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QUASI-REVERSIBILITY METHOD FOR AN OPTIMAL CONTROL
OF AN ILL-POSED FRACTIONAL DIFFUSION EQUATION

CLAIRE JOSEPH

(Communicated by M. Warma)

Abstract. In this paper, an optimal control problem associated to an ill-posed fractional diffu-
sion equation is considered. To study our initial problem, we use the quasi-reversibility method
introduced by Lions and Lattes in 1969. More precisely, we consider an approximated optimal
control problem of our initial problem. Then the new problem is associated to a well-posed
state equation which approximate the ill-posed state equation. Firstly, we prove that the ap-
proximated optimal control problem admits a unique solution which we characterized using the
Euler-Lagrange optimality conditions. Next, we show that the solution of the approximated op-
timal control problem converges to the solution of the initial optimal control problem. To finish,
we characterize the optimal control of our initial problem by an optimality system.

1. Introduction

Let d € N* and Q be a bounded open subset of R? with boundary dQ of class
C?.For T >0,weset Q=Qx (0,T), Z=09dQ x (0,T) and we consider the following
fractional diffusion equation:

D%Ly(x’t) Ay(x t) v(x t) (X,Z)EQ,

y(o,t) =0 (0,1) €Z, (1
'y T) =y"(x) xeQ,

where 3/4 < a < 1,veL*(Q), yI € L*(Q) and the integral I'~* and the derivative
DY, of order o are understood in the Riemann-Liouville sense.

Fractional diffusion equation is obtained by replacing the first order time deriva-
tive with a time fractional derivative in the classical diffusion equation. Due to the fact
that the Riemann-Liouville fractional derivatives are characterized by a convolution
integral (see Definition 5), researchers speak about memory effect. This is why, many
researchers have focused their attention on fractional calculus and there are many appli-
cations in other fields such as Physics, Economics and Biology. For more information
about fractional calculus, we can refer to [12, 16,21-23] and references therein.

Fractional diffusion equations are often used to model environmental phenomenon
such as pollution problems. However, in this latter type of phenomenon, it is common
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to not have all the information of the problem. This is why, we decided to consider a
problem where the initial condition is missing. Regarding studies of ill-posed fractional
diffusion equation, we can refer to [9-11,14,20] and the references therein, for instance.

The main purpose of this paper is to solve an optimal control problem associated
to equation (1). More precisely, we are interesting in solving of the following optimal
control problem:

o nf J(m), )

where & = {(v,y) : v € U,y and y is solution of (1) in the sense of Definition 7}.

U,y being a given nonempty closed and convex subset of L?>(Q) and J is the
functional cost given by

- 2 N
J(V7y): HII ay('ao)_ZdHLZ(Q)_'_E||v||]2}(Q)a (3)

1
2
where z; € L*(Q) is a given target and N > 0.

Model computed in (1) is an ill-posed problem, in Hadamard sense. Hence, the
solution of the optimal control problem (1)—(2) is difficult to characterize. In this work,
we decided to use the quasi-reversibility method that was introduced by Lions and
Lattes in [13]. Moutamal et al. [10] used the quasi-boundary method, which is inspired
by the quasi-reversibility method. More precisely, they approached Equation (1) by the
well-posed problem:

Diryp(xt) = Ayp(x,1) = f(x.1) (x.1) €0,
yB(O',t):O (G7I)EE7
Il_o‘yﬁ (x,T) —I—[Hl_o‘yﬁ (x,07) =y'(x) xe€Q,
where 1/2<a <1, f>0and I' %*yg(x,0") = lil%lll_o‘yﬁ (x,7). And they proved that
t
when y! € H}(Q), the solution of (4) converges in L*((0,T);H}(Q)) to the solution
of the following equation:

D%Ly(x7t)_Ay(xvt):f(xvt) (x7t)€Q7
y(o,t) =0 (0,1) €Z,
y

under a certain condition.
In order to study our optimal control problem (1)—(2), we used the same approach.
For this, we consider the associated approximated equation of (1):

DF vE(x,1) — AYE(x,1) = v(x,1) (x,1) € Q,
¥ (o,1) =0 (0,0)€Z, )
I'=%yE(x, T) + el' =% (x,07) = yT (x) x€Q,
where € >0, v € L*(Q), y' € L*(Q) and I'"%y¢(x,0T) = lil%lllfo‘yg(x,t) and the
t
associated approximated optimal control problem, given by:

inf JE(v,y%), &)
o Dnf ()
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where A = {(v,y°) : v € %4 and y* is the unique solution of (4)}.
U,q being a given nonempty closed and convex subset of L?(Q) and J¢ is the
functional cost given by

1

JE(v,y") = 3 HIFO‘y (-,0) —ZdHiz(Q) + %/ ||V||i2(Q) . (6)
Recently, Mophou and Warma, in [19], used this latter method to study an optimal
control problem associated to a non-well posed Cauchy problem for a general space-
fractional diffusion equation. They approximated their problem by a well-posed prob-
lem and proved that the solution of the well-posed problem converges to the solution
of the ill-posed problem. They also gave an optimality system which characterize their
optimal control.

Over the past 10 years, optimal control problems associated to a well-posed frac-
tional diffusion-wave equations have been studied extensively, see [1-3,5-7, 15, 18]
and references therein, for example. However, we have less studies about optimal con-
trol problem associated to ill-posed fractional diffusion-wave equations. For instance,
in [4, 17], the authors used the concept of low-regret and no-regret controls to study
optimal control problems associated to an ill-posed fractional diffusion-wave equations
with incomplete data, where the derivative is understood in Riemann-Liouville sense.
The best of the authors’ knowledge, and, judging from the open literature available,
this is the first application of the quasi-reversibility method to solve an optimal control
problem associated to an ill-posed fractional diffusion equation.

This paper is structured as follows. In section 2, we firstly give some definitions
and results on fractional calculus. After, we give some important existence and unique-
ness results which are obtained using the spectral method. In section 3, we begin by
the existence and the uniqueness of the approximated optimal control problem (4)—(5).
Using the Euler-Lagrange optimality conditions, we characterized the solution of the
approximated problem by a system. After, we proved that the solution of the approx-
imated problem converges to the solution of the optimal control problem (1)—(2). To
finish, we give the singular optimality system that characterizes the optimal control.

2. Preliminaries

In this section, we provide some basic definitions and results on fractional calculus.
And we give some existence and uniqueness results of fractional diffusion equations.

DEFINITION 1. [12,22] Let z a complex such as Re(z) > 0. Then the Gamma
function, noted I, is given by

I'(z) :/ e dr.
0

DEFINITION 2. [12,22] For o >0 and 8 > 0 we denote by,

Eupl)= S —2 . zec @
' S T(ok+B)
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the two-parameters Mittag-Leffler function and thus

oo &
Eq.a(z ;;)F“HO‘)’ zeC. (8)
We set
oo &
E =E = -
wt(0) =Falt) = X opr) ©)

THEOREM 1. [22] Let 0 < ot <2, B € R be an arbitrary, and we suppose that
u as
o .
— < pu <min{m,mo}.

2
Then there exists a constant C = C(o,3,1) > O such that
Eap@|< . p<larg@)] <7
o,p\Z \1+|z\’ u<jarg(z)| <.

DEFINITION 3. [8,12] Let o, B, p € C such that Re(ct) >0 and Re(f) >0 then
the generalized Mittag-Leffler function is defined by

&P ()—Jio(p)inﬂq pour toutt € C
o,p = T(on+B)n!’ ’

where (p), =p(p+1)...(0+n—1).

REMARK 1. Note that, when p =1 we get

golcﬁ (t) = Eocﬁ (t)7

where E 1is the classical Mittag-Leffler function defined in (7).

DEFINITION 4. [12,22] The left and right Riemann-Liouville fractional integrals
of order a € (0,1) of f are defined, respectively, by:

) = Fgs [ =9 s, (>0 (10)
and | ;
L) = W/{ (s—1)%f(s)ds, (1 <T), (11)

provided that the integrals exist.
DEFINITION 5. [12,22] The left and right Riemann-Liouville fractional deriva-
tives of order o € (0, 1) of f are defined, respectively, by:

DRuf0) = SN0 = mrmgs i 0=97 s >0 a2
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and

—1

GRS 0) == (N0 = g [ -0 s, G<D). 0y

provided that the integrals exist.

DEFINITION 6. [12,22] The left and right Caputo fractional derivative of order
o € (0,1) of f are defined respectively, by:

D%f(t)zll’“f’(t)=ﬁ [e=srerwas =0 as

and | .
ZEN0) =5 0= Fr [ 6=0"rwas @<1) a3

provided that the integrals exist.

Now we give the following integration by parts formulas.

LEMMA 1. [18] Let O < a < 1, y€ C*(Q) and ¢ € C*(Q). Then we have,
T
| [ (Ofrten = syt (ndsas
1-o 1-o a(p
—/(prI y(x,T)dx — /(prI (dex—i—//yO'ta(Gt)det

[ ] Zionptondodrt [ [ vwn-TEotn o),
0 Jog dv eJo
(16)
where & is the right Caputo fractional defined by (15).

On other hand, since the embedding of H}(Q) in L*(Q) is compact and (—A) is
a symmetric uniform elliptic operator, then (—A) admits real eigenvalues, 0 < A} <
Ay < A3 <... with Ax — o when k — o. Moreover, there exists an orthonormal
basis {wi}7_, of L*(Q), where wy € H}(Q) is an eigenfunction corresponding to Ay :
—Awy = Aywy . Further, we have,

[ Vol vy = [ oyt vpeH(@). (7
Q Q

In what follows, for all @,y € LZ(Q), we denote

(PV/LZ /QD

as the inner product in L?(Q) and ||¢|| 12(q) as the associated norm.
We set

alp.w) = [ Vol Vy(dx, Yo,y € H)(Q) (18)
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Then, the bilinear functional a(.,.) defines an inner product on H}(Q), and we have

101 0) = (@, @), (19)

which is a norm on HJ(Q). Since {w_\/%} is an orthonormal basis of Hj () for
k) k=1

the inner product a(.,.), we can write
2 iy 2 1
H(I)HH(%(Q) zzll((pawl)l}(g), V(PEH()(Q) (20)
i=1

3. Existence results

In this section, we give some existence and uniqueness results for the fractional
diffusion equations which are used in this paper.
We first have to give our notion of strong solution to the ill-posed problem (1):

DEFINITION 7. Let v e L*(Q) and yT € L?(Q). A function y € L*((0,T); H} (Q))
is said to be a strong solution of (1), if the following assertions hold:

o 1'%y eC([0,TL2(RQ)),

e D% y(t) e HY(Q), y(-,t) € H}(Q) for a.e t € (0,T) and the first equation of
(1) is satisfied for a.e. ¢t € (0,7).

o I'"%y(T)=)".
We have the following results:

LEMMA 2. Let 3/4<a <1, T >0,veL*Q), yI € 1*(Q) and y satisfies (1).
Then y € L*((0,T); Hy (Q)) if

1/2
N TP / vi(s)"ds
lim | K i oo 21
sl I ;E (AT E2(MTY) < @
where
2T30672 2T30672
L and K =CY—
G —3)(1_a) "¢ 72 (4o —3)(1—a)
Proof. Set

VN:Span(wl,wz,---,wN). (22)
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Then we look for

N

(1), wi)2i@wi(x) = Y, yilt)wi(x), (23)

i=1

=

Il
—_

YN(X,I) =

1
solution of the following approximate problem:
DIOQCLYN(xJ) - AYN(,X,[) = VN(.X,[) (x7t) €0,

Yy(o,t) =0 (o,1) €, (24)
"%y (x,T) = yh(x) x€Q,

where
N N
vn(x,2) = Z(V(t)7wi)Lz(Q)wi(x) =Y vi(t)wi(x), (25)
i=1 i=1
and
N
Z Yowize Zyl wix (26)

Note that if Yy converge then Al/im Yy =y, where y satisfies (1).

N
If we replace Yy in (24) by Y yi(t)w;(x), we obtain that y;, i=1,---,N is a
i=1
solution of the ordinary differential equation

D%Lyt( )+/’Lzyz( ) = z(t)v re (O,T)7
e g

Now, using the Laplace transform, we obtain from the first equation of (27) that,

D, vi(s) + Aigi(s) = Di(s), (28)
where R
Dypyi(s) = Z(Dgryi(1))(s),
yt( ) = (yZ( )

)(s),
vi(s) = Z(vi(t))(s)
and £ denotes the Laplace transform operator. Then after some computations we
obtain (see [10]):

t
yi(t) = Ilfo‘y,-(O)tO‘*IEaﬂ(—)L,-ta) —|—/ (t— s)o‘flEO,’a(—/l,-(t —5)%)Wi(s)ds, (29)
0
which implies that

I'"%yi(t) =1'"*y;(0)Eo (—Ait®) +/Ea Ai(t — $)%)v;(s)ds. (30)
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From the latter equality, we can deduce that
1= (T) = I'=%y;(0) Eq (— ) +/ Eol(— (T — )*)vi(s)ds,

which combining with the second equation of (27) gives

/ Ea(=24(T — )% )vi(s)ds
1-a,
I T /lTOf) , 31)
where Eq(—A;T%) > 0 (see [24], for instance).
Therefore, combining (29) and (31), we obtain
T
- / Ea(—24(T — $)%)vi(s)ds
. _ 0 a—1 _ )4
yi(t) o (AT 1% Eq oq(—Ait%)
+/ 1 By (= alt — 5)®)vi(s)ds.
It then follows from (23) that
T
N | Y = [ Ea(=2(T —s5)%)vi(s)ds
_ 0 o—1 )40 .
Yn(t) = ,;1 Fo (AT 1“7 Eqa(—Ait”) pwi
(32)

ZZAIZOC 2E2 )L,‘ta)‘ai‘z
2
+22x {/ (t — )% Eqol(—2(t — 5)° )v,(s)ds} .

Hence,
T
IO o 1m0y = [, AN T0))e
< An + Bw,
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with

AN_22/1|a,|2/ PO ()

1=

—zlzl/ {/ N Egal(— )L(t—s)o‘)v,-(s)ds}zdt.

Note that from Theorem 1, we know that there exists a generic constant C > 0 such
that

AN_22Ma,\/ PO2ES o (—Ait®)dt

SZZMaiV (/ ' EL )(/ E% )

i=1

N T T

<Y Jaif ( / t“““‘dr) ( / t“"dt) (33)

i=1 0 0

4N 5 a3 T (o T
< .
sC Z‘“" [405—3}0 [1—05}0

C4T3O£ 2 N

N s P

Therefore, we have

C4T30£—2 N

- |2
Ay < (4a_3)(1_a)2“”" (34)

i=1

REMARK 2. From the latter estimation, we see that we have to take 3/4 < a < 1
to give a sense to our computation.

Using Theorem 1 and Cauchy-Schwartz inequality, we obtain

N N 2
2 |yl
Z\a,\ 22E§, )LTO‘)+22E2 )LTO‘ '/ Eq(— —5)%)vi(s)ds
= B3 (—MT%) W) i:lEé<—xiTa> o M)
Therefore, we have
T
N ) N |y 2 N/ \v,()| ds
lai)?> <2y =~ — 20ty 0 (35)
Z:l ;Eé( AiT?) 2 EZ(—AT?)
which combining with (34) gives
2cir3e2 N T2 2C6T3-2 N/ vi(s)|2ds
1

(36)

'M

AN S o 31— o) 2 EE(ATD) | (o 31— o) 2 E2( AT
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180
Proceeding as in [10], we have
4C2T°‘
> / vi(s)[Pds. 37)
2 i=1
Combining (36) and (37), we obtain
2c4T30£—2 N |y1 |2
i=1 OC i
T
2

i d

2007302 ivl/o |V (S)‘ N

(4o =3)(1 - ) & EG(—AT*)

4c2Ta N
/ vi(s)|°ds.
Hence, we can deduce that
1/2
2T30672 N ‘yT‘z
Y (t ‘ <C? !
1Y ( )||L2((07T),H3(Q)) (4o —3)(1 — ) (lz; Eé(—liT"‘)
T 1/2
2
vi(s)|“ds
vi(s)| (38)

2T30672 ﬁ/: /O

EZ(—AT?)

1/2
420, /= 1(2/ vi(s 2ds> .
_f i=1

Passing to the limit, when N — o, in (38), we have that y € L*((0,T); H}(Q)) if (21)

holds. Therefore,

+<>° y, / Eq(—

y(t) =

—5)“)vi(s)ds
Fol— A,TO‘) ta_lEma(—ﬂita) wi

(39)

z=1

*2{/ 5 Bt =5 (s fwi. O

LEMMA 3. Let 3/4 < o < 1, y' € L*(Q) and v € L*(Q). Then the problem (1)
admits a strong solution if and only if the following two series converge:
1/2

2 12 +oo/ vi(s)|ds
) and /1T0‘) (40)

&b
EZ(— AT

i=
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where A; is the eigenvalue of the operator —A corresponding to the eigenfunction w;.
yl = (yT7w,-)Lz(Q) and vi(t) = (v(t),wi)2(q) are respectively the i-th component of y'
and v(t) in the orthonormal basis {w;}7 | of L*(Q).

Proof. Let y € L*((0,T);H} (Q)) be a strong solution of (1). Then, (21) holds.
Therefore taking successively in (21) v =0 and y’ = 0, we obtain that the two series
in (40) converge.

Conversely, assume that the two series in (40) converge, then y € L*((0,T); H} (Q)).

Combining (30) and (31), we can write that

W / Eo(—2(T — $)®)vi(s)ds
Eq(— /1T°‘)

+1N1{/ Eq(—2i(t—5)%) i(S)dS}Wh

N
- OCYN( 2 Eoc(_)tita)wz

which implies that,

T
-2 alI' 0.1y o)

120783000 = /0
< CN +ZNa

where

N T
Cy — 22/1i|ai\2/0 E2 (=A%)
i=1

szé/o {/Ea (i —s) )vi(s)ds}zdt.

Using Theorem 1, (35) and proceeding as in [10], we obtain
N T
Cy — 22/1,-|a,-|2/ E2(—=2t%)dt
i=1 0

N T
< sz\a,-F/ %t
i=1 0

(41)

2
c2rl-o N 2 / [vi(s)|“ds
< 2 i +2c2§j

11—« & EL(-ATY) (—=A;,T)

‘We can also write that

C2T170(N T 5
Zy < d
v T 2 ([ o).

=
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Consequently, we have
g 2
c2Tl-2 N \y ‘2 AT N / vi(s)|~ds
11— 2 < 1 0
L e e N e I

& Ea(- /LTO‘)Jr l—a 4 EL(—ATY)

CZTl—Oc N T )
- d
SRS ([ o).

i=1

which implies that

. 2T1—O£
1= Ol 20,rymg @) < €\ T4

T4

y! 2 v
EL(—AT%)

T 1/2
[ vits)Pas
0

) 2T1—O£ N (42)
C
VT ; E2(— AT )
Tl—a N T 1/2
+cy / vi(s)Pds | .
l—a\Zh
As v € L*(Q) and Series in (40) converge, we have
1/2
N T2 1/2 / [vi(s \ds
1. e o, o
Y Z;Ea( e | < M| 2 ey | S
and
N T 1/2
li (s)*d =
Jim_ (zl | o) ) Vlzz
This implies that I'~%y € L*((0,T); H}(Q)).
Therefore
1'"=%y(t) (43)
s [ Eal A5y :
o o
) e ”a) Eo(—hit )+/0 Eo(—i(t—s)®)vi(s)ds b wi.

Since y € L?((0,T); H} (Q)) is solution to (1) and v € L*(Q), we have that

D% y(1) = Ay(t) +v(t) € H'(Q) for almost every ¢ € (0,T).
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Let ¢ € H}(Q). If we multiply the first equation in (1) by ¢ and integrate by parts, we
have that:

/ D% y(t)pdx = / Vy(t)-V(pdx—i—/ v(t)pdx
Q Q Q
< IVyOll2 @IVl @) + VOl 2@ lell2q) (44)
< (VO e+ C@ IOl 2@y ) 101l @
This implies that D%, y(t) € H1(Q).
Let ¢ € L2((0,T);HL(Q)). If we multiply the first equation in (1) by ¢ and

integrate by parts, then in view of (44), we have that:
Hence, using again Cauchy-Schwartz inequality, we deduce that

T T
| ipfneenld < [ (10 lye) +C@IPO iz ) 106 e
< (W20 2 + C@ Iz ) 1012078

This implies that D%,y € L*((0,T); H '(Q)).

Finally, we showed that I'~%y € L*((0,T); H} ()) and D%,y € L*((0,T); H1(Q)),
then we have I'~%y € C([0,T];L*(Q)).

Hence, using (43), we have that

Consequently, we can conclude that y is a strong solution of (1) in the sense of Defini-
tion7. O

Now, using again eigenfunctions expansions of the Laplace operator and proceed-
ing as the proof of the latter Lemma, we prove the existence and uniqueness of solution
to the approximated problem (4).

Let Vy the space given in (22). Proceeding as in the proof of Lemma 2, we look

for
N

05 (1), wi) 2@ wilx) = X vi (1)wi(x). (45)

i=1

=

—

Yy (x,t) =
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the solution of the following approximate problem of (4):
DF Yo (x,t) —AYS(x,1) = vy (x,1) (x,7) € Q,
Yi(o,t) =0 (0,1) €, (46)
I'YE(x, T) + el %YE(x,0) = yh(x) x€Q,

where vy and y,{, are given respectively in (25) and (26).
We recall that if Y, converge then Al/im Yy =y, where y© satisfies (4).

We have the following result:
THEOREM 2. Let 3/4<a <1, T >0, ve L*(Q), and y' € L*(Q). Then, the
approximate problem (4) has a unique solution y¢ € L*((0, T);H& (Q)) given by
T

ye(t) _ 2 0 ‘ tailEma(—lita)

(47)

where A; is the eigenvalue of the operator —A corresponding to the eigenfunction w;.
Eq. as givenin (8), yI = (yT,w,-)Lz(Q) and vi(t) = (v(t),wi)2(q) are respectively, the
i-th component of y! and v(t) in the orthonormal basis {w;}2., of L*(Q). Moreover,
1'=%¢ € C([0,T]; L*(Q)) and there exists a constant C > 0 such that,

Il 20,y @) ST (||yTHL2(g) + HVHLZ(Q)) ) (48)
and
1= |z oy iy < © (D iz + Mlizg) ) 49)
where
C2 2T3(X—2 zc6T3oc—2 4c2TOC
1= max ?\/(4a—3)(1—a)’\/82(4a—3)(1—a)+ a1
and

C 2C4T1 a C2T2—2(X
e e2(1—a /11(1—a)2
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Proof. If we replace Yy in (46) by Zyl i(x), we obtain that y¥, i=1,---

i=1
is a solution of the ordinary differential equation

Dppyi (1) +Ayi (1) = vilt), 1€(0,T),
1'798(T) + el %8 (0) = yT.

Now, using the Laplace transform, and proceeding as in [10], we obtain

Vi) = Il_“yf(0+)ta_lEa7a(—)Lita) + /OI (t— s)a_lEaﬂ(—)L,-(t —5)%)vi(s)ds

and
10y (1) = 1y (0) B (—1at ™) + /O Ea(=2alt — $)%)vi(s)ds.

Therefore, we have

/ Eo(—2(T — $)®)vi(s)ds

Il OC
8+Ea( 7T ’

which implies that

T
_ /O Ea(=24(T = $)%)vi(s)ds

£ _ a—1 _ )4
i) = e+ Eq(—AT7) T Eaa( A

t
+ / (1 = )% B (= alt — )% )vils)ds.
0
It then follows from (45) that

8 N / Ea(=24(T — )% )vi(s)ds
) _2 8+Ea( W)

i=1

ta_lEO“a(_lita) Wi

3] [ =9 Bttt b

_/0 Eol(=2(T = 5)*)vi(s)ds

e+ Eq(—AT%)

Set b; = . Then, we have that,

(YN Z)L yl

i=

<2 2 Mt 2ES o (=2t ®)|bi?

i=1

+2§)x {/ ) 'Eqa(— ?L(t—s)“)vi(s)ds}z.

185

(50)

, B

(52)

(53)

(54)
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Hence,
T
IO 0 gy = [, @050 < A5+ B,
with

N T
=23 Albi? /O PO ()
i=1

B, = Zﬁ“l/oT/l,-{/Ot(t—s)alEa7a(—)Li(t—s)“)vi(s)ds}zdt.

Proceeding as in (33), we know that there exists a generic constant C > 0 such that

C4T3oc 2
A < (4(13—2\17 i? (55)

Using again Theorem 1, we obtain

2
N i —/ Eo(— —5)%)vi(s)ds
£+Ea( AMT%)

Zlb ? =

l—

2 ¥ 202 & T
< _22‘)112"‘2_’__22/ [vi(s)|*ds
&3 € 0Jo
Consequently,
S 2% T2 22 &7 2
IS MUCRE (56)
= 1=

and we have that

2041392 N 2007302 N T
€ < 2 / ) 2 .
Av s e2(4a—3)(1— 2|y‘ I+ 2(da—3)(1— 1:21 0 vi(s)["ds|. (57)

On the other hand, using the Cauchy-Schwartz inequality and proceeding as in [10], we

have
4C2Toc N
By <= / vi(s)|2ds (58)

Combining (57) and (58), we obtain

Zc4T3a72
YE < T 2
|| ()HLZ OT Hl )) 82(4a—3)(1_a)1:21|yl|

2C0T3 2 4C2Ta
+ [g2(4a—3)(1 _ ) o1 ] in/ vi(s) |2ds] .
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Therefore,

C2 2T3O€ 2 ) 1/2
YN Oll201)m @) < — @a—3)(1—-a) \; 2|y1 |

/2
200732 4C2T°‘
+\/£2(4a_3)(1_ ) OC—— (l 1/ ‘Vl | dS) .
(59

In view of Equation (52) and (53), we have

1Y (e Z|b |Eq(—Ait® wl—l—Z{/ Eq(—Ai(t — ) )i(s)ds}w,-7
from which we deduce that,
1 T 1-oye 1-oy e
L A (s (O N (O
N T
< 22/1,-|b,-|2/ E2 (=2t ®)dt
i=1 0

+zg/0 {/Ea (=) )v,(s)ds}zdt.

If we set

N T
= 2Z/li|bi\2/0 E2 (=2t ®)dt
i=1

z;?vzzg/o {/ Ea(—=i(t — 5)®)v (s)ds}zdt.

Proceeding as in (41), we obtain

ET
— Y Ibi, (60)

which combining with (56), gives

2C2T1 a

Zc4T1 a N
Ch< S 2|y, a2

vi(s)|*ds. (61)

On the other hand, we can write, using Theorem 1 and Cauchy-Schwartz inequality,
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that

{/lg/ot =) i(S)ds}zdt
C2 N /OT{/O ) % s gw(s)ds}zdt
Sk ,Zl/oT (fot ) a‘“) (At(f—”‘“lvf(s)zﬂ) .

2 N T ( )1 o! 62)
C t—s) 4
<= Y7y t—5)"%vi(s)ds | dt
T2 ] (e emopa)
cerl-« N T 2( T )
< — vi(s / t—s) %t |ds
/11(1—06);/0 | l( )‘ s ( )
C2T2 200
22/ vi(s)|?ds.
=1
Combining (61) and the latter estimation of Z%,, we finally obtain
B 2c2T1 o N 2c4T1 o N
Hll OCYN( )”LZ (0,T) Hl Q) < 2| i / |vl st
C2T2 20
22/ |vi(s)|*ds.
i=1
Thus,

1/2
C /2T1 o
||IliaY[$(t)||L2((07T);H&(Q)) é E (2 T2>

\/zc4TIO( C2T2 20 2 1/2
+ + / vi(s)[ds .
e2(1—a) “ '

(63)

As yT € 12(Q) and v € L*(Q), we have

1/2 N 1/2
hm (2)’1 2) < and 11n+1 (2/ Vi(S)|2dS> < oo,
Nzt \iZ1/0

Consequently, we have y¢ € L*((0,T); H} (Q)) and I'~%y® € L*((0,T); H}(RQ)). And
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we have
+oo le_/ Ea(—AI(T—S) )vl(s>ds
¢ = a—1 o a
y (t) - “ 8+Ea(_xlT0¢) t EO{7OC( llt ) Wi (64)
T t
*2{/ ( S>°‘lEma(—%(r—s)“)vl(s)ds}w,-,
=1 0
and
T
|37 = [ Eal-aur = 5)wi(s)ds
l-o,,e e
I'=%y&(1) Z &1 Eal—AT%) Eq(—Ait?%)
(65)

Now, proceeding as in the proof of Lemma 3, we can say that D%, y¢ € L*((0,T);H~1(Q)),
which implies that I'=%y¢ € C([0,T];L*(Q)). Then we know that I'=%y¢(T) and
I'~%y€(0) exist and belong to L?(Q).

From (65), we have

T
o [T = [ Bul- 2T =5 i(s)as
— T
_t=1 8+EOC(_)L1TO() EOf( )LZT )
T
+ [ Eq(=A(T —5)")vi(s)ds p wi
0
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g sz_ OTEa(—)Li(T—S)a)V,'(S)dS
N ; €+ Eq(—MTY) (€ +Ea(—AT"))

Passing to the limit, when N — oo in (59) and (63), we obtain (48) and (49). O

We have the following remark.

REMARK 3. Let 3/4 < a < 1 and y¢ € L*((0,T);H}(RQ)) be the solution of
(4).Then, there exists a constant C > 0 independent of € such that,

¥z 0.y <TL(IT =¥ (0) 2@y + V12 ) (66)
and
Hll_ayg||L2((07T);H(;(Q)) <0 <Hll_ay£(0)”L2(Q) + HVHLZ(Q)) ; (67)
where
IT=max | C* o Tza2 \/7
and

Tlfoc CTlfoc

0= C
m\N T VA

From Theorem 2, we have I'=%y¢ € C([0,T];L*(Q)) then we know that I'~%y¢(0)
exists and belongs to L?(€). Hence from (51) and (52), we can write that: V¢ € (0 ,T),

~+oo

Ye(r) = Z{Il “yE(0)t*  Eq o (—Ait%) —|—/ Y Eg (=it — )% vils ds}w,,

i=1

I'=%yE (1) = Z{Ilayl( VEq(—Ait%) +/ Egq(—Ai(t—9)%) ,-(s)ds} wi. (69)
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Therefore, using Theorem 1 and the Cauchy-Schwartz inequality, we obtain from
(68) and proceeding as in (33)

~+oo
19 g < 224 }/ 2922 (—Aa®)dr
+oo T t 2
+2_2/ xi{/o(z—s)alEa,a( Ailt —5)° )v,(s)ds} dr.
C4T3O£72 oo o 2
- W(E I 0>|>

4C*T?
+ /\v, )|?ds
a— i=1

1
2

Thus

T3OC 2
€ 2 1 oc 8
Hy ||L2((07T);H(;(Q)) <C (4o —3)(1— )H ” 2(Q +2C“ ” HL2

Moreover, from (69) and proceeding as in (41) and (62), we obtain
1- 1- a e 2 T 2 o
1=y O 0.1y (@ ZZMI 0)] /O Eg (—Ait

+2Z/ {/ Eq 1 (—Ai(t—s)* )vl(s)ds}zdt
< CIQY_"::X <§|11—O¢y8(0)2>

i=1

C2T2 200
fri—ar ( / vi(s) |ds>

Hence, we have

Tl o
\/—( )” HL2

We also have the following results, which are useful for characterizing our approx-
imate optimal control:

||I1 “ 8( )HLZ 0,7) 1-11 Hll OC 8 ||L2

THEOREM 3. Let € >0, 0 < a < 1 and pT € L*(Q). Then the problem

DE&pt(x,t) —Ap®(x,t) =0 (x,1) € Q,
pé(o,t) =0 (o,t) €X, (70)
PE(T) +ep(x,07) = pT () xEQ,
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has a unique solution pt € C([0,T];L*(Q)) given by
too o7
Er) = —— | Eq(—Ait%)w;. 71
r0) = 3| gy | Ee 2 a
where Eq, is given by (9), A; is the eigenvalue of the operator —A corresponding to the

eigenfunction w;. piT = (pT,W,')Lz(Q) is the i-th component of pT in the orthonormal
basis {w;}7, of L*(Q). Moreover; there exists a constant C > 0 such that,

C
1Pl co.m22(9) < EHPT”LZ(Q)' (72)

Proof. To prove this theorem, we decide to use again the spectral method.
Let Vi the space given in (22), we look for

=

Py(x0) = X (0 (). wi) 2@ wi(x) = 3, pi (1) wi(x). (73)

Il
—
Il
—

i
the solution of the following approximate of (70)
DZP{(x,t) —APg(x,1) = 0 (x,1) € Q,
Pi(o,t) =0 (o,1) €, (74)
P (x,T) + €P(x,0) = pl(x) xeQ,
where

N
py =2 (" Wi ow me (75)

—

We know that if P§ converge then Allim Py = p®, where p® satisfies (70).

N
If we replace P§ in (74) by Y pf(t)wi(x), we obtain that y;,i=1,---,N is a
i=1
solution of the ordinary differential equation

{DwAH%ﬁ®=Qt€@D7 a6
pi(T)+epf(07) = pl.

Using the Laplace transform and proceeding as in the proof of Lemma (2), we obtain

pi (1) = pi (07)Eq(~Ait™).
Therefore, we have
pi(T) =P (0")Ea(~AT"),
which gives from (76),

pE0) = T (77)
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and, we obtain

£ _ plT 40
pi(t) = {W}Ea(—&f ).

Therefore, from (73) we can write that

. ! L
P(1) = ;{W}Ea(—m Ywi

Using Theorem 1, we obtain

2 2
<

N

125020y = 2,

i=1

o7
[ o S _ ) 4=
e Bo(—Aga) La(Ait")

i=1

then, we can deduce that

12
C
1B D leqorizz@) = sup IBvOll2@) < 7 (2191 2) :

t€[0.T]

i=1

As pT € L2(Q), we know that

Therefore, we have p¢ € C([0,T];L*(Q)) and we can write that

ey — S pi e
0= S et el e

Moreover, from (80), we have
+oo Tl
€ €0) = — Y EL(—AT®
)+ 5p(0) = 3 { g | Bl AT

ve 3 { e

+oo
_ p; - |
- E{m}@ﬂfwm ))wi

< or T
:Zpi =P -
i=1

To finish, passing to the limit, when N — +oc in (79), we can deduce (72).

From the latter theorem, we can deduce the following result:

CN
2P

193

(78)

(79)

(80)
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COROLLARY 1. Let 0 < o < 1 and p' € L*(Q). Then problem

—2¢p(x,t) —Ap(x,t) =0 (x,1) € Q,
p(o,t)=0 (o,1) € X, (81)
ep(x,T)+p(x,0%) = p' (x) x€Q,

where 9 is the right Caputo fractional of order 0 < o < 1, admits a unique solution
p € C([0,T];L*(Q)). Moreover; there exists a constant C > 0 such that,

C
I1Plleqo,rc2 (@) < EHPT”LZ(Q)' (82)

Proof. Making the change of variable t — T —t in (70), we obtain the following
equivalent problem

— 28y (x,1) —Ay(x,1) =0 (x,2) €0,
y(o,1) =0 (0,1) €Z,
ey(x,T)+w(x0%) = p'(x) xeQ,
where w(x,7) = p(x,T —t). Therefore, using theorem 3, we can say that the latter

equation has a unique solution y € C([0,T];L?*(Q)). Moreover there exists a constant
C > 0 such that

C
W lleqor2 @) < EHPT”LZ(Q)' 0

4. Optimal control problems

In this section, we assume that y' € L2(Q) and v € L*(Q) such that Series in
(40) converge. Our goal is to solve the non-well posed problem (1)-(2). Let U,; be a
suitable nonempty closed and convex subset of L2(Q) and &/ be defined as in (1). For
instance, we can consider the following nonempty closed and convex subset of L?(Q):

U,q := {v € L*(Q) such that Series (40) converge} . (83)

REMARK 4. We have the following observations:

1. From Lemma (3), we know that Equation (1) admits a strong solution in the sense
of Definition 7. Therefore, .o # 0.

2. Let y be a strong solution of Equation (1), then we know that 7'~%y € C([0,T];
L*(Q)), which implies that I'~%y(-,0) exists and belongs to L>(Q). Therefore,
the cost function J which we defined in (3) has a sense.

3. We can prove that optimal control problem (1)—(2) admits a unique solution
(u,y) € &, using minimizing sequences, the structure of the functional J and
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estimations given in the proof of Lemma 3. Moreover, using the Euler-Lagrange
optimality condition, we can give the following result:

T
/g(l““y(u,O)—Zd)llfay(v—u,o)deFN/g/o u(v—u)didx=0 V(v,y) €.

However, as mentioned in the introduction, Equation (1) is not well-posed in the
Hadamard sense, then the increase of the state and the control in the latter esti-
mation are linked. This is why, we decided to use the quasi-reversibility method.

Let’s start with the following existence and uniqueness result for the approximated
problem:

THEOREM 4. For every € > 0, there exists a unique control u® € %, such that
(4)—(5) holds.

Proof. Let (vn) € %aq be a minimizing sequence such that

lim J&(v,) = inf JE(v). 84
A ) = BT (5

Then, there exists a constant C > 0 such that J*(v,) < C. Hence, we obtain

vall2(0) < C, (85a)
115 (-,0) | 2(0) < C- (85b)
Moreover, let y& = y*(vy;x,¢) be solution of the following equation
DgLyﬁ(xJ)_Ayi(xJ):v"(xvt)7 (863)
yu(o,t) =0, (86b)
1'%y, T) + el ™%y (x,07) =y (x). (86¢)
From (86¢), we have
170y T) = y" —el' ™% (-,0), (87)
and combining (85b) and (87), we obtain
1=y (T 2y = (YT — el %y 0)llr2(q)
< Y 2@ + el =95 (0l 2(q)
< Y Ml +£C.
Then we have
11 y5 T2y < Y 122 + €€ (88)
From Theorem 2, we know there exists a constant C > 0 such that
Hy2||L2((O7T);H(; @) S C”yT”LZ(Q)a (89a)

=yl 2 0.mg @) < EIY 2@ (89b)
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Combining (86a) and (85a), we obtain

IDRLYR — AVl 20) < C- (90)
It follows from (85a), (85b), (88), (89a), (89b) and (90) that there exist u¢ € L*(Q), y° €

L2((0,T);H (Q)),y € L*((0,T); H} (Q)), § € L*(Q), m € L*(Q), m € L*(Q) and we
can extract subsequences of (v,) and (y%) (still called (v,) and (%)), such that

v, —uf weaklyin L*(Q), (91a)
Yo" weaklyin L*((0,T);Hy(RQ)), (91b)
I'“%ys—y weaklyin L*((0,T);Hy(Q)), (91c)
D% yE —AyE —~§ weaklyin L*(Q), (91d)
I'"%E(,0) = m  weaklyin L*(Q), (91e)
1'% T)—=m weaklyin L*(Q). (91f)
%, being a closed subset of L?(Q), we can write
u € Uy (92)

Set D(Q), the set of C** function on Q with compact support and denote by I'(Q) its
dual. Then multiplying (86a) by ¢ € D(Q) and integrating by part over Q, we obtain

T T
/ / (D%, & (x,1) — AYE (x,1)) @ (x, ) dlxdt = / / () @(x,n)dxdr. (93)
0 Q 0 Q
Using Lemma 1, we can write
T
| [0t - a0 dd
0 Q
T
:/ /yﬁ(xJ)(—_@g(p(xJ)—Aq)(x,t))dxdt.
0 Q

Then passing to the limit in the latter equality when n — 4 and using (91b), we obtain

T
tim [ [ (Do) — v5en)) g (e
n—te o Jo

z/T/yg(x,t)(—:@g(p(x,t)—A(p(x,t))dxdt.
0 Q

Hence, using again Lemma 1, we have

n— oo

T
tim [ [ (Dfuyi(e) — By5(en)) g (r.r)ddr
0 JQ

T
_ / / (D%, (x,1) — AyE (x,1)) @ (x, 1 )dlxd
0 Q
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This implies that
Dgyn — Ay, = Dgpy* —Ay* weakly in D'(Q), 94)
which combining with (91d) gives
Dy —A* =8 inQ. (95)
Therefore, we have
Dy, — Ay — Dgpy* —AY* weakly in L(Q). (96)
Passing to the limit in (93), using (91a) and (96), we obtain
DF Yy —MN =u® in Q. (97)

Now, we know that
// 1'% (o, 1) @ (x,1)drdx

_// ¥e(x <17_161)/T(t—s)a(p(x,t)dt)dsdx, Vo € D(Q),

and passing to the limit in the latter equality and using (91c) and (91b), we obtain

// y(pxtdtdx—// ye( ( 1_la)/T(t—s)‘aq)(x,t)dt>dsdx

-/ /0 19 (x, 1) (x, )didx, Vo € D(Q).

Thus,
I'""%¢ =y in Q,
which combining with (91c) gives
1'70yE 1 %yE weakly in L2((0,T); HY(Q)). (98)

We have y¢ € L2((0,T); H}(Q)) and I'~%y® € L?((0,T); HL(Q)), then

¥=0 on I (99)
On the other hand, y¢ € L*((0,T);H}(Q)) then Ay® € L*((0,T);H'(Q)), which im-
plies that

%11*“ € = D%y =uf + Ay € L*((0,T);H1(Q)).

Finally, we have
1'%¢ e C([0,T];L*(Q)).

This means that I'~%y¢(0) and I'~%y®(T) exist and belong to L*(Q).
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Now, multiplying (86a) by a function ¢ € C*(Q) with @5 =0 and integrating
by part over Q, we obtain using Lemma 1

T
| [0t - i xi0)ped
0 Q
:/(p(x7T)Il_°‘yﬁ(x7T)dx—/ @ (x,0)I' %% (x,0)dx
Q Q

+/Q /()Tyﬁ(x,t)(—:@g(p(x,t) — AQ(x,1))dxdt.

Passing to the limit when n — +oo in the latter result and using (96), (91e), (91f) and
(91b), we have

T
/O /Q (D%, (x,1) — AYE (x,1)) @ (x, 1 )dxdt
:/(p(x,T)ngdx—/ 0 (x,0)mdx (100)
Q Q

T
+/Q/O V() (= D2 @(x,1) — A@(x,1))ddt,
which using again Lemma 1 gives
/ @, T)[m — 1'%y (x,T)]dx — / @ (x,0)[7r; — 1'% (x,0)]dx = 0.
Q Q
Now, choose ¢ such that ¢(-,0) =0 in Q, we obtain
Iliay ("T) =T,
and finally, we have
1'7%8(,0) = my.
Therefore, we have
I'7%E(,0) =~ 1'% (-,0)  weaklyin  L*(Q), (101a)
I'"E(LT) =~ 1'% (., T)  weaklyin  L*(Q). (101b)
Hence, passing to the limit when n — 4o in (86c) and using (101) we can write that
I, T) 4+ el % (x,0) =y"  in Q. (102)

From (97), (99) and (102), we can deduce that y* () is solution of Equation (4).
It follows from the lower semi-continuity of the functional J%, (91a) and (101a)
that
JE(®) < lim infJ®(vy),

n——+oo

which combining with (84) gives

JE(uE) = inf JE(v,y).

VEU g

And from the strict convexity of J¢, we have the uniqueness of the optimal control
€
ut. O
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THEOREM 5. Let uf be solution of (4)—(5). Then there exists p¢ € C([0,T];L*(Q))
such that (uf,y%, p?) verifies the following optimality systems:

D y*(x,1) = Ay (x,1) = u®(x,1) (x,1) €0,
yé(o,t) =0 (0,1) €%, (103)
1'% (x, T) + el % (x,07) =T (x) x€Q,
_-@gpg(x7t)_Ap£(xat) =0 (X,Z)EQ,
pE(o,t) =0 (o,1) €, (104)

ept(x,T) + pt(x,0) = 'y (uf;x,0) —zg x € Q,

and

/O ' /Q (VU (x,) — p (e 1)) (v(35,1) — u (xy0))dxdt >0, Vv € Zpg.  (105)

Proof. From (97), (99) and (102), we have (103). To prove (104) and (105), we
use the Euler-Lagrange optimality conditions

T =) S W)

lim ., We Y, (106)
k—0 k
which characterize the control uf.
We set w = v — u¢, then from (6) we have
kW Il OC 8 O 2 k2 Il*OC t) 0 2
(e + H (u,0) = 2al[ 2 gy + 5 117 (1,0 | 2

_ _ N 2
+k (11 *yE(uf,0) — za, 1! ayg(w»o))Lz(Q) + B Hu£||L2(Q)

KN
||WHL2 )+ N, w)20).

which implies that

£(1€ _EVY _ JE(4E
limJ (uf + k(v —u®)) — JE(uf)
k—0 k
_ (Il—aye(ue,o) —Zd,ll_ayg(wvo))Lz(Q) +N(u87W)L2(Q).

Combining the latter result with (106), we obtain

/(Il %y (uf,0) — 2 )1 yE (v — uf 0dx—|—N// (v—u®)dtdx >0 v E Y.
Q

(107)
From Corollary 1, we know that Equation (104) admits a unique solution p* € C([0,T];
[3(Q)).
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Let z°(v — uf) the associated state of v —uf € L?>(Q). Then from Theorem 2,
Z£ € L2((0,T); HL(Q)) verifies the following equation

DgLZS(xvt)_AZE(xJ) zv(x,t)—ug(x7t), (108a)
#(0,1) =0, (108b)
1728 (x, T) + el' %25 (x,07) = 0. (108c¢)

Moreover, we know that 1'=%z¢ € C([0, T};Lz(Q)) . Note that, from (108c), we have
1'7%8 (x,T) = —el'~%2% (x,0). (109)

Multiplying (108a) by the solution p® of (104), and integrating over Q, we obtain from
Lemma 1 and (109):

/0 ! /Q (D%, (x,1) — AL (x,1)) p* (x, 1) doxdlt

:/pg(x,T)Ilfazg(x,T)dx—/pg(x,O)Ilfazg(x,O)dx
Q Q

== [ 17 0 [ep (e T) + (5, 0)ldx

= —/Qll_o‘zg(x,O)[Il_O‘ye(ue,O)—zd]dx

:/OT/Q(V—ug)(x,t)pg(x,t)dxdt.

Hence we have

T
- /Q 1792 (3, 0) (1'% (u,0) — 20)dx — /0 /Q (v — ) (x, ) (x, 1),

which combining with (107), gives

/OT /Q(v —u)(x,1)p" (x,1)dxdt < N/Q /OT U (x,1) (v — u®) (x,1)drdx.

And after some computations, we obtain (105). O

We proved that our approximated optimal control problem has a unique solution
and we gave an optimality system which characterize it. Now, we want to prove that the
solution of the approximated optimal control problem (4)—(5) converges to the solution
of our initial optimal control problem (1)—(2). We have the following result:

THEOREM 6. Let (uf,y?) be the solution of Problem (4)—(5). Then u® € U,.
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Proof. Let (uf,y?) be the solution of Problem (4)—(5). Then from Theorem 2,
yE(ut) € L2((0,T); H}(Q)) and we have

& ¥ - / Edl AT -9
£(t) = 7 Eq o(—Ait
y ( i:l £+Eo(( ATOC) O(,OC( )
(110)
+/ Y Eg (= Aalt — )0V (s)ds > wi.
On the one hand, if we take u® = 0 in (110), we have
iy Y-T 1
() = —— Y Ey o (—Ait®
yl() Z“I{E-i-Ea(—)L,TO‘) O(,OC( )}W
Proceeding as in (33), we have
r € t
A A ORI
i 2ot 20272
<232 CTEAT | e~ ha
=1
430—2 +oo 2
< C T 2 ‘yl ‘ ,
(4o —3)(1 — o) & EZ(—AT?)
which implies that
1/2
T3a 2 +oo ‘y ‘2
£ ) g C2 1 .
||y1HL2((07T),H(%(Q)) (40— 3)(1 — o) (1211 Ea( AT®)
We know that y¢ € L*((0,T); H} (Q)), then we have
1/2
< WP
— < oo, (111)
(Z‘Ea( )L,TO‘)>
On the other hand, if we take yT:O in (110), we have
/ Ea(=24(T — )" ) (5)ds
1 VEqy o (=it
%2l ,,1 £—|—Ea( AT o= Ail”)

+ /()[(t—s)aflEa7a(—/1i(t—s)a)uf(s)ds i
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Thus, proceeding as in (33) and in [10], we can write that

2
152122 (0,175 <)

T
= [ abs@.s5enar
2
/O Eo(~2(T =)Wl ()ds|
221 8+Ea( 7T /Oto“ Eg o(—Ait%)dt

2

+2§xi/T {/t(z—s)“—lEa,a(—xi(t—s)“)uf(s)ds} dr.

o302 +oo/ |uf (s)|ds 4C2T0‘+°°
S [ uts)Pas.

T (o-3)(1-a) 5 Ej(- 2T a—3 5

Therefore, we have

1/2
. T30-2 +oo/ \M )[*ds
g . <C
511220,y () (4o —3)(1 — ) i=1 —AT?)

/2

+2C, / : ( / |us (s 2ds> .
)
As y5 € L*((0,T); HL(Q)), we have
1/2
+°o/ |u )|?ds
< oo, (112)

LB AT

=

Finally, from (111) and (112), we have u® € U,,. O

We assume that y/ and v are such that Series in (40) converge. Therefore, we
give the following result:

THEOREM 7. Let (u,y) be a solution of the problem (1)—~(2). Let (uf,y®) be the
solution of Problem (4)—(5) and let p® be the solution of Equation (104). Then, there
exists p € L*(Q) such that, as € — 0, we have the following convergences:

ut —u stronglyin  L*(Q) and ue Uy, (113a)

y& =y weaklyin L*((0,T);H}(Q)), (113b)

1" T) =y stronglyin - L*(Q), (113c¢)
1'7E(,0) = 1'%(-,0)  weakly in  L*(Q), (113d)
p¢ —p weaklyin L*(Q). (113e)
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Proof. For this proof, we proceed in three steps.
Step 1: Let (uf,y?) be the solution of Problem (4)—(5). Combining (85a) and
(91a), we know that there exists a constant C > 0 independent of € such that

| 2(0) < €, (114)
which implies that, there exists & € L?(Q) such that
ut —~ i weaklyin L*(Q), whene — 0. (115)
From Theorem 6, we have u® € U,,; and U,, being a closed subset of Lz(Q), we have
uecUy.

From (85b) and (101a), we can deduce that there exists a constant C > 0 indepen-
dent of € such that

11y (-,0) | 20 < C, (116)
which combining with (103), gives
IV =1 (T 2 < EC (117)
Thus, we obtain
1'%, T) —yT  strongly in L*(Q), whene — 0, (118)

and we proved (113c).
Moreover, from Remark 3, we know that there exists constants K; >0 and K, >0,
independent of €, such that

¥l 20,1 @) < K (Hll_ayg(o)HLz(g) + ||”£HL2(Q)> : (119)

1 a0 o < Ko (11 ) 2oy + 6l 2g)) - (120)

Thus, using (114) and (116), we can say that there exists a constant C > 0 independent
of € such that

”yeHLZ((o’T);Hé(Q)) <C, (121)

and
1= N 20,y ) < - (122)
Therefore, there exists 7 € L*((0,T); H}(Q)) and y € L*((0,T); Hi(Q)) such that
¥y — 7§ weaklyin L*((0,T);H}(Q)), whene — 0. (123)
I'""%¢ ~y  weaklyin L*((0,T);H}(Q)), whene— 0. (124)
From (116), we also know that there exists 7 € L?(Q) such that

I'"%#(.,0) =~  weaklyin L*(Q), whene — 0.
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And proceeding as in the proof of Theorem 4, we obtain
1'% (-,0) =~ I'"%35(-,0)  weakly in L*(Q), when & — 0. (125)

Now, let us prove that (iz, y) is solution of (1), in the sense of Definition 7.
Combining the first equation of (103) and (114), we obtain

| DRy — AYSHLZ(Q) <C.
Then, there exists § € L?(Q) such that
D% y¢ —Ay* — &  weakly in L?(Q), when e — 0.
Proceeding as the proof of (97), we prove that
D% y¢ —AY* ~ D% y—Ay weakly in L*(Q), when & — 0. (126)

Finally,
Dfy—Ay=u inQ. (127)

‘We know that

//Tll_ayg(xﬁ)(l’(m)dtdx

_// ¥ (x,s ( l_la)/T(z_s)“(p(x,t)dt)dsdx, Vo € D(Q),

and passing to the limit in the latter equality and using (123) and (124), we obtain

// )/(pxtdtdx—// y(x,) ( 1_la)/T(t—s)_“(p(x,t)dt>dsdx

:/Q/O 'y (x,t)@(x,1)dtdx, Vo €D(Q).

Thus,
I'™"y=y in 0
which combining with (124) gives
1'% ~ 1179y weakly in L2((0,T); H} (Q)). (128)
Combining (127) and the fact that I' =%y € L2((0,T); H} (Q)), we can say, proceeding
as in (44), that D%, y(t) € H~'(Q). This implies that I'~%y € C([0,T];L*(Q)).

Now, multiplying the first equation of (103) by a function ¢ € C**(Q) with Do =
0 and ¢(-,0) =0 in Q and integrating by part over Q, we obtain using Lemma 1

T
/ / (D% v (x,1) — AYE (x,1)) @ (x, 1 )dxdt
0 Je (129)

1—a. e r £ o
:/Qq)(x,T)I y (x,T)dx+/Q/0 V(1) (— D& @ (x,1) — A@(x, 1) )duxr.
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Passing to the limit when € — 0 in (129) and using (126), (118) and (123), we have

/T/ (DRLy (x,1) = Ay (x,1)) @ (x,1)dxdt
0 JQ

(130)
:/(p(x T)dex+//T}7(x 1)(= D (x,1) — A@(x,1))dxdr.
o 9 2o 9 C 9 )
From Lemma 1, we can write
T o
| [ 520t - spten))dsar
T
= [ [ 0500 - avtxn)etundd — [ o1 (x,T)dx
0 Jo Q (131)

_ 0
- <y(67t)7 %(0—7t)>
H-1((0,T):H=1/2(09Q)),H} ((0,T):H"/2(9Q))

Vo € C7(Q) with @50 =0 and ¢(-,0) =0 in Q.

Combining (130) and (131), we obtain

—/(p(x,T)dex:/(p(x,T)Il_O‘f(x,T)dx
Q Q

- <y((_)',t), _(G7t)>
v HAY((0.7):H-1/2(59)) H (0.T):H/2(99)

Vo € C*(Q) with @y =0 and ¢(-,0)=0 in Q.

(132)
Now, choose ¢ such that ¢(-,7) =0 in Q, then we have
—<_)7(O',l‘),—((_)',t)> =0
v (0T 3H12(90)) HY (0T 1H12(9)
which implies that
y=0 on X (133)
Finally, we have
[ oty ax= [ o@.1)'"5(x.T)ax
Q Q

Thus

I"%y(x,T)=y" in Q. (134)

From (127), (133), (134) and the fact that D%, y(t) € H~'(Q) and I'"*y € C([0,T];
L?*(Q)), we can deduce that (i, y) is a strong solution of (1), in the sense of Definition
7.

Step 2: We prove that (u,y) is solution of problem (1)—(2), and the functional J*
converges to the functional J, when € tends to 0.

Let (u,y) be the solution of problem (1)—(2).
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From y (i) be the solution of (1) and i € Uy, we have
J(u,y) < J (i, y) (135)
As uf is the solution of (5), and u € U,;, we can write that
JE(u®) < JE(u).

Hence

N, 2
b HuHLZ(Q) )

(136)
and passing to the limit in the latter estimation, using (125) and (115), we obtain

1 N Ly -
S (.0 = 2all 20 + 5 1 I200) < 5 11790 = 2all 20 +

o 1 o 2 N, _
I, 5) = 5 [175(,0) = za 20y + 5 Ntll 720
2 Q"2 (9)

: N (137)
_ 2 2
< 5 Hll “y(-,0) _ZdHLZ(Q) + 2 ||”HL2(Q) =J(u,y),
Therefore, combining (135) and (137), we have
J(u,y) <J(it,y) <J(u.y),
which implies that
(it,y) = (u,y). (138)
Moreover, as J(iz,y) = lim J¢(u®), we have
E—
J¢ —J whene—0. (139)
Thus, combining (123), (125) and (138), we obtain (113b) and (113d).
Combining again (115) and (138), we have as € — 0
uft —~u weaklyin L?(Q). (140)
From (139), we can write that
. 1 — 2 1 2
lim (5 1754, 0) = 2all 20 + 5 ”£||L2(Q)>
(141)

1 _ 2 1
) Hll “y(-,0) _ZdHLZ(Q) + ) ||”H22(Q)-
Using (113d) and (140), we obtain
||Il_ay('70) _ZdHiZ(Q) < gli% ||Il_ay8('70) _ZdHiZ(Q)

and ,
2 .
lullz2 ) < i}j% H”8||L2(Q) )
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which combining with (141) gives

— 2 . _ 2
Hll ay('70)_ZdHL2(Q) :;E%Hll ayg('70)_ZdHL2(Q) (142a)
. 2
||”||i2(Q) = ;%H”gnm(gy (142b)

We have
2 2 2
lu® —ullz2(0) = 14" [72(0) + lullz2(0) —Z/Queudxdt.

Passing to the limit in the latter equality and using (140) and (142b), we obtain when
e—0 5

. e _

é{%“” - ”HL2(Q) =0.

Therefore, we have
€

u® —u strongly in LZ(Q),

and we proved (113a).
Step 3: From Theorem 6, we have uf € U,y then Int(U,,) # @ and we know that
there are w € Int(U,;) and r > 0, such that

[v—=wl[;2g) <7 implies thatv € Ugg.

Since Uy, is a closed and convex subset of L2(Q) with nonempty interior, we have
Uuq = Int (Uud) .

Thus, there exists a minimizing sequence {vi},en of J¢ in Int(U,y) associated
with a state ®F which verifies the following equation

Df; @f (x,1) — ADS (x,1) = vi(x,1)
@ (0,1) =0 (143)
I'%®E (x, T) + eI' %D (x,07) = yT,

since v € Uyy.
Proceeding as in the proof of Theorem 4, we know that there exists a constant
C > 0 independent of n and € such that

Villz ) < €, (144)
1717 %@5(-,0) [l 2(0) < C, (145)
195120,y @) < Y 2(0)- (146)
From (114) and (144), we obtain
Vi —ull2g) < €, (147)

where C > 0 is a constant independent of n and €. Let y® be the state associated to
the optimal control u?.
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Set 78 := y® — ®Z, then using (143) and (103), we can say that z£ is solution of
D,z (x,1) — AZ5(x,1) = u®(x,1) — v (x,1)
£(0,1) =0 (148)
'8 (x, T) + el' =%z (x,07) = 0.
From (145) and (85b), we obtain
1125 0) 2@y = 11 (0) = 1@ (,0) ) SC (149)

where C > 0 is a constant independent of n and €.
Multiplying the first equation of (148) by p® be the solution of (104), and inte-
grating by parts over Q we have, using Lemma 1

T
|| (D) - azg () pe o) s
0o Jo
:/ pg(x,T)Ilfazﬁ(x,T)dx—/ PE(x,0) '~ %Z8 (x,0)dx (150)
Q
—/ / (x,1))p (x,1))dxdr
However, from (148) and (104) we have
1
"% (x,T) = —el'"%z%(x,0) and p°(x,T)= E(Ilfo‘yg(ug;xﬁ) —z4—pt(x,0))
which combining with (150) gives
T
[ 1o 0) =1y sk 0)dr = [ ) = v e)p* (),
Q QJo
Using the Cauchy-Schwartz inequality, (149) and (116),we can write that

ve (x, 1)) p® (x,1))dxdt| < C, (151)

where C > 0 is a constant independent of n and €.
Let v € Ugq be such that [[v — vyl ,2(g) < r. Therefore, we have

/Q (NUE (x5, 8) — p& (e, 1)) (e, 1) — (3, ) )dlxdt
- /Q (N (x,1) — pE (e, 1)) (o, 1) — v(x, 1))t
n /Q (N (x,1) — pE (1)) (v(x, ) — 1 (x, ) et
_ / Nt (x,1) (u(x,1) — v(x, 1) )dxdt — / P8 (e 0) (1) — v(x, ) )dxdt
(@) (9]
+ /Q (N (x,1) — p (e, 1)) (v(, 1) — 4 () )lxd
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Setting
X ::/Nug(x,t)(u(x,t)—v(x,t))dxdt+/(Nue(x,t)—pe(x,t))(v(x,t)—ue(x,t))dxdt,
0 0

we can write

/ (N (x,1) — p° (e, ) (e, 1) — e (x, 1) et = Xe — / 25 G ) (1, 1) — v(x, 1))
¢ ¢ (152)
Taking v =% in (152), we obtain

/ (N (x5, 1) — & (6,)) (1 1) — 6 (o, 1) et = X! —/ et (ks 1) —VE (v, 1) )t
[ [

(153)
where

X! = /Q Nt (1) (e, 1) — vE (x, 7)) et
+ / (Nt (x,1) — p& (e, 1)) (VE (o, 1) — u® (3, 1) )
(@)
= / Nu® (x,1) (u(x,1) — V5 (x,1))dxdt + / Nu® (x,1) (V5 (x,1) — u® (x, 1) )dxdt
(@) (@)

- / P (e ) (VE (x,1) — e (x, 1)) dxdr.
o
However, from (147), (151) and (114), we have
IX!| <2NCr+4r  with  |ju— Vallz2o) < 15 Vit € Uga. (154)
Hence, combining (153), (105) and (154), we obtain

[ P e — (e dade | < X2 < CQV.r),
Q

where C(N,r) =2NCr+r and [lu—vy|[;2) <7 Vi € Uga.
Thus, from the latter estimation, we know that there exists a constant C > 0 inde-
pendent of € such that

1711120y < C- (155)
Then there exists p € L?(Q) such that
p —p weaklyin L*(Q), ase —0,
and we proved (113e). O

THEOREM 8. Let (u,y) be the solution of the problem (1)—~(2). Then there exists
p € L*(Q) such that (u,y,p) verifies the following optimality systems:

D%Ly(x,t)—Ay(x,t)zu(x,t) (X,I)EQ,
y(o,t) =0 (0,1) €Z, (156)
Il_o‘y(x,T) = yT(x) xeQ,
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{_@gp(xvt) Ap(x,t) =0 (x,1) € Q,

0
157
p(o,t) =0 (o,1) €X, (7

and

/0 ! /Q (Nu(e,t) — p(e,t)) (v(x,1) — ulx,0))dxdt >0, Ve Uy,  (158)

Proof. Combining (127), (133), (134) and (138), we obtain (156).
Now, multiplying the first equation of (104), by a function ¢ € D(Q) and integrat-
ing by part over Q we obtain using Lemma 1

/()T(—_@gpg(x,t) _ APE(x,1)) @ (x, 1) dxdr

T
_ / / (D%, @(x,1) — A(x, 1)) pt (x,1)dxdi = 0.
0 JQ

Passing to the limit in the latter result, using (113e), we have
/ / — APE(6, 1))@ (x,1)dxdi
_ / / (D%, @(x,1) — A@(x, 1)) p(x,1)dxdr
0 Ja

Using again Lemma 1, we can write
T
[ [ =280 ) = ap o t.npaar
0 Ja

- /()T(—.@gp(x,t) — Ap(,1))o(x,t)dxdi = 0,

which implies that
—P¢p(x,t) —Ap(x,t)=0 in Q. (159)
d
We have p € L*((0,T);L*(Q)) then p, = a—l; € H1((0,T);L*(Q)). Therefore, from

(159), we have
Ap=—-2&p=1"%p, € H'((0,T);L*(Q)).

Thus p(r) € L*(Q) and Ap(r) € L*(Q) then pjyq exists and belong to H'2(Q).
Combining the latter result with the second equation of (104) and (113e), we ob-
tain
p=0 onX. (160)

Then from (159) and (160), we have (157).
Finally, passing to the limit when &€ — 0 in (105) and using (113a) and (113e), we
deduce (158). [
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5. Conclusion

In this paper, we have studied an optimal control problem associated to an ill-posed

fractional diffusion equation, where the derivative is understood in Riemann-Liouville
sense. To solve our problem, we used the quasi-reversibility method. This work is our
first application of the results which we obtained in our recent work [10]. Using Euler-
Lagrange optimality conditions, we characterized our optimal control by an optimality
system. Then, it would be interesting to verify this latter optimality system by numerical
experiments.
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