial solution, then one of the fol-
lowing Lyapunov-type inequalities holds:

(1)
∫ y2

y1

r−(s)ds >
( −1)( −1)( −1)−1

(y2c− y2)−1( −2)−2
,

(2)
∫ y2

y1

r+(s)ds >
( −1)( −1)( −1)−1

(y2− y1)−1( −2)−2
,

(3)
∫ y3

y1

r−(s)ds+
∫ y2

y3

r+(s)ds >
( −1)( −1)( −1)−1

(y2− y1)−1( −2)−2
.

Consequently, we get

∫ y2

y1

|r(s)|ds >
( −1)( −1)( −1)−1

(y2− y1)−1( −2)−2
.

As a second consequence of Theorem 7, we find a lower bound for the eigenvalues
of the FBVP considered in the next corollary.

COROLLARY 2. If  is an eigenvalue of the FBVP:{
CD

y1z(t)+ z(t) = 0, t ∈ [y1,y2],  ∈ (2,3],
z(y1) = z(y3) = z(y2) = 0, y1 < y3 < y2,

then

| | >  ( −1)2( −1)
(y2 − y1)

.
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In [44], Srivastava et al. studied the FBVP:⎧⎪⎪⎨⎪⎪⎩
CD z(t)+ r(t)z(t)) = 0, y1 < t < y2, 1 <  � 2,

z(y1)−d1z′(y1) = e1[z],

z(y2)−d2z′(y2) = e2[z],

(7)

where

[z] =
∫ y2

y1

z(t)dA(t), [z] =
∫ y2

y1

z(t)dB(t),

are the Riemann-Stieltjes integrals, A,B are functions of bounded variations, and d1,
d2,e1, and e2 are nonnegative real constants.

In the subsequent results, we use the notation:  = 14 + 23, where 1 =
1−e1[1] , 2 = d1+e1([t̂]−y2[1]) , 3 = 1−e2[1] , 4 = y2−y1−d2−e2([t̂]−
y2[1]), and

[1] =
∫ y2

y1

dA(t), [t̂] =
∫ y2

y1

tdA(t), [1] =
∫ y2

y1

dB(t), [t̂] =
∫ y2

y1

tdB(t),

JA(s) =
∫ y2

s
(t− s)−1dA(t), JB(s) =

∫ y2

s
(t− s)−1dB(t).

LEMMA 13. The unique solution z∈C(y1,y2)∩L(y1,y2) of the FBVP (7) is given
by the integral equation

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds,

where G(t,s) is the Green’s function represented as

G(t,s) = G1(t,s)+G2(t,s),

with

G1(t,s) =
1

( )

[
e1(−4 +3(t− y1))JA(s)− e2(2 +1(t − y1))JB(s)

]
,

G2(t,s) =
1

( )
(y2− s)−2H(t,s),

and

H(t,s) =

⎧⎪⎨⎪⎩
(2 +1(t− y1)(y2 − s−d2( −1))
− (t− s)−1(y2 − s)2− , y1 � s � t � y2,

(2 +1(t− y1)(y2 − s−d2( −1)), y1 � t � s � y2.

Next, we obtain the upper estimates on the Green’s function to obtain a Lyapunov-
type inequality for the FBVP (7).
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LEMMA 14. (i) Let e1 ∈
(
0, 1

[1]

)
, e2 ∈

(
0, 1

[1]

)
and  > 0. Then

|G1(t,s)| � (y2 − s)−2

( )
max{e1(y2− y1)[1](d1 + e2(y2 − y1)[1]),

e2(y2 − y1)[1](d1 + y2− y1)}, y1 � s,t � y2;

(ii) Let 1−e1[1] > 0 , 1−e2[1] > 0 ,  > 0 ,  (y2−y1−d2( −1)) � 2. Then, for
y1 � s, t � y2, we have

G2(t,s) � (y2 − s)−2

( )
max

{ [2 +1(y2 − y1−d2( −1))]2

41
,
( +1d2( −1))2

41

}
.

THEOREM 8. Let 1− e1[1] > 0 , 1− e2[1] > 0 ,  > 0 ,  (y2 − y1 − d2( −
1)) � 2. If a continuous nontrivial solution of the FBVP (7) exists, then

∫ y2

y1

(y2− s)−2|r(s)|ds � ( )
1 +2

,

where

1 = max{(y2− y1)e1[1](d2 + e2(y2 − y1)[1]),(y2 − y1)e2[1](d1 + y2− y1)},

2 = max
{ [2 +1(y2 − y1−d2( −1))]2

41
,
( +1d2( −1))2

41

}
.

In [24], Laadjal and Ma discussed Lyapunov-type inequalities for the Langevin
type boundary value problems:{

CD
y1+

(
CD

y1+ +
)
z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = z(y2) = 0,
(8)

and ⎧⎨⎩CD
y1+

(
CD

y1+ +
)
z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = 0 = CD
y1+z(y2),

(9)

where (either 0 <  � 1 or 1 <  � 2), 0 <  ,  � 1,  ∈ R, such that 1 <  +
 � 2 and  <  , CD

y1+ , CD
y1+ and CD

y1+ respectively denote the Liouville-Caputo
fractional derivative operators of order  ,  and  , and r : [y1,y2]→R is a continuous
function.

We consider two cases according to the values of  : (i) 0 <  � 1 and (ii) 1 <
 � 2. In each case, we discuss the problems (8) and (9). By using the Green’s function
and its properties for each problem, we obtain the Lyapunov-type inequalities.
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3.1. Discussion of FBVP (8) for the case 0 <  � 1

LEMMA 15. Assume that 0 <  � 1. A function z ∈C([y1,y2],R) is a solution to
the FBVP (8) if and only if it satisfies the integral equation

z(t) =
∫ y2

y1

G (t,s)z(s)ds+
∫ y2

y1

G+ (t,s)r(s)z(s)ds,

where

G (t,s) =
1

( )

⎧⎪⎪⎨⎪⎪⎩
( t − y1

y2− y1

)
(y2− s)−1− (t− s)−1, y1 � s < t � y2,( t − y1

y2− y1

)
(y2− s)−1, y1 � t � s � y2,

with  ∈ { , +}.

LEMMA 16. For 0 <  � 1, the functions G ,  ∈ { , +} , defined in Lemma
15, satisfy the properties:

(i) max
t∈[y1,y2]

∫ y2

y1

|G (t,s)|ds =
(y2 − y1)

22−1( +1)
;

(ii) max
t,s∈[y1,y2]

|G+ (t,s)| = [( + −1)(y2− y1)]+−1

( +2 −1)+2−1( + )
.

In consequence, we express the Lyapunov-type inequality for the FBVP (8) as
follows.

THEOREM 9. Assume that 0 <  � 1. If a continuous nontrivial solution to the
FBVP (8) exists, then∫ y2

y1

|r(s)|ds � ( +2 −1)+2−1( + +1)
[( + −1)(y2− y1)]+−1

(
1− | |(y2− y1)

22−1( +1)

)
.

3.1.1. Discussion of FBVP (9) for the case 0 <  � 1

LEMMA 17. Assume that 0 <  � 1. A function z ∈C([y1,y2],R) is a solution to
the FBVP (9) if and only if it satisfies the integral equation

z(t) =
∫ y2

y1

G(t,s)z(s)ds+
∫ y2

y1

(y2− s)+−−1G(t,s)r(s)z(s)ds,

where

G(t,s) =
1

( +1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( − )(t− y1)

(y2− y1)−
(y2− s)−−1− (t− s)−1, y1 � s < t � y2,

( − )(t− y1)

(y2− y1)−
(y2− s)−−1, y1 � t � s � y2,
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and

G(t,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( +1− )(t− y1)

( +1)( + − )(y2− y1)−

− (t− s)+−1

( + )(y2− s)+−−1
, y1 � s � t � y2,

( +1− )(t− y1)

( +1)( + − )(y2− y1)−
, y1 � t � s � y2.

LEMMA 18. For 0 <  � 1, the functions G and G defined in Lemma 17 satisfy
the properties:

(i) For any t ∈ [y1,y2],
∫ y2

y1

|G(t,s)|ds � 2(y2− y1)

( +1)
;

(ii) max
t,s∈[y1,y2]

|G(t,s)| = C, where

C = (y2− y1) max
{ ( +1− )
( + − )( +1)

,

(1−  )
( + )

(( +1− )( + − )
( + − )( )

) +−1
−1

, with  < 1
}
. (10)

In relation to the FBVP (9), we have the following Lyapunov-type inequality.

THEOREM 10. Assume that 0 <  � 1. If a continuous nontrivial solution to the
FBVP (9) exists, then∫ y2

y1

(y2 − s)+−−1|r(s)|ds � 1
C

(
1− 2| |(y2− y1)

( +1)

)
,

where C is given in (10).

3.2. Discussion of FBVP (8) for the case 1 <  � 2

LEMMA 19. Assume that 1 <  � 2. A function z ∈ C2([y1,y2],R) is a solution
to the FBVP (8) if and only if it satisfies the integral equation

z(t) =
∫ y2

y1

 Ĝ (t,s)z(s)ds+
∫ y2

y1

Ĝ+ (t,s)r(s)z(s)ds,

where

Ĝ (t,s) =
1

( )

⎧⎪⎪⎨⎪⎪⎩
t− y1

y2 − y1
(y2 − s)−1− (t− s)−1, y1 � s < t � y2,

t− y1

y2 − y1
(y2 − s)−1, y1 � t � s � y2,

with  ∈ { , +}.
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LEMMA 20. For 1 <  � 2, the functions Ĝ , ∈ { , +} , defined in Lemma
19, satisfy the properties:

(i) For any t ∈ [y1,y2], we have
∫ y2

y1

|Ĝ (t,s)|ds =
2(y2− y1)

( +1)
;

(ii) max
t,s∈[y1,y2]

|Ĝ+ (t,s)| = [( + −1)(y2− y1)]+−1

( + )+( + )
.

The Lyapunov-type inequality for the FBVP (8) is given in the following result.

THEOREM 11. Assume that 1 <  � 2. If a continuous nontrivial solution to the
FBVP (8) exists, then∫ y2

y1

|r(s)|ds � ( + )+( + )
[( + −1)(y2− y1)]+−1

(
1− 2| |(y2− y1)

( +1)

)
.

3.2.1. Discussion of FBVP (9) for the case 1 <  � 2

LEMMA 21. Assume that 1 <  � 2. A function z ∈ C2([y1,y2],R) is a solution
to the FBVP (9) if and only if

z(t) =
∫ y2

y1

 G̃1(t,s)z(s)ds+
∫ y2

y1

(y2− s)+−−1G̃2(t,s)r(s)z(s)ds,

where

G̃1(t,s) =

⎧⎪⎪⎨⎪⎪⎩
(2− )(t− y1)

( − )(y2− y1)1− (y2 − s)−−1− 1
( )

(t− s)−1, y1 � s < t � y2,

(2− )(t− y1)
( − )(y2− y1)1− (y2 − s)−−1, y1 � t � s � y2,

and

G̃2(t,s)=

⎧⎪⎪⎨⎪⎪⎩
(2− )(t− y1)

( + − )(y2− y1)1− −
(t− s)+−1

( + )(y2− s)+−−1
, y1 � s � t � y2,

(2− )(t− y1)
( + − )(y2− y1)1− , y1 � t � s � y2.

LEMMA 22. Let 1 <  � 2. The functions G̃1 and G̃2 defined in the previous
lemma, satisfy the properties:

(i) For any t ∈ [y1,y2], we have∫ y2

y1

|G̃1(t,s)|ds �
( (2− )
( − −1)

+
1

( +1)

)
(y2− y1) ;

(ii) max
t,s∈[y1,y2]

|G̃2(t,s)| = C̃,
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where C̃ = C (C is defined by (10) with 1 <  � 2) .

Now, we state the Lyapunov-type inequality for the FBVP (9) as follows.

THEOREM 12. Assume that 1 <  � 2. If a nontrivial continuous solution to the
FBVP (9) on [y1,y2] exists, then∫ y2

y1

(y2− s)+−−1|r(s)|ds � 1

C̃

(
1−| |(y2− y1)

( (2− )
( − −1)

+
1

( +1)

))
.

4. Lyapunov-type inequalities for FBVP involving mixed Riemann-Liouville
and Caputo fractional derivatives

In 2022, Liu and Li [26] studied the FBVP:⎧⎨⎩
CD

y1+D
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y2) = 0, pz(y1) = D
y2−z(y1),

(11)

where 0<  �  � 1, 1 < + � 2, p � 0 and p �= 0, CD
y1+ denotes the left Caputo

derivative operator of order  , D
y2− denotes the right Riemann-Liouville derivative

operator of order  and r ∈C([y1,y2],R).

LEMMA 23. A function z ∈ C([y1,y2],R) is a solution to the FBVP (11) if and
only if

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds,

where G(t,s) is the Green’s functions given by

G(t,s) =
1

( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y2 − t)

(1+  )

∫ y2

s
(− y1)−1(− s)−1d

−
∫ y2

t
(− t)−1(− s)−1d, y1 � s �  � t � y2,

(y2 − t)

(1+  )

∫ y2

s
(− y1)−1(− s)−1d

−
∫ y2

s
(− t)−1(− s)−1d, y1 � s � t �  � y2,

with  =
(y2 − y1)

(1+  )
− 

p
.

LEMMA 24. The Green’s function G(t,s) given in Lemma 23 satisfies the prop-
erty:
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|G(t,s)|

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((1+  ))+−1

( )( )( + −1)( + )+ (y2− y1)(−1)(+−1) , (y2− y1) > − 
p( ),

(y2− y1)+−1((1+  )− ( + −1)(y2− y1) )
( )(1+  )(1+ )( + −1)

, (y2− y1) � − 
p( ),

for t,s ∈ [y1,y2]× [y1,y2].

Now, we are ready to present the Lyapunov-type inequality for problem (11).

THEOREM 13. If the FBVP (11) has a nontrivial solution z∈C([y1,y2],R), where
r is a real and continuous function in [y1,y2], then∫ y2

y1

|r(s)|ds

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( )( )( + −1)( + )+ (y2− y1)(−1)(+−1)

((1+  ))+−1
, (y2− y1) > − 

p( ),

( )(1+  )(1+ )( + −1)
(y2− y1)+−1((1+  )− ( + −1)(y2− y1) )

, (y2− y1) > − 
p( ).

5. Lyapunov-type inequalities for Riesz-Caputo fractional derivative

In this section, we present Lyapunov-type inequalities for the Riesz-Caputo type
FBVP. Unlike the other fractional operators, the salient feature of the Riesz-Caputo
fractional derivative operator is that it uses both left and right fractional derivatives
possessing nonlocal memory effects. This property of the Riesz-Caputo derivative is
important in the mathematical modeling of physical processes on a finite domain when
the present states depend both on the past and future memory effects.

DEFINITION 4. [22] The Riesz fractional integral of a function g ∈C([y1,y2],R)
of order  > 0 is defined as

Iy1
g(t) =

1
2( )

∫ y2

y1

|t− s|−1g(s)ds =
1
2

(
Iy1

g(t)+ y2I
g(t)

)
, t ∈ [y1,y2],

where Iy1 and y2 I
 are the left and right Riemann-Liouville fractional integral operators

of order  > 0.

DEFINITION 5. [22] The Riesz-Caputo fractional derivative of a function g ∈
Cn+1([y1,y2],R) of order  ∈ (n,n+1] , n ∈ N, is defined as

RCD
y1

g(t) =
1

(n+1−  )

∫ y2

y1

|t− s|n−g(n+1)ds

=
1
2

(
CD

y1
g(t)+ (−1)n+1 C

y2
D g(t)

)
,
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where CD
y1g(t) and C

y2
D are respectively the left and right Riemann-Liouville frac-

tional derivative operators of order  > 0.

In [47], Toprakseven et al. studied the anti-periodic FBVP:{
RCD

y1+z(t)+ r(t)z(t) = 0,  ∈ (1,2], y1 � t � y2,

z(y1)+ z(y2) = 0 = z′(y1)+ z′(y2),
(12)

where RCD
y1+ is the Riesz-Caputo fractional derivative operator of order  > 0 and

r ∈C([y1,y2],R).

LEMMA 25. Let 1 <  � 2 and r : [y1,y2] → R be a continuous function. Then,
z is a solution to the boundary value problem (12) if and only if z is the solution to the
integral equation

z(t) =
∫ y2

y1

(y2 − s)−2G(t,s)r(s)z(s)ds,

where G(t,s) is the Green’s function given by

G(t,s) =

⎧⎪⎪⎨⎪⎪⎩
1

2( )
(t− s)−1(y2 − s)2− − y2 − y1

4( −1)
, y1 � s � t � y2,

1
2( )

(s− t)−1(y2 − s)2− − y2 − y1

4( −1)
, y1 � t � s � y2.

LEMMA 26. The Green’s function G(t,s) given in Lemma 25 is such that

|G(t,s)| � (3−  )(y2− y1)
4( )

, y1 � t,s � y2.

Now, we are ready to state the Lyapunov inequality for the FBVP (12).

THEOREM 14. Let 1 <  � 2 and r : [y1,y2] → R be a continuous function. If
there exists a nonzero solution to the FBVP (12), then∫ y2

y1

(y2 − s)−2|r(s)|ds >
4( )

(3−  )(y2− y1)
.

As an application of the above Lyapunov-type inequality, we find a bound on the
eigenvalues of a FBVP.

COROLLARY 3. Let  ∈ (1,2]. If a nonzero solution exists for the fractional
boundary value problem:{

RCD
y1z(t)+ z(t) = 0, y1 � t � y2,

z(y1)+ z(y2) = 0 = z′(y1)+ z′(y2),

then the eigenvalue  ∈ R is such that | | > 4( −1)( )
(3−  )(y2− y1)

.
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6. Lyapunov-type inequalities for FBVP involving  -Caputo
fractional derivative

Let [y1,y2] , 0 < y1 < y2 <  , be an interval and  : [y1,y2] → R be a function
such that  ′(t) > 0 for every t ∈ [y1,y2].

DEFINITION 6. [22] The  -Riemann-Liouville fractional integral of order  > 0
for an integrable function g : [y1,y2] → R with respect to the function  : [y1,y2] → R

is defined by

I ,
y1+g(t) =

1
( )

∫ t

y1

 ′(s)((t)−(s))−1g(s)ds.

DEFINITION 7. [4] Let n ∈ N and  ,g ∈ Cn([y1,y2],R). The  -Caputo frac-
tional derivative of order  for the function z is defined by

CD ,
y1+g(t) = In− ,

y1+

( 1
 ′(t)

d
dt

)n
g(s),

with n = [ ]+1 for  /∈ N and n =  for  ∈ N, where [ ] denotes the largest integer
less than or equal to  .

A Lyapunov-type inequality was obtained in 2022 by Rezapour el al. [40] for a
thermostat control model involving generalized  -operators given by{

CD ,z(t)+K(t,z(t)) = 0, y1 < t < y2,

CD1,z(y1) = 0, z( )+  CD−1,z(y2) = 0,
(13)

where  ∈ (1,2],  ∈ (y1,y2),  > 0 and CD1, = 1
 ′(t)

d
dt , which is the generalized  -

Caputo derivative of order one, K : [y1,y2]×R→R is a continuous function and CD,

denotes the generalized  -Caputo fractional derivative of order  ∈ {1, , −1}.

LEMMA 27. Let  ∈ (1,2],  ∈ (y1,y2),  > 0 and  ∈C([y1,y2],R). A function
z ∈C([y1,y2],R) is a solution to the linear thermostat  -model:{

CD ,z(t)+(t) = 0, t ∈ [y1,y2],
CD1,z(y1) = 0, z( )+  CD−1,z(y2) = 0,

(14)

if it satisfies the integral equation

z(t) =
∫ y2

y1

G (t,s) ′(s)(s)ds,
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where

G(t,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ((t)−(s))−1

( )
+

(( )−(s))−1

( )
+  , y1 � s � min{ , t},

(( )−(s))−1

( )
+  , y1 � t � s �  ,

− ((t)−(s))−1

( )
+  ,  � s � t � y2,

 , max{ ,t} � s � y2.

LEMMA 28. The Green’s function defined in the above lemma has the properties:

(i) min
y1�t,s�y2

G(t,s) = − ((y2)−( ))−1

( )
+  ;

(ii) max
y1�t,s�y2

G(t,s) = +
(( )−(y1))−1

( )
;

(iii)
∫ y2

y1

|G(t,s)| ′(s)ds � max
{(( )−(y1))

( +1)
+ ((y2)−(y1)),

((y2)−( ))

( +1)
− ((y2)−(y1))

}
, for each t ∈ [y1,y2].

A Lyapunov-type inequality for the thermostat control  -model (13) is now pre-
sented.

THEOREM 15. Assume that:

(A) There exist  : [y1,y2]→ R and a positive, concave and non-decreasing function
 : R → R such that |K(t,z)| � |(t)||(z)| for each t ∈ [y1,y2] and z ∈ R.

If  ′(·)(·) ∈ L1[y1,y2] and the fractional thermostat control  -model (13) has a non-
trivial solution z ∈C([y1,y2],R) , then∫ y2

y1

 ′(s)|(s)|ds

� min
{ ( )
( )+ (( )−(y1))−1

,
( )

|((y2)−( ))−1− ( )|
} ‖z‖
(‖z‖) .

If  � ((y2)−( ))−1

( )
, then

∫ y2

y1

 ′(s)|(s)|ds � ( )‖z‖
(( )+ (( )−(y1))−1)(‖z‖) .

As an example we can state the existence and uniqueness result for thermostat
control  -model (13).
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THEOREM 16. Assume that:

(B) There exist  : [y1,y2]→ [0,) such that |K(t,z)−K(t,x)|� (t)|z−x|, for each
(t,y),(t,x) ∈ [y1,y2]×R.

If  ∈C1[y1,y2],  ∈ L1[y1,y2] and

‖‖L1[y1,y2]

<
1

‖ ′‖ min
{ ( )
( )+ (( )−(y1))−1

,
( )

|((y2)−( ))−1− ( )|
}
,

then the fractional thermostat control  -model (13) has a unique solution.

In 2022, Long [27] studied the boundary value problem:{
CD ,

y1+z(t)+ r(t)z(t) = 0, t ∈ [y1,y2],

z(y1) = 0, z(y2) = 0,
(15)

where 1 <  � 2,  ∈ C1([y1,y2],R), CD ,
y1+ is the  -Caputo fractional derivative

operator of order  and r : [y1,y2] → R is a continuous function.

LEMMA 29. A function z ∈ C([y1,y2],R) is a solution to the FBVP (15) if and
only if

z(t) =
1

( )

∫ y2

y1

G(t,s)[(y2)−(s)]−1 ′(s)r(s)z(s)ds,

where G(t,s) is the Green’s function given by

G(t,s) =

⎧⎪⎪⎨⎪⎪⎩
(t)−(y1)
(y2)−(y1))

−
( (t)−(s)
(y2)−(s)

)−1
, y1 � s < t � y2,

(t)−(y1)
(y2)−(y1))

, y1 � t � s � y2.

Now, we present a Lyapunov-type inequality for the FBVP (15).

THEOREM 17. If z is a nontrivial solution to the FBVP (15), then∫ y2

y1

[(y2)−(y1)] ′(s)|r(s)|ds � ( ).

7. Lyapunov-type inequalities for Hadamard-type FBVP

Let z : (y1,y2) → R, where 0 < y1 < y2 < . Define the space ACn
 [y1,y2] as

ACn
 [y1,y2] =

{
z : [y1,y2] → R| n−1z(t) ∈ AC[y1,y2],  = t

d
dt

}
,

where AC[y1,y2] denotes the space of all absolutely continuous real valued functions
on [y1,y2].
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DEFINITION 8. ([22, 3]) The left-sided Hadamard fractional integral of order  >
0 for a function g : [y1,y2] → R is defined by

HIy1+g(t) =
1

( )

∫ t

y1

(
ln

t
s

)−1
g(s)

ds
s

,

provided that the integral exists.

DEFINITION 9. ([22, 3]) Let  > 0, n = [ ]+ 1. The left-side Hadamard frac-
tional derivative of order  for a function g : [y1,y2] → R is defined by

HD
y1+g(t) =

1
(n−  )

(
t
d
dt

)n ∫ t

y1

(
ln

t
s

)n−−1
g(s)

ds
s

,

provided that the integral exists.

In 2022, Zhang et al. [54] established Lyapunov-type inequalities for a fractional
Langevin-type equation involving Caputo-Hadamard fractional derivative subject to
mixed boundary conditions:⎧⎨⎩

C
HD

y1+(CHD
y1+ + p(t))z(t)+ r(t)z(t) = 0, 0 < y1 < t < y2,

z(y1) = C
HD

y1+z(y1) = 0, z(y2) = 0,
(16)

where C
HD

y1+ denotes the Caputo-Hadamard fractional derivative of order  ∈ { ,},
0 <  < 1 <  < 2, and p,r ∈C([y1,y2],R).

LEMMA 30. A function z ∈ C([y1,y2],R) is a solution to the FBVP (16) if and
only if it satisfies the integral equation:

z(t) =
∫ y2

y1

G1(t,s)r(s)z(s)ds+
∫ y2

y1

G2(t,s)p(s)z(s)ds,

where G1(t,s) and G2(t,s) are Green’s functions given by

G1(t,s)=
1

s( +  )

⎧⎪⎪⎨⎪⎪⎩
ln(t/y1)
ln(y2/y1)

(
ln

y2

s

)+−1−
(

ln
t
s

)+−1
, 0 < y1 � s � t � y2,

ln(t/y1)
ln(y2/y1)

(
ln

y2

s

)+−1
, 0 < y1 � t � s � y2,

and

G2(t,s) =
1

s( )

⎧⎪⎪⎨⎪⎪⎩
ln(t/y1)
ln(y2/y1)

(
ln

y2

s

)−1−
(

ln
t
s

)−1
, 0 < y1 � s � t � y2,

ln(t/y1)
ln(y2/y1)

(
ln

y2

s

)−1
, 0 < y1 � t � s � y2.

LEMMA 31. The Green’s function G1(t,s) defined in Lemma 30 satisfies the prop-
erties:
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(i) G1(t,s) is nonnegative continuous function in [y1,y2]× [y1,y2];

(ii) G1(t,s) � (ln(y2/y1))+−1

y1( +  )
for any (t,s) ∈ [y1,y2]× [y1,y2].

In the following theorem, we present the Lyapunov-type inequality for the FBVP (16).

THEOREM 18. If the FBVP (16) has a nontrivial continuous solution z∈C([y1,y2],R) ,
where r is a real and continuous function in [y1,y2], then

∫ y2

y1

(|r(s)|+ |p(s)|)ds � y1(ln(y2/y1))1−

max

{
(ln(y2/y1))

( +  )
,
( −1)−1

( )

} .

Zhang et al. [54] also established Lyapunov-type inequalities for the fractional p -
Laplacian Langevin-type equation involving Caputo-Hadamard fractional derivatives
subject to mixed boundary conditions:{

C
HD

y1+p[(CHD
y1+ +u(t))z(t)]+ r(t)p(z(t)) = 0, 0 < y1 < t < y2,

z(y1) = C
HD

y1+z(y1) = 0, z(y2) = C
HD

y1+z(y2) = 0,
(17)

where C
HD

y1+ denotes the Caputo-Hadamard fractional derivative of order  ∈ {,},
1 <  < 1,  < 2, and u,r ∈C([y1,y2],R).

LEMMA 32. Let
1
p

+
1
q

= 1, then a function z ∈C([y1,y2],R) is a solution to the

FBVP (17) if and only if

z(t) =
∫ y2

y1

G(t,s)u(s)z(s)ds−
∫ y2

y1

G(t,s)q

(∫ y2

y1

H(s,)r()p(z())d
)
ds,

where the kernel functions G(t,s) and H(t,s) are given by

G(t,s) =
1

s()

⎧⎪⎪⎨⎪⎪⎩
ln(t/y1)
ln(y2/y1)

(
ln

y2

s

)−1 −
(

ln
t
s

)−1
, 0 < y1 � s � t � y2,

ln(t/y1)
ln(y2/y1)

(
ln

y2

s

)−1
, 0 < y1 � t � s � y2,

and

H(t,s) =
1

()

⎧⎪⎪⎨⎪⎪⎩
ln(s/y1)
ln(y2/y1)

(
ln

y2



)−1 −
(

ln
s


)−1
, 0 < y1 � s � t � y2,

ln(s/y1)
ln(y2/y1)

(
ln

y2

s

)−1
, 0 < y1 � t � s � y2.
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THEOREM 19. If the FBVP (17) has a nontrivial continuous solution z∈C[y1,y2],
where r is a real and continuous function in [y1,y2], then either∫ y2

y1

|u(s)|ds � y1()
[(−1) ln(y2/y1)]−1 ,

or ∫ y2

y1

|r(s)|ds

� p

{y1()− [(−1) ln(y2/y1)]−1 ∫ y2
y1

|u(s)|ds

(y2 − y1)[( −1) ln(y2/y1)]−1

} y1()
[(−1) ln(y2/y1)]−1 .

8. Lyapunov-type inequalities for FBVP involving
Katugampola fractional derivative

Let us first define the Katugampola fractional integral and derivative operators.

DEFINITION 10. [21] Let  > 0,  > 0 and − < y1 < y2 < . The left-sided
and right-sided Katugampola integrals of fractional order  are respectively defined for
g ∈ Lp(y1,y2) , p � 1, as

I ,
y1+g(t) =

1−

( )

∫ t

y1

−1

(t − )1− g()d,

I ,
y2−g(t) =

1−

( )

∫ y2

t

−1

( − t)1− g()d.

DEFINITION 11. [21] Let  > 0,  > 0, n = [ ]+1, 0 < y1 < t < y2 � . The
left-sided and right-sided Katugampola derivatives of fractional order  are respec-
tively defined for g ∈ Lp(y1,y2) , p � 1, as

D ,
y1+g(t) =

(
t1−

d
dt

)n
In− ,
y1+ g(t),

D ,
y2−g(t) =

(
− t1−

d
dt

)n
In− ,
y2− g(t).

In [29], Lupinska considered the boundary value problem:{
D ,

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  � 2,

z(y1) = z′(y2) = 0,
(18)

where D ,
y1+ denotes the Katugampola fractional derivative of order  and r : [y1,y2]→

R is a continuous function.
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LEMMA 33. The function z ∈C([y1,y2],R) is a solution to the FBVP (18) if and
only if

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds,

where the Green’s function G(t,s) is given by

G(t,s) =
1−

( )
s−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(y2 − y1

y2 − s

)2−
(t − y1 )−1, y1 � t � s � y2,

(y2 − y1
y2 − s

)2−
(t − y1 )−1− (t − s), y1 � s � t � y2.

LEMMA 34. The function G(t,s) defined in Lemma 33 satisfies the properties:

(i) G(t,s) � 0 for all t ∈ [y1,y2], s ∈ [y1,y2];

(ii) max
t∈[y1,y2]

G(t,s) = G(s,s) � 1− (y2 − y1 )
( )

(y2 − s)−2.

Now, we state the Lyapunov-type inequality for the FBVP (18).

THEOREM 20. If a continuous nontrivial solution to the FBVP (18) exists, where
r is a real and continuous function, then

∫ y2

y1

s−1(y2 − s )−2|r(s)|ds � ( )
1− (y2 − y1 )

.

COROLLARY 4. The FBVP (18) has no nontrivial solution if

∫ y2

y1

s−1(y2 − s )−2|r(s)|ds <
( )

1− (y2 − y2 )
.

COROLLARY 5. If  is an eigenvalue of the boundary value problem:{
D ,

y1+z(t)+ z(t) = 0, y1 < t < y2, 1 <  � 2,

z(y1) = z′(y2) = 0,

then

| | � ( −1)( )
( 

y2 − y1

)
.
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9. Lyapunov-type inequalities for FBVP involving Hilfer fractional derivative

DEFINITION 12. [13] Let y1,y2 ∈ R,  > 0, 0 �  � 1 and choose n ∈ N such
that n− 1 <  � n. The Hilfer-type fractional derivative of order  and type  of a
function g : [y1,y2] → R is defined by

(D ,g)(t) = (I (n− )
y1 DnI(n− )(1− )g)(t), t > y1,

if the right-hand side exists. Here Dn =
dn

dtn
denotes the classical nth -order differential

operator.

In [16], Jonnalagadda established the Lyapunov-type inequalities for the FBVPs
involving the Hilfer fractional differential operators:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(D ,
y1+z)(t)+ r(t)z(t) = 0, y1 < t < y2,

l(I(2− )(1− )
y1+ z)(y1)−m(DI2− )(1− )

y1+ y)(y1) = 0,

n(I(2− )(1− )
y1+ z)(y2)+ p(DI2− )(1− )

y1+ y)(y2) = 0,

(19)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(D ,

y1+z)(t)+ r(t)z(t) = 0, y1 < t < y2,

(I(2− )(1− )
y1+ z)(y1)+ (I2− )(1− )

y1+ z)(y2) = 0,

(DI(2− )(1− )
y1+ z)(y1)+ (DI2− )(1− )

y1+ z)(y2) = 0,

(20)

where l,m,n, p are constants such that l2 +m2 > 0 and n2 + p2 > 0, r : [y1,y2]→ R is

a continuous function, D ,
y1+ denotes the Hilfer fractional derivative operator of order

1 <  � 2 and type 0 �  � 1 and D denotes the first order differential operator.

LEMMA 35. If mn+ l p+ ln(y2−y1) �= 0, then the unique solution of the FBVP (19)
is given by

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds, y1 < t < y2,

where

G(t,s) =

{
G1(t,s), y1 < s � t < y2,

G2(t,s), y1 < t � s < y2,

with

G1(t,s) = G2(t,s)− (t − s)−1

( )
,

and

G2(t,s) = (t− y1)−(2− )(1− )(y2− s)− (2− )

× [l(t− y1)+m( −1+ (2−  ))][n(y2− s)+ p(1−2+  )]
[mn+ l p+ ln(y2− y1)](2−2 +  )(2− (2−  )(1− ))

.
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LEMMA 36. The unique solution of the FBVP (20) is given by

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds, y1 < t < y2,

where

G(t,s) =

{
G1(t,s), y1 < s � t < y2,

G2(t,s), y1 < t � s < y2,

with

G1(t,s) = G2(t,s)− (t − s)−1

( )
,

and

G2(t,s) =
1

2(1−2 +  )(1− (2−  )(1− ))

{
(t− y1)−(2− )(1− )

×(y2− s)− (2− )
[ t− y1

1− (2−  )(1− )
− y2 − s

1− (2−  )
− y2− y1

2

]}
.

LEMMA 37. Let l,m,n, p � 0 with mn+ l p+ ln(y2− y1) > 0 and

H(t,s) = (t − y1)(2− )(1− )(y2 − s) (2− )G(t,s)

=

{
(t − y1)(2− )(1− )(y2 − s) (2− )G1(t,s), y1 � s � t � y2,

(t − y1)(2− )(1− )(y2 − s) (2− )G2(t,s), y1 � t � s � y2.

Then
|H(t,s)| � max

{
,

y2− y1

( )

}
, (t,s) ∈ [y1,y2]× [y1,y2],

where

=
[l(y2 − y1)+m( −1+ (2−  ))][n(y2− y1)+ p(1−2+  )]

[mn+ l p+ ln(y2− y1)](2−2 +  )(2− (2−  )(1− ))
.

LEMMA 38. Let

H(t,s) = (t − y1)(2− )(1− )(y2 − s) (2− )G(t,s)

=

{
(t − y1)(2− )(1− )(y2 − s) (2− )G1(t,s), y1 � s � t � y2,

(t − y1)(2− )(1− )(y2 − s) (2− )G2(t,s), y1 � t � s � y2.

Then

|H(t,s)| � y2− y1

A

[ 1
1− (2−  )(1− )

+
1

1− (2−  )
− 1

2

]
+

y2 − y1

( )
,

(t,s) ∈ [y1,y2]× [y1,y2], where

A = 2(1−2 +  )(1− (2−  )(1− )).
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Now, we are in a position to present the Lyapunov-type inequalities for the FBVPs
(19) and (20).

THEOREM 21. Assume that l,m,n, p � 0 and mn + l p + ln(y2− y1) > 0. If the
FBVP (19) has a nontrivial solution, then∫ y2

y1

(s− y2)(−2)(1− )(y2 − s) (−2)|r(s)|ds � 1


,

where
 = max

{
,

y2− y1

( )

}
.

THEOREM 22. If the FBVP (20) has a nontrivial solution, then∫ y2

y1

(s− y1)(−2)(1− )(y2− s) (−2)|r(s)|ds � 1


,

where

 =
y2− y1

A

[ 1
1− (2−  )(1− )

+
1

1− (2−  )
− 1

2

]
+

y2− y1

( )
.

Next, we give the Lyapunov-type inequalities for boundary value problems involv-
ing  -Hilfer fractional derivatives.

For y1 < y2, let us define

H1
+[y1,y2] = { ∈C1[y1,y2] :  ′(t) > 0 for all t ∈ [y1,y2]}.

DEFINITION 13. [43] For  > 0,  ∈ H1
+[y1,y2], and g ∈ L1[y1,y2], the frac-

tional integral of a function g with respect to the function  is defined by

I ,
y1+g(t) =

1
( )

∫ t

y1

 ′(s)((t)−(s))−1g(s)ds.

DEFINITION 14. [43] For n− 1 <  � n, and g, ∈ Cn[y1,y2] with  ′(t) > 0

for all t ∈ [y1,y2], the left-sided  -Hilfer fractional derivative HD , ,
y1+ g of order 

and type 0 �  � 1, is defined as

HD , ,
y1+ g(t) = I (n− ),

y1+

( 1
 ′(t)

d
dt

)n
I(1− )(n− ),
y1+ g(t).

In [9], Dien and Nieto considered a nonlinear sequential FBVP in terms of the
generalized  -Hilfer fractional derivatives given by{(

HD1,1,
y1+

HD2,2,
y1+ z

)
(t)+g(t,z(t)) = 0, y1 < t < y2,

z(y1) = HD3,3,
y1+ z(y2) = 0,

(21)

where 0 < i � 1, 0 � i � 1 (i = 1,2,3), 1 + 2 > 1 and HDi ,i,
y1+ stands for the

 -Hilfer fractional derivative operator of order i and type 0 � i � 1, i = 1,2,3.
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LEMMA 39. Let 0 < i � 1 , 0 � i � 1 (i = 1,2,3), 1 + 2 > 1 and  ∈
H1

+[y1,y2]. Let z be a solution to the problem (21). If g(·,z(·)) ∈ L1[y1,y2] , then z
is a solution of the integral equation

z(t) =
∫ y2

y1

G(s,t) ′(s)((y2)−(s))1+2−3−1g(s,z(s))ds,

where

G(s, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1((t)−(y1))1+1−1

−C2
((t)−(s))1+2−1

((y2)−(y1))1+2−3−1
, y1 � s � t � y2,

C1((t)−(y1))1+1−1, y1 � t � s � y2,

with 1 = 1 +1(1− 1) and

C1 =
(2 + 1− 3)

(2 + 1)(1 + 2− 3)((y2)−(y1))2+1−3−1
, C2 =

1
(1 + 2)

.

Now, we state some properties of the Green’s function given in the preceding
lemma.

LEMMA 40. Let 0 < i � 1 , 0 � i � 1 (i = 1,2,3), 1 + 2 > 1 , 1 = 1 +
1(1− 1) and  ∈ H1

+[y1,y2] . Then, the Green function G defined in Lemma 39
satisfies the properties:

(i) For any y1 � t1 � t2 � y2 , |G(s,t1)−G(s,t2)| � C((t2)−(t1)) , where  =
min{1+2−1,3} and C =C1((y2)−(y1))2+1−−1+C2((y2)−(y1))3 ;

(ii) maxy1�s,t�y2 |G(s,t)| = Cmax , where

Cmax = max

{
(2 + 1−3)

(2 + 1)(1 +2 −3)
((y2)−(y1))3 ,

1−1

2 + 1 −1
((y2)−(y1))3

(1 +2

((2 + 1 −1)(1 +2 −3)
(1 +2 −1)(2 + 1 −3)

) 1+2−1
1−1

}
,

with 1 > 1 and

Cmax =
((y2)−(y1))3

( +2)
,

with 1 = 1.

Next, a generalized Lyapunov-type inequality for the FBVP (21) is presented.

THEOREM 23. Let 0 < i � 1 , 0 � i � 1 (i = 1,2,3), 1 + 2 > 1 and 1 =
1 +1(1− 1). Assume that:

(A) There exist  : (y1,y2) → R and a positive, nondecreasing and concave function
h : R → R such that

|g(t,z)| � |(t)|h(z)|, for any t ∈ (y1,y2) and z ∈ R.
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If  ∈ H1
+[y1,y2] and  ′(·)((y2)−(·))1+2−3−1r(·) ∈ L1(y1,y2) and the FBVP

(21) has a nontrivial solution, then∫ y2

y1

 ′(s)((y2)−(s))1+2−3−1|(s)|ds � 1
Cmax

‖z‖
h(‖z‖) .

COROLLARY 6. Let 0 < i � 1 , 0 � i � 1 (i = 1,2,3) and  ∈ H1
+[y1,y2].

Suppose that  is an eigenvalue of the FBVP{(
HD1,1,

y1+
HD2,2,

y1+ z
)
(t) =  z(t), y1 < t < y2,

z(y1) = HD3,3,
y1+ z(y2) = 0.

Then

| | � 1
Cmax

1 + 2− 3

((y2)−(y1))1+2−3
.

In [39], the authors studied the  -Hilfer fractional boundary value problem:{
HD , ,

y1+ z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = z(y2) = 0,
(22)

where 1 <  , � 2,  �  , r ∈ C([y1,y2],R), and HD , ,
y1+ denotes the  -Hilfer

derivative operator of order  and type  . Let  =  + (2−  ).

LEMMA 41. Let 1 <  �  � 2, r ∈ C([y1,y2],R), and  ′(t) > 0 , t ∈ [y1,y2].
Then, the solution of the problem (22) is given by

z(t) =
1

( )

∫ t

y1

G(t,s)z(s)r(s)ds+
1

( )

∫ y2

t
G(t,s)z(s)r(s)ds,

where G(t,s) is defined by

( )G(t,s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((t)−(y1))−1 ′(y2)

( (y2)−(s)
(y2)−(y1)

)−1

− ′(t)((t)−(s))−1, y1 � s � t,

((t)−(y1))−1 ′(y2)
( (y2)−(s)
(y2)−(y1)

)−1
, t � s � y2.

(23)

LEMMA 42. The Green function G(t,s) given in (23) satisfies the properties:

(i) G(t,s) is positive for all (t,s) ∈ [y1,y2]× [y1,y2];

(ii) G(t,s) � G(s,s), where

G(s,s) =
( (s)−(y1)
(y2)−(y1)

)−1−(y2)−(s))−1, s ∈ (y1,y2);
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(iii)

max
s∈[y1,y2]

G(s,s) = G
((−1)(y1)+ ( −1)(y2)

−  −2
,
(−1)(y1)+ ( −1)(y2)

−  −2

)
.

Now, we state the Lyapunov-type inequalities for the problem (22).

THEOREM 24. Assume that r∈C([y1,y2],R) and 1 <  <  � 2 . If the FBVP (22)
has a nontrivial solution, then∫ y2

y1

( (s)−(y1)
(y2)−((y1)

)−1
(((y2)−(y1))−1 ′(s)|r(s)|ds � ( ).

COROLLARY 7. Assume that r∈C([y1,y2],R) and 1 <  <  � 2 . If the FBVP (22)
has a nontrivial solution, then((y2)−(y1)

4

)−1 ∫ y2

y1

 ′(s)|r(s)|ds � ( ).

10. Lyapunov-type inequalities for Katugampola-Hilfer type FBVPs

In this section, we present Lyapunov-type inequalities for Katugampola-Hilfer
type FBVPs.

In 2023, Thabet and Kedim [45] considered the Katugampola-Hilfer type FBVPs:⎧⎨⎩
 ,HD ,

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), z(y2) =
∫ y2

y1

(hz)(u)du,
(24)

and ⎧⎨⎩
 ,HD ,

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), t1−
d
dt

z(t)|t=y2 =
∫ y2

y1

(hz)(u)du,
(25)

where  ,HD ,
y1+ denotes the Katugampola-Hilfer derivative operator of fractional order

 ∈ (1,2] and type  ∈ [0,1] with  > 0 (see Definition 18). Furthermore, z,r,h :
[y1,y2]→R are continuous functions, and the nonlocal function g∈C([y1,y2],R) such
that there exists a constant K > 0 so that |g(z)| � K , ∀z ∈ R.

LEMMA 43. Let  > 0,  ∈ (1,2],  ∈ [0,1],  =  +  (2−  ),  , ∈ (1,2],
z,h∈C((y1,y2),R) and r : [y1,y2]→R. Then, the solution of Katugampola-Hilfer type
FBVP (24) is

z(t) =
∫ y2

y1

H(t,s)r(s)z(s)ds+
(
1− (t − y1 )−1

(y2 − y1 )−1

)
g(z)

+
(t − y1 )−1

(y2 − y1 )−1

1
Q

∫ y2

y1

(
1− ( − y1 )−1

(y2 − y1 )−1

)
g(z)h()d , (26)
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where H(t,s) = H1(t,s)+H2(t,s) with

H1(t,s) =
1− s−1

( )(y2 − y1 )−1

⎧⎪⎨⎪⎩
(t − y1 )−1(y2 − s)−1, y1 � t � s � y2,

(t − y1 )−1(y2 − s)−1

−(y2 − y1 )−1(t − s)−1, y1 � s � t � y2,

and

H2(t,s) =
(t − y1 )−1

(y2 − y1 )−1

1
Q

∫ y2

y1

H1( ,s)h()d ,

Q = 1−
∫ y2

y1

(t − y1 )−1

(y2 − y1 )−1
h(t)dt > 0.

LEMMA 44. Let  > 0,  ∈ (1,2],  ∈ [0,1],  =  +  (2−  ),  , ∈ (1,2],
z,h∈C((y1,y2),R) and r : [y1,y2]→R. Then, the solution of Katugampola-Hilfer type
FBVP (25) is

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds+g(z)+
1

(−1)
(t − y1 )−1

(y2 − y1 )−1

1
S

∫ y2

y1

g(z)h()d , (27)

where G(t,s) = G1(t,s)+G2(t,s) with

G1(t,s)

=
1− s−1(y2 − s)−2

( )( −1)

⎧⎪⎪⎨⎪⎪⎩
( −1)(t − y1 )−1(y2 − y1 )2− , y1 � t � s � y2,

( −1)(t − y1 )−1(y2 − y1 )2−

−(−1) (t−s )−1

(y2−s )−2 , y1 � s � t � y2,

and

G2(t,s) =
1

(−1)
(t − y1 )−1

(y2 − y1 )−1

1
S

∫ y2

y1

G1( ,s)h()d ,

S = 1−
∫ y2

y1

1
(−1)

(t − y1 )−1

(y2 − y1 )−2
h(t)dt > 0.

In the next lemma, for the functions H(t,s) and G(t,s) defined in Lemmas 43 and
44, respectively, we give some properties.

LEMMA 45. Let  > 0,  ∈ (1,2],  ∈ [0,1],  =  +  (2−  ),  , ∈ (1,2].
Then, the Green’s functions H(t,s) and G(t,s) given in Lemmas 43 and 44, respec-
tively satisfy the properties:

(i) H(t,s) and G(t,s) are continuous functions for all (t,s) ∈ [y1,y2]× [y1,y2];

(ii) |H(t,s)|
<

( −1
+  −2

)−1( (y2 − y1 )( −1)
+  −2

)−1 1− s−1

( )

[
1+

1
Q

∫ y2

y1

|h()|d
]
;
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(iii) |G(t,s)|
<

(y2 − y1 )(y2 − s)−2

(−1)( )−1s1− max{−  , −1}
[
1+

y2− y1

(−1)S

∫ y2

y1

|h()|d
]
.

10.1. Lyapunov-type inequalities for the FBVP (24)

In this section, we present Lyapunov-type inequalities for the FBVP (24).

THEOREM 25. Assume that the Katugampola-Hilfer type FBVP (24) possesses a
nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ 1
Q

∫ y2
y1

|h()|d

< 2K +
( −1
 +  −2

)−1((y2 − y1 )( −1)
 +  −2

)−1 max{y−1
1 ,y−1

2 }
−1( )

∫ y2

y1

|r(s)|ds.

Using the above theorem, we present a condition on the nonexistence of nontrivial
solutions to the FBVP (24).

COROLLARY 8. The Katugampola-Hilfer type FBVP (24) has no nontrivial solu-
tion if

1

1+ 1
Q

∫ y2
y1

|h()|d

� 2K +
( −1
 +  −2

)−1((y2 − y1 )( −1)
 +  −2

)−1 max{y−1
1 ,y−1

2 }
−1( )

∫ y2

y1

|r(s)|ds.

COROLLARY 9. Assume that the Hadamard-Hilfer FBVP:⎧⎨⎩
H,HD ,

y1+z(t)+ r(t)z(t) = 0, 0 < y1 < t < y2,

z(y1) = g(z), z(y2) =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ 1
Q0

∫ y2
y1

|h()|d

< 2K +
( −1
 +  −2

)−1((lny2− lny1)( −1)
+  −2

)−1 1
y1( )

∫ y2

y1

|r(s)|ds,

where Q0 = 1−
∫ y2

y1

(ln t− lny1)−1

(lny2− lny1)−1 h(t)dt > 0.
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COROLLARY 10. Assume that the Hilfer FBVP:⎧⎨⎩
HD ,

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), z(y2) =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ 1
Q1

∫ y2
y1

|h()|d

< 2K +
( −1
+  −2

)−1( (y2− y1)( −1)
+  −2

)−1 1
( )

∫ y2

y1

|r(s)|ds,

where Q1 = 1−
∫ y2

y1

(t− y1)−1

(y2 − y1)−1 h(t)dt > 0.

COROLLARY 11. Assume that the Katugampola-Riemann FBVP:⎧⎨⎩
 ,RD

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), z(y2) =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ 1
Q2

∫ y2
y1

|h()|d < 2K +
((y2 − y1 )

4

)−1 1− max{y−1
1 ,y−1

2 }
( )

∫ y2

y1

|r(s)|ds,

where Q2 = 1−
∫ y2

y1

(t − y1 )−1

(y2 − y1)−1 h(t)dt > 0.

COROLLARY 12. Assume that the Katugampola-Caputo type FBVP:⎧⎨⎩
 ,CD

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), z(y2) =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ 1
Q3

∫ y2
y1

|h()|d

< 2K +
( 1


)
((y2 − y1 )( −1))−11− max{y−1

1 ,y−1
2 }

( )

∫ y2

y1

|r(s)|ds,

where Q3 = 1−
∫ y2

y1

(t − y1 )
(y2 − y1)

h(t)dt > 0.
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10.2. Lyapunov-type inequalities for the FBVP (25)

Now, we describe the Lyapunov-type inequalities for the FBVP (25).

THEOREM 26. Assume that the Katugampola-Hilfer type FBVP (25) possesses a
nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ y2−y1
(−1)S

∫ y2
y1

|h()|d

< K +
(y2 − y1 )1−

(−1)( )
max{−  , −1}

∫ y2

y1

s−1(y2 − s)−2|r(s)|ds.

COROLLARY 13. The Katugampola-Hilfer type FBVP (25) has no nontrivial so-
lution if

1

1+ y2−y1
(−1)S

∫ y2
y1

|h()|d

� K +
(y2 − y1 )1−

(−1)( )
max{−  , −1}

∫ y2

y1

s−1(y2 − s)−2|r(s)|ds.

COROLLARY 14. Assume that the Hadamard-Hilfer type FBVP:⎧⎨⎩
H,HD ,

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), t1−
d
dt

z(t)|t=y2 =
∫ y2

y1

(hz)(u)du,

possess a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ 1
S0

∫ y2
y1

|h()|d

< K +
(lny2 − lny1)

(−1)
max{−  , −1}

( )

∫ y2

y1

1
s
(lny2− lns)−2|r(s)|ds,

where S0 =
1

lny2− lny1
−

∫ y2

y1

(ln t − lny1)−1

(lny2− lny1)−1 h(t)dt > 0.

COROLLARY 15. Assume that the Hilfer FBVP:⎧⎨⎩
HD ,

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), t1−
d
dt

z(t)|t=y2 =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ y2−y1
(−1)S1

∫ y2
y1

|h()|d

< K +
(y2− y1)

(−1)( )
max{−  , −1}

∫ y2

y1

(y2− s)−2|r(s)|ds,
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where S1 = 1−
∫ y2

y1

1
−1

(t − y1)−1

(y2− y1)−1 h(t)dt > 0.

COROLLARY 16. Assume that the Katugampola-Riemann FBVP:⎧⎨⎩
 ,RD

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), t1−
d
dt

z(t)|t=y2 =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ y2−y1
(−1)S2

∫ y2
y1

|h()|d < K +
1− (y2 − y1 )

( )

∫ y2

y1

s−1(y2 − s)−2|r(s)|ds,

where S2 = 1−
∫ y2

y1

1
( −1)

(t − y1 )−1

(y2 − y1 )−1
h(t)dt > 0.

COROLLARY 17. Assume that the Katugampola-Caputo type FBVP:⎧⎨⎩
 ,CD

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = g(z), t1−
d
dt

z(t)|t=y2 =
∫ y2

y1

(hz)(u)du,

possesses a nontrivial solution z ∈C((y1,y2),R). Then, the following inequality holds:

1

1+ y2−y1
S3

∫ y2
y1

|h()|d < K +
(y2 − y1 )
−1( )

max{2−  , −1}
∫ y2

y1

(y2 − s)−2

s1− |r(s)|ds,

where S3 = 1−
∫ y2

y1

(t − y1 )h(t)dt > 0.

11. Lyapunov-type inequalities for FBVP involving
proportional fractional derivative

DEFINITION 15. [15] Let  ∈ [0,1]. The local fractional proportional integral of
order  for the function g is defined by (y1 I

0g)(t) = g(t) and

(y1
I1g)(t) =

1


∫ t

y1

e
−1
 (t−s)g(s)ds, for  ∈ (0,1], t ∈ [y1,y2].

In [23], Zaadjal et al. studied the sequential local fractional proportional boundary
value problem: {

(1
y1 D 2

y1 D )z(t)+ r(t)z(t) = 0, t ∈ [y1,y2],

z(y1) = 0, z(y2) = 0,
(28)

where y1D denotes the local fractional proportional differential operator of order
 ∈ {1,2} with 0 < 1, 2 < 1, 1 < 1 +2 < 2, 1 �= 2, and r : [y1,y2] → R is a
continuous function.
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LEMMA 46. The unique integral solution of the FBVP (28) is given by

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds,

where

G(t,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[e1(t−y1)− e2(t−y1)][e1(y2−s) − e2(y2−s)]
 [e1(y2−y1) − e2(y2−y1)]

− 1


[e1(t−s) − e2(t−s)], y1 � s � t � y2,

[e1(t−y1)− e2(t−y1)][e1(y2−s) − e2(y2−s)]
 [e1(y2−y1) − e2(y2−y1)]

, y1 � t � s � y2,

with 1 = 1−1
1

, 2 = 2−1
2

and  = 12(1 − 2).

LEMMA 47. The Green’s function defined in Lemma 46 satisfies the properties:

(i) G(t,s) � 0 for all t,s ∈ [y1,y2];

(ii) G(t,s) � [e1(y2−s)− e2(y2−s)]
| |[e1(y2−y1) − e2(y2−y1)]

for all t,s ∈ [y1,y2];

(iii) G(t,s) � 2

 [e1(y2−y1) − e2(y2−y1)]
for all t,s ∈ [y1,y2], where

 =

⎧⎨⎩max
{∣∣∣e1 − e2

∣∣∣, ∣∣∣e1(y2−y1)− e2(y2−y1)
∣∣∣},  � y2− y1,∣∣∣e1(y2−y1) − e2(y2−y1)

∣∣∣,  � y2− y1,

with  =
1

1 − 2
ln
2
1

;

(iv) max
t∈[y1,y2]

∫ y2

y1

|G(t,s)|ds =
1

(1 −1)(2−1)
.

Now, we present the Hartman-Wintner-type inequality for the FBVP (28).

THEOREM 27. If a continuous nontrivial solution to the problem (28) exists, then∫ y2

y1

sign( )[e1(y2−s)− e2(y2−s)]|r(s)|ds � 


[e1(y2−y1) − e2(y2−y1)],

where sign( ) =

{
1,  � 0,

−1,  < 0.

We have the following Lyapunov-type inequality for the problem (28).
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THEOREM 28. If a continuous nontrivial solution to the FBVP (28) exists, then∫ y2

y1

|r(s)|ds � 
2 [e1(y2−y1) − e2(y2−y1)].

Consider the local fractional proportional boundary value problem:{
(y1D

)z(t)+ r(t)z(t) = 0, t ∈ [y1,y2],

z(y1) = 0, z(y2) = 0,
(29)

where y1D
 denotes the local fractional proportional derivative operator of order 

with 0 <  < 1, 1 <  < 2 and r : [y1,y2] → R is a continuous function.

LEMMA 48. Let  =
−2
−1

. Then, the FBVP (29) has a unique solution given by

z(t) =
∫ y2

y1

G̃(t,s)r(s)z(s)ds,

where

G̃(t,s) =
1

2−

⎧⎪⎪⎨⎪⎪⎩
[1− e(t−y1)][1− e(y2−s)]

1− e(y2−y1)
− [1− e(t−s)], y1 � s � t � y2,

[1− e(t−y1)][1− e(y2−s)]
1− e(y2−y1)

, y1 � t � s � y2.

LEMMA 49. The Green’s function defined in Lemma 48 satisfies the properties:

(i) G̃(t,s) � 0 for all t,s ∈ [y1,y2];

(ii) max
t∈[y1,y2]

|G̃(t,s)| = G̃(s,s) for all s ∈ [y1,y2];

(iii) max
s∈[y1,y2]

|G̃(s,s)| = G̃
(y1 + y2

2
,
y1 + y2

2

)
=

(
1− e

(
y2−y1

2

))2

(2−)[1− e(y2−y1)]
;

(iv) max
t∈[y1,y2]

∫ y2

y1

|G̃(t,s)|ds =
1

2−

[ 1

− y2− y1

e(y2−y1) −1
− 1


ln

(
e(y2−y1) −1

)
(y2 − y1)

]
.

Next, we present the Hartman-Wintner-type inequality for the FBVP (29).

THEOREM 29. If a continuous nontrivial solution to the problem (29) exists, then∫ y2

y1

[1− e(s−y2)][1− e(y2−s)]|r(s)|ds � (2−)[1− e(y2−y1)].

We have the following Lyapunov-type inequality for the FBVP (29).

THEOREM 30. If a continuous nontrivial solution to the FBVP (29) exists, then∫ y2

y1

|r(s)|ds � (2−)[1− e(y2−y1)](
1− e

(
y2−y1

2

))2 .
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12. Lyapunov-type inequality for a pantograph FBVP involving a variable order
Hadamard fractional derivative

DEFINITION 16. [41] Let 1 � y1 < y2 <  and  : [y1,y2] → (0,). The left-
sided Hadamard fractional integral of variable order (t) for a function g is given
by

HI(t)
y1+ g(t) =

1
((t))

∫ t

y1

(
ln

t
s

)(t)−1 g(s)
s

ds, t > y1.

DEFINITION 17. [41] Let n ∈ N and  : [y1,y2] → (n− 1,n). The left-sided
Hadamard derivative of variable order (t) for a function g is given by

HD
(t)
y1+ g(t) =

tn

(n−(t))
dn

dtn

[∫ t

y1

(
ln

t
s

)n−1−(t) g(s)
s

ds
]
, t > y1.

In 2023, Graef et al. [12] studied the nonlinear pantograph FBVP containing a
Hadamard fractional derivative operator of variable order:{

HD(t)
1+ z(t) = g(t,z(t),z( t)), t ∈ [1,T ],

z(1) = z(T ) = 0,
(30)

where 1 < (t) < 2, 0 <  < 1, g : [1,T ]×R×R → R is a continuous function

and HD(t)
1+ is the left-sided Hadamard fractional derivative operator of variable order

(t) . Let P = [1, t1],(t1,t2],(t2,t3], . . . ,(tn,T ] be a partition of the interval [1,T ], and
let (t) : [1,T ] → (1,2) be the piecewise constant function with respect to P given by
(t) = n

i=1i(t)i(t) , t ∈ [1,T ], where 1 < i < 2, i = 1,2, . . . ,n are constants, and
i denote the characteristic function for the interval [ti−1,ti] , i = 1,2, . . . ,n , that is,

i(t) =

{
1, t ∈ [ti−1,ti],
0, otherwise.

Then, the FBVP can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
HDi(t)

ti−1+ŷ(t) =
t2

(2−i)
d2

dt2

[∫ t

ti−1

(
ln

t
s

)1−i(t) ŷ(s)
s

ds
]

= g(t, ŷ(t), ŷ( t)),

(t, t) ∈ [ti−1,ti],
ŷ(ti−1) = ŷ(ti) = 0.

(31)

LEMMA 50. The Green’s function for the FBVP (31) is given by

i(s,t) =

{
1,i(s,t), ti−1 � s � t � ti,

2,i(s,t), ti−1 � t � s � ti,

where

1,i(s, t) =
1

s(i)

[(
ln

t
s

)i−1−
(

ln
ti

ti−1

)1−i
(

ln
t

ti−1

)i−1(
ln

ti
s

)i−1]
,
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and

2,i(s, t) =
−1

s(i)

(
ln

ti
ti−1

)1−i
(

ln
t

ti−1

)i−1(
ln

ti
s

)i−1
, i ∈ {1,2, . . . ,n}.

LEMMA 51. Let i , i ∈ {1,2, . . . ,n} , be the Green’s function defined in Lemma
50. Then, we have

max
t∈[ti−1,ti ]

|i(s, t)| � 1
(i)

(
ln

ti
ti−1

)1−i
[(i − lnti−1)(ln ti− i)]i−1 exp(−i),

where

i =
1
2

[
2i −2+ lntiti−1−

√
(2i −2+ lntiti−1)2−4[(i−1) lntiti−1 + lnti ln ti−1]

]
.

The Lyapunov inequality for the FBVP (30) is given in the following result.

THEOREM 31. Suppose that there exists h ∈C([1,T ],R+) such that

|g(t,z(t),z( t))| � h(t)|z(t)|+ |z( t)|, 1 � t � T.

If the FBVP (30) has a nontrivial solution, then∫ T

1
h(s)ds >

n


i=1

(i)
2

(
ln

ti
ti−1

)i−1
[(i − lnti−1)(ln ti− i)]1−i exp(i).

13. Lyapunov-type inequalities for partial fractional
differential equations

This section is devoted to the Lyapunov-type inequalities for problems involving
partial fractional derivatives studied by Odzijewicz [34] in 2023.

13.1. Partial differential equation of the first type

In this subsection, we present a Lyapunov-type inequality for problems involving
right Caputo and the left Riemann-Liouville partial fractional derivatives.

Suppose that  , ∈ (0,1),  + ∈ (1,2],  = /2,  ∈ (0,2], K ∈ R, and w ∈
C([y1,y2],R). We consider the following equation

CD
y2−,t

(
D

y1+,tu(t,x)
)
− (1− x)(1+ x) D

1−,x(K
CD

−1+,xu(t,x)) = w(t)u(t,x) (32)

for (t,x) ∈ (y1,y2)× (−1,1), subject to boundary conditions

u(t,−1) = 0, I1−
1−,x(K

CD
−1+,xu(t,x))

∣∣∣
x=1

= 0, t ∈ (y1,y2), (33)

u(y1,x) = D
y1+,t u(y2,x) = 0, x ∈ (−1,1). (34)
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LEMMA 52. Let us consider the following FBVP with mixed fractional deriva-
tives

CD
y2−

(
D

y1+v(t)
)

+ k(t)v(t) = 0, t ∈ (y1,y2), (35)

v(y1) = D
y1+v(y2) = 0, (36)

where  , ∈ (0,1),  + ∈ (1,2], and

k(t) = −
(
w(t)+

K(1+ )
(1− )

)
, t ∈ [y1,y2].

If u is a solution to the problem (32)–(34) which is not identically equal to zero,
then the function

v(t) =
∫ 1

−1
(1− x)−u(t,x)dx

is a solution to the problem (35)–(36).

THEOREM 32. If u is a positive solution to the problem (32)–(34), which is not
identically equal to zero, then the following Lyapunov-type inequality is satisfied∫ y2

y1

∣∣∣w(s)+
K(1+ )
(1− )

∣∣∣ds � ( + −1)( )( )
(y2 − y1)+−1

.

13.2. Partial differential equation of the second type

Let us consider a partial differential equation with mixed fractional derivatives
defined on the set (0,1)× (−1,1) :

D
0−,t

(
CD

1−,tu(t,x)
)
− (1− x)(1+ x) D

1−,x(K
CD

−1+,xu(t,x)) = w(t)u(t,x),(37)

with boundary conditions

u(t,−1) = 0, I1−
1−,x(K

CD
−1+,xu(t,x))

∣∣∣
x=1

= 0, t ∈ (0,1), (38)

u(0,x) = u(1,x) = 0, x ∈ (−1,1), (39)

where  ∈
(

1
2 ,1

)
,  = /2 ∈ (0,1],  ∈ (0,2], K ∈ R+, and w ∈C[0,1].

LEMMA 53. If u is a solution to the problem (37)–(39) such that u �= 0, then the
function

v(t) =
∫ 1

−1
(1− x)−u(t,x)dx, t ∈ [0,1]

is a solution to the FBVP with mixed fractional derivatives:

D
0+

(
CD

1−v(t)
)
− k(t)v(t) = 0), t ∈ (0,1), (40)

v(0) = v(1) = 0, (41)
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where

k(t) = −
(
w(t)+

K(1+ )
(1− )

)
, t ∈ [0,1].

THEOREM 33. Let  ∈
(

1
2 ,1

)
,  = /2∈ (0,1],  ∈ (0,2] and w be continuous

on [0,1]. If u is a positive solution to the problem (37)–(39), such that u �= 0, then

∫ 1

0

∣∣∣w(s)+
K(1+ )
(1− )

∣∣∣ds � (2 −1)2( )
h

,

where
h = sup

0<x<1

[
(1− x)2−1− (1− x2−1)2

]
.

13.3. Lyapunov-type inequalities for fractional elliptic boundary value problem

Let  ⊂ R
N , N > 2, be an open bounded domain with smooth boundary and

(y1,y2), − < y1 < y2 < + , be an interval. In cylindrical domain D = (y1,y2)× ,
we consider the boundary value problem⎧⎪⎨⎪⎩

D
y1+,xD


y2−,xu(x,y)+ (−)s

yu(x,y) = r(x)u(x,y), (x,y) ∈ D,

u(y1,y) = u(y2,y) = 0, y ∈,

u(x,y) = 0, y ∈ R
N \ {},

(42)

where 1/2 <  � 1, s ∈ (0,1), D
y1+,xu(x,y) = x I1−

y1+,su(x,y) and D
y2−,xu(x,y) =

I1−
y2−,xu(x,y) are respectively the left Riemann-Liouville and right Caputo fractional
derivatives of order 0 <  � 1 and (−)s is the fractional Laplacian of order s ∈ (0,1)
defined by

(−)s
yu(x,y) = CN,s

∫
RN

u(x,y)−u(x, )
|y−  |N+2s d , y ∈ R

N ,

CN,s is some normalization constant and r is a real-valued continuous function.
Now, we present a Lyapunov type inequality for the elliptic FBVP (42) studied in

[20] by Kassymov.
We first consider the problem:{

D
y1+D

y2−u(x)− r(x)u(x) = 0, (x) ∈ (y1,y2),
u(y1) = u(y2) = 0.

(43)

LEMMA 54. Assume that  ∈
(

1
2 ,1

]
and u is a solution to the problem (43).

Then, u satisfies the integral equation:

u(x) =
∫ y2

y1

G(x,t)r(t)u(t)dt,
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where

G(x,t) = K(x,t)− K(y1,t)K(x,y1)
K(y1,y2)

,

and

K(x,t) =
1

2( )

∫ y2

max{x,t}
(s− x)−1(s− t)−1dt.

LEMMA 55. Let  ∈
(

1
2 ,1

]
, then

sup
y1<x<y2

G(x,t) = G(x,x), y1 < t < x < y2.

Next, let us consider the elliptic FBVP:⎧⎪⎨⎪⎩
D

y1+,xD

y2−,xu(x,y) = r(x)u(x,y), (x,y) ∈ D,

u(y1,y) = u(y2,y) = 0, y ∈,

u(x,y) = 0, y ∈ R
N \ {}.

(44)

We now present the Lyapunov-type inequality for the fractional elliptic FBVP (44).

THEOREM 34. Let  ∈
(

1
2 ,1

]
, s ∈ (0,1) and r ∈ C([y1,y2],R). Then, for (44),

we have that ∫ y2

y1

|r(x)−1()|dx �
(

sup
y1<x<y2

G(x,x)
)−1

,

where 1() is the first eigenvalue of the problem:{
(−)s

y1(y) = 1()1(y), y ∈,

1(y) = 0, y ∈ R
N \ {}.

14. Lyapunov-type inequalities for systems of Riemann-Liouville fractional
differential equations with multi-point coupled boundary conditions

In 2023, Zhou and Cui [57] established some Lyapunov-type inequalities for a
system of Riemann-Liouville fractional differential equations equipped with multipoint
coupled boundary conditions given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1
y1+u(t)+g1(t,u(t),v(t)) = 0, t ∈ (y1,y2),

D2
y1+v(t)+g2(t,u(t),v(t)) = 0, t ∈ (y1,y2),

u(y1) = 0, u(y2) =
n


i=1

a1iu(i)+
n


j=1

a2 jv( j),

v(y1) = 0, v(y2) =
n


i=1

a3iu(i)+
n


j=1

a4 jv( j),

(45)
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where y1,y2 ∈ R, 0 < y1 < y2, y1 < 1 < 2 < .. . < n < y2, y1 < 1 < 2 < .. . <

n < y2, ai j � 0 (i = 1,2,3,4; j = 1,2, . . . ,n), 1 < i � 2 (i = 1,2), Di
y1+ (i = 1,2)

is the Riemann-Liouville fractional derivative of order i and g1,g2 : [y1,y2]×R
2 → R

are continuous functions.

The following assumptions are used in the subsequent results.

(H0) ai j � 0 (i = 1,2,3,4; j = 1,2, . . . ,n), i j � 0 (i, j = 1,2) and  = 1122 −
1221 > 0, where

11 = 1−
n


i=1

a1i(i − y2)1−1

(y2− y1)1−1
, 12 =

n


i=1

a2 j( j − y2)2−1

(y2− y1)2−1
,

21 =
n


i=1

a3i(i − y2)1−1

(y2 − y1)1−1
, 22 = 1−

n


i=1

a4i j( j − y2)2−1

(y2 − y1)2−1
.

(H1) g1,g2 : [y1,y2]×R
2 → R are continuous.

(H2) There exist positive functions p11, p12 ∈C([y1,y2],R) such that

|g1(t,x,y)| � p11(t)|x|+ p12|y|, t ∈ [y1,y2], x,y ∈ R.

(H3) There exist positive functions p21, p22 ∈C([y1,y2],R) such that

|g2(t,x,y)| � p21(t)|x|+ p22|y|, t ∈ [y1,y2], x,y ∈ R.

LEMMA 56. Let 1,2 ∈C([y1,y2],R). Then, (u,v) is a solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1
y1+u(t)+1(t) = 0, t ∈ (y1,y2),

D2
y1+v(t)+2(t) = 0, t ∈ (y1,y2),

u(y1) = 0, u(y2) =
n


i=1

a1iu(i)+
n


j=1

a2 jv( j),

v(y1) = 0, v(y2) =
n


i=1

a3iu(i)+
n


j=1

a4 jv( j),

(46)

if and only if (u,v) is a solution of the system of integral equations

⎧⎪⎨⎪⎩
u(t) =

∫ y2

y1

G11(t,s)1(s)ds+
∫ y2

y1

G122(s)ds,

v(t) =
∫ y2

y1

G21(t,s)1(s)ds+
∫ y2

y1

G222(s)ds,
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where

G11(t,s) = G1
(t,s)+

(t − y1)1−1

(y2− y1)1−1

n


i=1

(22a1i +12a3i)G1
(i,s),

G12(t,s) =
(t − y1)1−1

(y2− y1)1−1

n


j=1

(22a2 j +12a4 j)G2
( j,s),

G21(t,s) =
(t − y1)2−1

(y2− y1)2−1

n


i=1

(21a1i +11a3i)G1
(i,s),

G22(t,s) = G2
(t,s)+

(t − y1)2−1

(y2− y1)2−1

n


j=1

(21a2 j +11a4 j)G2
( j,s),

and

Gi
(t,s) =

1
(i)

⎧⎪⎪⎨⎪⎪⎩
(t− y1)i−1

(y2 − y1)i−1
(y2− s)1−1− (t− s)1−1, y1 � s � t � y2,

(t− y1)i−1

(y2 − y1)i−1
(y2− s)1−1, y1 � t � s � y2.

LEMMA 57. The Green functions Gi
(t,s) defined in Lemma 56 satisfies the prop-

erties:

(1) Gi
(t,s) � 0 for all t,s ∈ [y1,y2];

(2) maxs∈[y1,y2] Gi
(s,s) = Gi

(s,s),s ∈ [y1,y2];

(3) Gi
(s,s) = Gi

(y1 +b
2

,
y1 +b

2

)
=

1
(i)

(y2− y1

4

)i−1
;

(4) Gi
(t,s) � 1

(i)
(t − y1)i−1

(y2− y1)i−1
(y2 − s)i−1 for all t,s ∈ [y1,y2].

LEMMA 58. For y1 < i < y2, we have

max
s∈[y1,y2]

Gi
(i,s) = Gi

(i,i) =
1

(i)
(i − y2)i−1

(y2 − y1)i−1
(y2− i)i−1.

LEMMA 59. The functions Gi j (i, j = 1,2) defined in Lemma 56 satisfy the prop-
erties:

(i) Gi j(t,s) � i j for all y1 � t,s � y2;
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(ii) Gi j(t,s) � i j(t−y1)i−1(y2−s) j−1 for all y1 � t,s � y2, where i j,i j (i, j =
1,2) are given by

11 =
1

(1)

(y2 −y1

4

)1−1
+

1
(1)

n


i=1

(22a1i +12a3i)(i −y2)1−1

(y2 −y1)1−1
(y2 −i)1−1,

12 =
1

(2)(y2 −y1)1−1

n


j=1

(22a2 j +12a4 j)( j −y2)2−1(y2 − j)2−1,

21 =
1

(1)(y2 −y1)2−1

n


i=1

(21a1i +11a3i)(i −y2)1−1(y2−i)1−1,

22 =
1

(2)

(y2 −y1

4

)2−1
+

1
(2)

n


j=1

(21a2 j +11a4 j)( j −y2)2−1

(y2 −y1)2−1
(y2 − j)2−1,

11 =
22

(1)(y2 −y1)1−1
, 12 =

1

(2)(y2 −y1)1−1
,

21 =
1

(1)(y2 −y1)2−1
, 22 =

11

(2)(y2 −y1)2−1
.

Now we present our main results on Lyapunov-type inequalities for the system
(45).

For pi j ∈C([y1,y2],R) (i, j = 1,2), let

Ji j(p1 j, p2 j) = i1

∫ y2

y1

p1 j(s)ds+i2

∫ y2

y1

p2 j(s)ds, i, j = 1.2.

THEOREM 35. Suppose that (H0)–(H3) are satisfied. If there exists a nontrivial
solution to the problem (45), then

J11(p11, p21)+ J22(p12, p22)

+
√

[J11(p11, p21)− J22(p12, p22)]2 +4J12(p12, p22)J21(p11, p2.1 � 2.

For pi j ∈C([y1,y2],R) (i, j = 1,2), let

Ii j(p1 j, p2 j) = i1

∫ y2

y1

p1 j(s)(y2 − s)1−1(s− y2) j−1ds

+i2

∫ y2

y1

p2 j(s)(y2 − s)2−1(s− y2) j−1ds, i, j = 1.2.

THEOREM 36. Suppose that (H0)–(H3) are satisfied. If the problem (45) has a
nontrivial solution, then

I11(p11, p21)+ I22(p12, p22)

+
√

[I11(p11, p21)− I22(p12, p22)]2 +4I12(p12, p22)I21(p11, p2.1 � 2.
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15. Lyapunov-type inequalities for FBVP involving bi-ordinal
Hilfer fractional derivative

In this section, we present Lyapunov-type inequalities for FBVP with multi-point
boundary conditions in the framework of bi-ordinal Hilfer-Katugampola and  -Hilfer
fractional derivatives.

15.1. Lyapunov-type inequalities for bi-ordinal Hilfer-Katugampola
fractional derivative

DEFINITION 18. [36] Let  > 0, n = [ ]+1 and  > 0. The left-sided Hilfer-

Katugampola fractional derivative D ,
y1+g of order  and type  , 0 �  � 1, of a

function g is defined by

(D ,
y1+g)(t) = ( I (n− )

y1+ (t1−
d
dt

)n  I(1− )(n− )
y1+ g)(t).

DEFINITION 19. [19] Let  > 0, n− 1 <  , � n and  > 0. The bi-ordinal

Hilfer-Katugampola fractional derivative D( , )
y1+ g of order  , and type  , 0 �  �

1, of a function g is defined by

(D( , )
y1+ g)(t) = ( I(n− )

y1+ (t1−
d
dt

)n  I(1−)(n− )
y1+ g)(t).

In [7], Chen et al. established Lyapunov-type inequalities for the multipoint bound-
ary value problems:⎧⎪⎨⎪⎩

D( , )
y1+ z(t)+ r(t)z(t) = 0, 1 <  , < 2,  > 0, y1 < t < y2,

z(y1) = 0, z(y2) =
m−2


i=1

iz(i),
(47)

and ⎧⎪⎨⎪⎩
D( , )

y1+ z(t)+ r(t)z(t) = 0, 1 <  , < 2,  > 0, y1 < t < y2,

z(y1) = 0, t1−
d
dt

z(t)|t=y2 =
m−2


i=1

iz(i),
(48)

where r ∈C([y1,y2],R), D( , )
y1+ is bi-ordinal Hilfer-Katugampola fractional deriva-

tive of order  , and type  (0 �  � 1), i,i � 0, y1 < i,i < y2, i = 1,2, . . . ,m−
2, y1 < 1 < 2 < .. . < m−2 < y2, and y1 < 1 < 2 < .. . < m−2 < y2. Let  =
 + (2− ) and  =  + ( − ).

In the sequel, we assume the following hypotheses:

(A)
m−2


i=1

i(

i − y1 )−1 < (y2 − y1 )−1;
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(B)
m−2


i=1

i(
i − y1 )−1 < (−1)(y2 − y1 )−2.

LEMMA 60. Assume that (A) holds. A function z ∈C[(y1,y2],R) is a solution to
the FBVP (47) if and only if it satisfies the integral equation

z(t) =
∫ y2

y1

G(t,s)r(s)z(s)ds+M(t)
m−2


i=1

i

∫ y2

y1

G(i,s)r(s)z(s)ds, t ∈ [y1,y2],

where

M(t) =
(t − y1 )−1

(y2 − y1 )−1 −m−2
i=1 i(


i − y1 )−1

, t ∈ [y1,y2],

and the Green’s function G(t,s) is given by

G(t,s) =
1− s−1

( )(y2 − y1 )−1

{
g1(t,s), y1 � s � t � y2,

g2(t,s), y1 � t � s � y2,

with

g1(t,s) = (t − y1 )−1(y2 − s)−1 − (y2 − y1 )−1(t − s)−1,

g2(t,s) = (t − y1 )−1(y2 − s)−1.

LEMMA 61. Assume that (B) holds. A function z ∈C[(y1,y2],R) is a solution to
the FBVP (48) if and only if

z(t) =
∫ y2

y1

z(t,s)r(s)z(s)ds+L(t)
m−2


i=1

i

∫ y2

y1

Y (i,s)r(s)z(s)ds, t ∈ [y1,y2],

where

L(t) =
(t − y1 )−1

(−1)(y2 − y1 )−2 −m−2
i=1 i(


i − y1 )−1

, t ∈ [y1,y2],

and the Green’s function Y (t,s) is given by

Y (t,s) =
(y2 − s)−21− s−1

(−1)( )

{
h1(t,s), y1 � s � t � y2,

h2(t,s), y1 � t � s � y2,

with

h1(t,s) = ( −1)(y2 − y1 )2− (t − y1 )−1 − (−1)
(t − s)−1

(y2 − s)−2
,

h2(t,s) = ( −1)(y2 − y1 )2− (t − y1 )−1.
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LEMMA 62. The Green’s functions G(t,s) and Y (t,s) defined in Lemmas 60 and
61, respectively, satisfy the properties:

(i) G(t,s) and Y (t,s) are two continuous functions for any (t,s) ∈ [y1,y2]× [y1,y2];

(ii) for any (t,s) ∈ [y1,y2]× [y1,y2],

|G(t,s)| � (−1)−1( −1)−1

( )( + −2)+−2
1− s−1(y2 − y1 )−1;

(iii) for any (t,s) ∈ [y1,y2]× [y1,y2],

|Y (t,s)| � 1− s−1(y2 − s)−2

( )( −1)
max{−  , −1}.

We are now in a position to state the Lyapunov-type inequalities for the boundary
value problems (47) and (48).

THEOREM 37. Let (A) hold and r ∈C([y1,y2],R) . If z is a nontrivial continuous
solution to the FBVP (47), then∫ y2

y1

|r(s)|ds � ( )−1( + −2)+−2

1[1+M(y2)m−2
i=1 i]max{y−1

1 ,y−1
2 }

,

where
1 = (−1)−1( −1)−1(y2 − yi )−1.

Theorem 37 with  =  ,  =  + (2−  ) and  =  reduces to the following
corollary (see [55, Theorem 4.1]).

COROLLARY 18. Consider the following Hilfer-Katugampola fractional m-point
boundary value problem⎧⎪⎨⎪⎩

D ,
y1+z(t)+ r(t)z(t) = 0, 1 <  < 2,  > 0, y1 < t < y2,

z(y1) = 0, z(y2) =
m−2


i=1

iz(i),
(49)

where r ∈C([y1,y2],R) and D
y1+ denotes the Hilfer-Katugampola fractional deriva-

tive of order  and type  ,0 �  � 1. If the problem (49) has a nontrivial continuous
solution, then∫ y2

y1

|r(s)|ds � [2( −1)+ (2−  )]2(−1)+(2− )( )−1

1[1+M(y2)m−2
i=1 i]max{y−1

1 ,y−1
2 }

.

Theorem 37 with  =  and  → 1 can be expressed in the form of the following
corollary ([51, Theorem 3.1]).
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COROLLARY 19. Consider the following Hilfer fractional m-point boundary value
problem ⎧⎪⎨⎪⎩

D ,
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  � 2, 0 �  � 1,

z(y1) = 0, z(y2) =
m−2


i=1

iz(i),
(50)

where r ∈ C([y1,y2],R) and D ,
y1+ denotes the Hilfer fractional derivative of order 

and type  . If the problem (50) has a nontrivial continuous solution, then∫ y2

y1

|r(s)|ds � ( )
1

1

1+
m−2


i=1

iT (y2)

,

where

1 =
( −1)−1( −1+2− )−1+2−(y2− y1)−1

(2 −2+2− )2−2+2− ,

T (y2) =
(y2 − y1)1−(2− )(1−)

(y2− y1)1−(2− )(1−)−
m−2


i=1

i(i − y1)1−(2− )(1−)

.

The next corollary is obtained from Theorem 37 by taking  =  ,  = 0 and
i = 0 ([28, Theorem 5]).

COROLLARY 20. Consider the following Katugampola fractional Dirichlet bound-
ary value problem:{

D
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  � 2,

z(y1) = 0, z(y2) = 0,
(51)

where r ∈C([y1,y2],R) and D
y1+ denotes the Katugampola fractional derivative of

order  . If the problem (51) has a nontrivial continuous solution, then∫ y2

y1

|r(s)|ds � ( )

max{y−1
1 ,y−1

2 }
( 4

y2 − y1

)−1
.

Theorem 37 with  =  ,  = 1 and  → 0+ reduces to the subsequent corollary
([52, Theorem 3.7]).

COROLLARY 21. Consider the following Caputo-Hadamard fractional m-point
boundary value problem:⎧⎪⎨⎪⎩

C
HD

y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  < 2,

z(y1) = 0, z(y2) =
m−2


i=1

iz(i),
(52)
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where r ∈C([y1,y2],R) and C
HD

y1+ denotes the Caputo-Hadamard fractional deriva-
tive of order  . If the problem (52) has a nontrivial continuous solution, then

∫ y2

y1

|r(s)|ds � y1( )
[( −1)(lny2 − lny1)]−1

·
ln y2

y1
−m−2

i=1 i ln
i
y1

ln y2
y1

+m−2
i=1 i ln

i
y1

.

Finally, Theorem 37 with  =  ,  = 0, i = 0 and  → 0+ takes the form of
the following corollary ([25, Theorem 2]).

COROLLARY 22. Consider the following Hadamard fractional Dirichlet bound-
ary value problem:{

HD
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  < 2,

z(y1) = 0, z(y2) = 0,
(53)

where r ∈ C([y1,y2],R) and HD
y1+ denotes the Hadamard fractional derivative of

order  . If the problem (53) has a nontrivial continuous solution, then∫ y2

y1

|r(s)|ds � 4(−1)y1( )
(

ln
y2

y1

)1−
.

THEOREM 38. Let (B) hold and r ∈C([y1,y2],R) . If z is a nontrivial continuous
solution to the FBVP (48), then∫ y2

y1

(y2 − s)−2|r(s)|ds � (−1)−1( )

2[1+L(y2)
m−2


i=1

i]

,

where
2 = (y2 − y1 )max{−  , −1}max{y−1

1 ,y−1
2 }.

Theorem 38 with  =  and  = 0 reduces to the following corollaries ([56,
Theorem 4.2] and [56, Theorem 4.5] respectively).

COROLLARY 23. Consider the Hilfer-Katugampola fractional m-point boundary
value problem:⎧⎪⎨⎪⎩

D ,
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  < 2,  > 0,

z(y1) = 0, t1−
d
dt

z(t)|t=y2 =
m−2


i=1

iz(i),
(54)

where r ∈C([y1,y2],R) and D ,
y1+ denotes the Hilfer-Katugampola fractional deriva-

tive of order  and type  . If the problem (54) has a nontrivial continuous solution,
then ∫ y2

y1

(y2 − s)−2|r(s)|ds � [1− (2−  )(1− )]−1( )
2[1+R(y2)m−2

i=1 i]
,
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where

2 = (y2 − y1 )max{(2−  ), −1}max{y−1
1 ,y−1

2 },

R(y2) =
(y2 − y1 )1−(2− )(1−)

[1− (2−  )(1− )](y2 − y1 )−(2− )(1−)−
m−2


i=1

i(
i − y2 )[1−(2− )(1−)]

.

COROLLARY 24. Consider the Katugampola fractional m-point boundary value
problem: ⎧⎪⎨⎪⎩

D
y1+z(t)+ r(t)z(t) = 0, y1 < t < y2, 1 <  < 2,  > 0,

z(y1) = 0, t1−
d
dt

z(t)|t=y2 =
m−2


i=1

iz(i),
(55)

where r ∈C([y1,y2],R) and D
y1+ denotes the Katugampola fractional derivative of

order  . If the problem (55) has a nontrivial continuous solution, then∫ y2

y1

(y2 − s)−2|r(s)|ds � −1( )

3(1+H(y2)
m−2


i=1

i)

,

where

3 = (y2 − y1 )max{y−1
1 ,y−1

2 },

H(y2) =
(y2 − y1 )−1

( −1)(y2 − y1 )−2−
m−2


i=1

i(
i − y1 )−1

.

15.2. Lyapunov-type inequalities for FBVP involving bi-ordinal  -Hilfer
fractional derivative

DEFINITION 20. ([53]) Let n−1 <  , � n with n ∈ N, I = [y1,y2] be the in-
terval such that −� y1 < y2 � and x, ∈Cn([y1,y2],R) , where  is an increasing
function such that  ′(t) �= 0, for all t ∈ I. The bi-ordinal  -Hilfer fractional derivative

(left-sided) HD( , ),
y1+ x of order ( , ) and type  (0 �  � 1) is defined by

(HD( , ),
y1+ x)(t) = (I(n− ),

y1+

( 1
 ′(t)

d
dt

)n
I(1−)(n− ),
y1+ x)(t).

In 2023, Wang et al. [53] considered the bi-ordinal  -Hilfer boundary value prob-
lems with m-point boundary conditions:⎧⎪⎨⎪⎩

(HD( , ),
y1+ z)(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = 0, z(y2) =
m−2


i=1

iz(i),
(56)
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and ⎧⎪⎨⎪⎩
(HD( , ),

y1+ z)(t)+ r(t)z(t) = 0, y1 < t < y2,

z(y1) = 0,
1

 ′(t)
d
dt

z(t)|t=y2 =
m−2


i=1

iz(i),
(57)

where r ∈ C([y1,y2],R),  ∈ C2([y1,y2],R),  ′(t) > 0, HD( , ),
y1+ is bi-ordinal  -

Hilfer fractional derivative operator of order ( ,  ) , 1 <  < 2, 0 �  � 1 and type
 , 0 �  � 1, i,i � 0, y1 < i,i < y2, i = 1,2, . . . ,m−2 for y1 < 1 < 2 < .. . <
m−2 < y2, y1 < 1 < 2 < m−2 < y2.

LEMMA 63. Assume that:

(C1) ((y2)−(y1))−1 >
m−2


i=1

i((i)−(y1))−1.

The function z ∈C([y1,y2],R) is the solution of the FBVP (56) if and only if it satisfies
the integral equation

z(t) =
∫ y2

y1

H(t,s) ′(s)r(s)z(s)ds+R(t)
m−2


i=1

i

∫ y2

y1

H(i,s) ′(s)r(s)z(s)ds, (58)

where

R(t) =
((t)−(y1))−1

((y2)−(y1))−1 −
m−2


i=1

i((i)−(y1))−1

,

and the Green’s function H(t,s) is given by

H(t,s) =
1

( )
((y2)−(y1))−1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((t)−(y1))−1((y2)−(y1))−1

−((y2)−(y1))−1((t)−(y1))−1,

y1 � s � t � y2,

((t)−(y1))−1((y2)−(y1))−1,

y1 � t � s � y2,

with  =  + ( − ).

LEMMA 64. Assume that:

(C2) (−1)((y2)−(y1))−2 >
m−2


i=1

i((i)−(y1))−1.

The function z ∈C([y1,y2],R) is the solution of the FBVP (57) if and only if it satisfies
the integral equation

z(t) =
∫ y2

y1

G(t,s) ′(s)r(s)z(s)ds+Q(t)
m−2


i=1

i

∫ y2

y1

G(i,s) ′(s)r(s)z(s)ds, (59)
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where

Q(t) =
((t)−(y1))−1

(−1)((y2)−(y1))−2−
m−2


i=1

i((i)−(y1))−1

,

and the Green’s function G(t,s) is given by

G(t,s) =
(y2)−(y1))−2

( )(−1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

( −1)((y2)−(y1))2−((t)−(y1))−1

−(−1)
((t)−(s))−1

((y2)−(s))−2
,

y1 � s � t � y2,

( −1)((y2)−(y1))2−((t)−(y1))−1,

y1 � t � s � y2,

with  =  + ( − ).

LEMMA 65. The Green’s functions H(t,s) and G(t,s) defined in Lemmas 63 and
64 respectively, satisfy the properties:

(i) H(t,s) and G(t,s) are continuous functions in [y1,y2]× [y1,y2];

(ii) For any (t,s) ∈ [y1,y2]× [y1,y2], we have

|H(t,s)| � ( −1)−1(−1)−1((y2)−(y1))−1

( )( +  −2)+−2
;

(iii) For any (t,s) ∈ [y1,y2]× [y1,y2], we have

|G(t,s)| � ((y2)−(s))−2((y2)−(y1))
(−1)( )

max{−  , −1}.

Now, we present the Lyapunov-type inequalities for problems (56) and (57).

THEOREM 39. If the FBVP (56) has a nontrivial solution in C([y1,y2],R) and
r ∈C([y1,y2],R) is a real and continuous function, then∫ y2

y1

 ′(s)|r(s)|ds � ( )( +−2)+−2[
1+R(y2)

m−2


i=1

i

]
( −1)−1(−1)−1((y2)−(y1))−1

.

THEOREM 40. If the FBVP (57) has a nontrivial solution in C([y1,y2],R) and
r ∈C([y1,y2],R) is a real and continuous function, then∫ y2

y1

((y2)−(s))−2 ′(s)|r(s)|ds

� (−1)( )

((y2)−(y1))max{−  , −1}
[
1+Q(y2)

m−2


i=1

i

] .
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16. Lyapunov-type inequalities for discrete FBVP

In this section, we present Lyapunov-type inequalities for a discrete FBVP. We
start this section with some basic definitions. The falling factorial function is defined as

t =
(t +1)

(t +1−  )
,

for any t and  for which the right hand side is defined. Conventionally, if t +1− is
pole of the Gamma function and t +1 is not a pole, then t = 0.

DEFINITION 21. [11] The  -th order fractional sum of a function g defined on
Ny1 := {y1,y1 +1,y1 +2, . . .} , y1 ∈ R and for  > 0, is defined as

−
y1

g(t) =
1

( )

t−


s=y1

(t − s−1)−1g(s), t ∈ Ny1+ .

In [1], the authors studied the discrete FBVP of fractional difference equations:{
− z(t) = h(t +  −1)g(z(t +  −1)), t ∈ [0,y2]N0 ,

z( −2) = 0, z( −2) = z( + y2−1),
(60)

where g : [0,) → [0,) is continuous and non-decreasing, h : [ − 1, + n]N0 →
[0,), 1 <  � 2, and  is a positive parameter.

LEMMA 66. The function z is a solution to the FBVP (60) if and only if

z(t) = − 
( )

y2


s=0

G(t,s)h(s+  −1)g(z(s+  −1)),

where

G(t,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t−1(y1 + y2− s−2)−2

( −1)− ( + y2−1)−2
+(t− s−1)−1, 0 � s < t−  � y2,

t−1(y1 + y2− s−2)−2

( −1)− ( + y2−1)−2
, 0 � t−  < s � y2.

LEMMA 67. The Green’s function G(t,s) given in Lemma 66 satisfies the prop-
erties:

(1) G(t,s) > 0 for all t ∈ [ −2, +b]N−2
and s ∈ [0,y2]N0 ;

(2) maxt∈[−2,+y2]N−2
G(t,s) = G(s+  −2,s), s ∈ [0,y2]N0 ;

(3) The function G(s+  −2,s) has a unique maximum given by

max
s∈[0,y2]N0

G(s+  −2,s) =
(y2 +  −1)( −1)(y2 +2)

(y2)[( −1)(y2 +2)−( + y2)]
.
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The Lyapunov-type inequality for the discrete FBVP (60) is given in the following
result.

THEOREM 41. Let h : [ − 1, + y2]N−1
→ [0,) be a nontrivial function. As-

sume that g ∈C(R+,R+) is a nondecreasing function. If the discrete FBVP (60) has a
nontrivial solution, then

y2


s=0

|h(s+  −1)|� ( )(y2)[( −1)(y2 +2)−( + y2)]
(y2 +  −1)( −1)(y2 +2)g()

,

where  = max[−1,+y2]N−1
z(s+  −1).

In [35], Oguz et al. considered the higher-order discrete FBVP⎧⎪⎪⎨⎪⎪⎩
−n0

z(t)+ r(t)z(t +  −1), t ∈ N
y2+m0
0 ,

iz( −n0) = 0, i ∈ N
n0−2
0 ,

−n0
z(y2 +m0 +  − ) = 0,

(61)

where r is a real valued continuous function defined on N
y2+m0
0 , y2,n0,m0 ∈ N, n0 −

1 <  � n0, m0−1 <  � m0 and 1 �  <  when  � 2 and  = 1 when 1 <  < 2.

LEMMA 68. If g is defined on N
y2+m0
0 , then the solution of the discrete FBVP⎧⎪⎪⎨⎪⎪⎩

−−n0
z(t) = g(t), t ∈ N

y2+m0
0 ,

iz( −n0) = 0, i ∈ N
n0−2
0 ,

−n0
z(y2 +m0 +  − ) = 0,

can be represented by

z(t) =
y2+m0


s=0

G(t,s)g(s), t ∈ N
y2+m0+
−n0

,

where

G(t,s) =
1

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[y2 +m0 +  − − s−1]−−1

(y2 +m0 +  − )−−1
t−1,

0 � t− +1 � s � y2 +m0,

[y2 +m0 +  − − s−1]−−1

(y2 +m0 +  − )−−1
t−1− [t− s−1]−1,

0 � s � t−  � y2 +m0,

0,  −n0 � t �  −2,0 � s � y2 +m0.
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LEMMA 69. The Green’s function G(t,s) given in Lemma 68 satisfies the in-
equality:

G(t,s)� 1
( )

[y2+m0+−−s−1]−−1
{
(y2+m0+ ) − [y2+m0+−s−s]

}
,

for (t,s) ∈ N
y2+m0+
−n0

×N
y2+m0
0 .

Now, we state the Lyapunov-type inequality for the discrete FBVP (61).

THEOREM 42. Let z be a nontrivial solution to the discrete FBVP (61). If z(t +
 −1) �= 0 for t ∈ N

y2+m0
0 , then the following inequality holds:

y2+m0


s=0

|r(s)| � 1
M0

( − )
[ (y2 +m0 +  )y2+m0−1

(y2 +m0 +  − )y2+m0+1 −1
]−1

,

where

M0 = max
{
( − ),

(y2 +m0 +  − )
(y2 +m0 +1)

}
.

COROLLARY 25. Let  = n0 ∈ N2 and  = 1. If z is a nontrivial solution to the
discrete FBVP (61) and z(t +n0 −1) �= 0 for t ∈ N

y2+1
0 , then the following inequality

holds:
y2+1


s=0

|r(s)| � (n0−1)!
y2 +2

n0−1


p=2

(p+ y2)−1.

In 2023, Vianny et al. [49] discussed the discrete fractional order boundary value
problem: {

RL z(t)+ r(t +  −1)z(t +  −1) = 0, t ∈ N
�
0,

z( −3) = 0, z( −3) = 0, z( + �) = 0,
(62)

where r : N
+�−2
−2 → [0,), RL is the Riemann-Liouville fractional differential oper-

ator of order  ∈ (2,3] and �∈N2. An integral inequality of Lyapunov-type is obtained
for the problem (62).

LEMMA 70. Let 2 <  � 3. Then the discrete FBVP (70) has a unique solution

z(t) =
1

( )

�


s=0

G(t,s)r(s+  −1)z(s+  −1),

where G(t,s) : N
+�
−3×N

�
0 → R is defined by

G(t,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( + �− s−1)−1

( + �)−1
t−1− (t− s−1)−1, 0 � s < t− +1 � �,

( + �− s−1)−1

( + �)−1
t−1, 0 � t− +1 � s � �.
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LEMMA 71. The Green’s function G(t,s) given in Lemma 70 satisfies the prop-
erties:

(1) G(t,s) > 0 for all t ∈ N
+�
−3 and s ∈ N

�
0;

(2) max
t∈N

+�
−3

G(t,s) = G(s+  −1,s), s ∈ N
�
0;

(3) The function G(s+  −1,s) has a unique maximum given by

max
s∈N�

0

G(s+  −1,s) =
( )( + �)

(�+1)( + �)−1
.

Now, we present the Lyapunov-type inequality for the discrete FBVP (62).

THEOREM 43. Let r : N
+�−2
−2 → [0,) be a nonzero function. If the discrete

FBVP (62) has a nontrivial solution, then

�


s=0

|r(s+  −1)|� (�+1)
( + �)

( + �)−1.

17. Conclusions

In this paper, we presented an extensive review of the most recent results on
Lyapunov-type inequalities for FBVP involving a variety of fractional derivative op-
erators and boundary conditions. Fractional derivative operators include Riemann–
Liouville, Caputo, mixed Riemann–Liouville and Caputo, Riesz-Caputo,  -Caputo,
Hadamard, Katugampola, Hilfer,  -Hilfer, proportional, variable order Hadamard,
partial, systems of Riemann-Liouville, bi-ordinal Hilfer-Katugampola and  -Hilfer.
In each section/subsection of the present paper, we first described the fractional integral
operators, related to the results collected for Lyapunov-type fractional integral inequal-
ities. We provided comprehensive details (without proof), for the convenience of the
reader, of all Lyapunov-type inequalities presented in this survey. This survey paper
together with the published survey papers [31]–[33] serves as an excellent platform for
the researchers who wish to initiate/develop new work on such inequalities.

RE F ER EN C ES

[1] N. G. ABUJ AND D. B. PACHPATTE, Lyapunov type inequalities for discrete fractional boundary
value problems, South East Asian J. Math. Math. Sci. 2023, 19, 63–72.

[2] R. P. AGARWAL, M. BOHNER AND A. OZBEKLER, Lyapunov Inequalities and Applications,
Springer, Cham, 2021.

[3] B. AHMAD, A. ALSAEDI, S. K. NTOUYAS AND J. TARIBOON, Hadamard-Type Fractional Differ-
ential Equations, Inclusions and Inequalities, Springer, Cham, Switzerland, 2017.

[4] R. A. ALMEIDA,Caputo fractional derivative of a function with respect to another function, Commun.
Nonlinear Sci. Numer. Simul. 2017, 44, 460–481.



FRACTIONAL LYAPUNOV-TYPE INEQUALITIES: A SURVEY 167

[5] P. BENNER, T. DAMM, C. RODRIGUEZ AND R. YOLANDA, Dual pairs of generalized Lyapunov
inequalities and balanced truncation of stochastic linear systems, IEEE Trans. Automat. Control 2017,
62, 782–791.

[6] M. CAPPELLI, (Ed.) Instrumentation and Control Systems for Nuclear Power Plants, (Enhanced Edi-
tion), Elsevier, 2023.

[7] G. CHEN, J. NI, H. DONG AND W. ZHANG, Lyapunov-type inequalities for fractional multi-point
boundary value problems using a new generalized fractional derivative, J. Nonlinear Func. Anal. 2023
2023, Article ID 28, pp. 1–16.

[8] S. DHAR AND J. T. NEUGEBAUER, Lyapunov-type inequalities for a fractional boundary value prob-
lem with fractional boundary condition, Nonlinear Dyn. Syst. Theory 2022, 22, 133–143.

[9] N. M. DIEN AND J. J. NIETO, Lyapunov-type inequalities for a nonlinear sequential fractional
FBVP in the frame of generalized Hilfer derivatives, Math. Inequal. Appl. 2022, 25, 851–867.

[10] P. ELOE AND B. K. M. BODDU, Lyapunov-type inequalities for (m, p) -type nonlinear fractional
boundary value problem, Turk. J. Math. 2023, 47, 816–829.

[11] C. GOODRICH AND A. PETERSON, Discrete Fractional Calculus, Springer International Publishing,
Switzerland, 2015.

[12] J. R. GRAEF, K. MAAZOUZ AND M. D. A. ZAAK, A generalized Lyapunov inequality for a panto-
graph FBVP involving a variable order Hadamard fractional derivative, Mathematics 2023, 11, 2984.

[13] R. HILFER, Y. LUCHKO AND Z. TOMOVSKI, Operational method for the solution of fractional dif-
ferential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal.
2009, 12, 299–318.

[14] Y. HOSOE AND T. HAGIWARA, Equivalent stability notions, Lyapunov inequality, and its application
in discrete-time linear systems with stochastic dynamics determined by an i.i.d. process, IEEE Trans.
Autom. Control. 2019, 64, 4764–4771.

[15] F. JARAD, T. ABDELJAWAD AND J. ALZABUT, Generalized fractional derivatives generated by a
class of local proportional derivatives, Eur. Phys. J. Special Topics 2017, 226, 3457–3471.

[16] J. M. JONNALAGADDA, A short note on Lyapunov-type inequalities for Hilfer fractional boundary
value problems, Appl. Math. E-Notes, 2 24 (2024), 35–45.

[17] J. M. JONNALAGADDA, D. BASUA AND D. K. SATPATHI, Lyapunov type inequality for an anti-
periodic conformable boundary value problem, Kragujevac J. Math. 2021, 45, 289–298.

[18] R. M. JUNGERS, A. A. AHMADI, P. A. PARRILO AND M. ROOZBEHANI, A characterization of
Lyapunov inequalities for stability of switched systems, IEEE Trans. Automat. Control 2017, 62, 3062–
3067.

[19] E. KARIMOV AND B. TOSHTEMIROV, Non-local boundary value problem for a mixed-type equation
involving the bi-ordinal Hilfer fractional differential operators, Uzbek. Math. J. 2021, 65, 61–67.

[20] A. KASSYMOV, M. RUZHANSKY AND B. T. TOREBEK, Rayleigh-Faber-Krahn, Lyapunov and
Hartmann-Wintner inequalities for fractional elliptic problems, Mediterr. J. Math. 2023, 20, 119.

[21] U. N. KATUGAMPOLA, A new approach to generalized fractional derivatives, Bull. Math. Anal. App.
2014, 6, 1–15.

[22] A. A. KILBAS, H. M. SRIVASTAVA AND J. J. TRUJILLO, Theory and Applications of the Fractional
Differential Equations, North-Holland Mathematics Studies, Elsevier: Amsterdam, The Netherlands,
2006, vol. 204.

[23] Z. LAADJAL, T. ABDELJAWAD AND F. JARAD, Some results for two classes of two-point local frac-
tional proportional boundary value problems, Filomat 2023, 37, 7199–7216.

[24] Z. LAADJAL AND Q. MA, Lyapunov-type inequalities for fractional Langevin differential equations,
J. Math. Inequal. 2023, 17, 67–82.

[25] Z. LAADJAL, N. ADJEROUD AND Q. H. MA, Lyapunov-type inequality for the Hadamard fractional
boundary value problem on a general interval [a,b] , J. Math. Inequal. 2019, 13, 789–799.

[26] Y. LIU AND Q. LI, Existence and uniqueness of solutions and Lyapunov-type inequality for a mixed
fractional boundary value problem, J. Nonlinear Model. Anal. 2022, 4, 207–219.

[27] L. Q. LONG, A Lyapunov-type inequality for a fractional differential equation under multi-point
boundary conditions, Thu Dau Mot University Journal of Science 2022, 4, 135–141.

[28] B. LUPINSKA AND T. ODZIJEWICZ, A Lyapunov-type inequality with the Katugampola fractional
derivative, Math. Method. Appl. Sci. 2018, 41, 8985–8996.

[29] B. LUPINSKA, Existence and nonexistence results for fractional mixed boundary value problems via
a Lyapunov-type inequality, Period. Math. Hungar. 88 (2024), 118–126.



168 S. K. NTOUYAS, B. AHMAD AND J. TARIBOON

[30] A. LYAPUNOV, Probleme general de la stabilite du mouvement, Ann. Fac. Sci. Univ. Toulouse 2,
1907, 203–407.

[31] S. K. NTOUYAS, B. AHMAD AND T. P. HORIKIS,Recent developments of Lyapunov-type inequalities
for fractional differential equations, In Differential and Integral Inequalities; Andrica, D., Rassias,
T. M., Eds.; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2019,
pp. 619–686.

[32] S. K. NTOUYAS AND B. AHMAD, Lyapunov-type inequalities for fractional differential equations: A
survey, Surv. Math. Appl. 2021, 16, 43–93.

[33] S. K. NTOUYAS, B. AHMAD AND J. TARIBOON, A survey on recent results on Lyapunov-type in-
equalities for fractional differential equations, Fractal Fract. 2022, 6, 273.

[34] T. ODZIJEWICZ,Lyapunov inequalities for two dimensional fractional boundary-value problems with
mixed fractional derivatives, Axioms 2023, 12, 301.
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