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DIRECT AND INVERSE PROBLEMS FOR A FRACTIONAL

PARABOLIC EQUATION WITH MULTIPLE INVOLUTION

BATIRKHAN TURMETOV ∗ , MAIRA KOSHANOVA,
MOLDIR MURATBEKOVA AND ISABEK ORAZOV

(Communicated by R. Ashurov)

Abstract. In this paper, the concept of a nonlocal analogue of the Laplace operator is introduced.
For the nonlocal parabolic equation with a fractional derivative in a cylindrical domain, the
solvability of direct and inverse problems is studied. The problems are solved using the Fourier
method. Theorems on the existence and uniqueness of solutions to the studied problems are
proved.

1. Introduction

Inverse problems in the theory of equations of mathematical physics are the prob-
lems in which, along with the solution of the equation, it is required to find the right
side or coefficients of the equation, initial or boundary functions. Applications of in-
verse problems in modern science are described in detail in [12, 13]. Various versions of
inverse problems for the classical equations of mathematical physics have been studied
in the works of numerous authors [5, 24, 28].

Recently, the attention of researchers has been turned to the study of direct and
inverse problems for differential equations with involution [1, 2, 3, 4, 15, 21, 22, 26].
Note that in these papers, the case of one spatial variable was mainly studied. Inverse
problems in the case of two spatial variables are studied in [9, 15, 20]. It should be
noted that in these papers, the problems under consideration were studied for classical
equations, i.e., for equations without involutive transformations.

In the case of many spatial variables, we can note the works [6, 7, 18, 19, 27],
where inverse problems on finding the right side depending on the spatial and temporal
variables were studied. In this paper, differential equations with involutively trans-
formed arguments are considered in the multidimensional case. For such equations,
direct problems with initial-boundary conditions and inverse problems of finding the
right side depending on the spatial variable are studied.

Let us consider the problem statement. Let Q = × (0,T ) ,  is a unit ball
in Rn , n � 2,  is a unit sphere. Let S1,S2, . . . ,Sl , l � n, also be a set of real
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symmetric commutativematrices SiS j = S jSi such that S2
j = I . As an example, consider

the mapping matrix S1x = (−x1,x2, . . . ,xn) . If we consider all possible products of
mappings S j , 1 � j � l , then the total number of such mappings, taking into account
the mapping S0x = x , will be 2l . To enumerate these mappings, we will use the notation
of an integer in the binary system. If i is the index, then in addition to the usual notation,
we will also use the notation of this number in the binary system i = (il . . . i1)2 , where
ik = 0 or ik = 1. Then we can consider mappings of the form Sil

l . . .Si1
1 x . Let us

introduce the operator

Lv(x) =
2l−1


i=0

aiv
(
Sil

l . . .Si1
1 x
)
.

Let 0 < � 1 and let us denote the derivative of order  in the Riemann-Liouville
sense as Du(t) , i.e.

Du(t) =
1

(1−)
d
dt

t∫
0

(t − )−u()d , 0 <  < 1

and

u(t) = D [u(t)−u(0)] , 0 <  < 1, u(t) =
du(t)
dt

derivative of order  in Caputo’s sense.
In the domain Q we can consider the equation

t u(t,x) = Lxu(t,x)+F(t,x), (t,x) ∈ Q, (1)

with the initial
u(0,x) = (x), x ∈, (2)

and boundary condition

u(t,x) = 0,0 � t � T, x ∈ . (3)

Here F(t,x),(x) are prescribed functions.
A solution to problem (1)–(3) is a function u(t,x) continuous in a closed domain

Q , having derivatives of all orders in equation (1), which are continuous in Q , and
satisfying conditions (1)–(3) in the classical sense.

Let F(x, t) = f (x)g(t) . Along with problem (1)–(3), we will also study the inverse
problem of determining the right-hand side of equation (1).

Inverse problem. Find a pair of functions {u(t,x), f (x)} that satisfies conditions (1)–
(3) and the additional condition

u(t0,x) = (x), 0 < t0 � T, x ∈ , (4)

where g(t) and (x) are prescribed functions. In case of inverse problem, we will seek
for a solution in the class of functions:

f (x) ∈C
(

)

, u(t,x) ∈C
(
Q
)

, u(t,x) ∈C
(
Q
)

, Lxu(t,x) ∈C
(
Q
)

.
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It should be noted that the problems considered in this paper were studied for the
case n = 2 of an integer and fractional parabolic equation in a rectangular domain in
[10, 25] and for an equation with involution in [29]. We especially note the work [8],
where similar problems were studied in an arbitrary bounded domain for the subdiffu-
sion equation with the Caputo operator.

2. Auxiliary statements

This section provides information about the convergence of Fourier series with
respect to the system of eigenfunctions of the Dirichlet problem for the operator Lx .

Let us assume that wm(x) and m , m = 1,2, . . . . , respectively, are eigenfunctions
and eigenvalues of the classical Dirichlet problem

w(x)+ w(x) = 0, x ∈, w(x) = 0, x ∈ . (5)

Let k ∈ {0,1, . . . ,2l −1
}

. Let us introduce the functions

vk
m(x) ≡ v

(kl ...k1)2
m (x) =

1
2l

2l−1


q=0

(−1)k⊗qwm
(
Sql

l . . .Sq1
1 x
)
, (6)

where k⊗q = k1q1 + k2q2 + . . .+ klql .
Obviously, if x ∈  , then for any 0 � q � 2l −1 points Sql

l . . .Sq1
1 x also belong

to  . Therefore, the condition vk
m(x)

∣∣
 = 0 is satisfied. Moreover, from the equality

(−)wm
(
Sql

l . . .Sq1
1 x
)

= mwm
(
Sql

l . . .Sq1
1 x
)
, x ∈ it follows that

−vk
m(x) =

1
2l

2l−1


q=0

(−1)k⊗q (−)wm
(
Sql

l . . .Sq1
1 x
)

=
m

2l

2l−1


q=0

(−1)k⊗qwm
(
Sql

l . . .Sq1
1 x
)

= mvk
m(x).

Therefore, vk
m(x) is also an eigenfunction of the Dirichlet problem (5). On the

other hand, for a system of functions vk
m(x) the following assertion was proved [30].

LEMMA 1. The elements of the system
{
vk
m(x)

}
m=0 , 0 � k � 2l − 1 are eigen-

functions of the problem

Lv(x)+v(x) = 0, x ∈, v(x) = 0, x ∈ , (7)

and their eigenvalues are determined by the formula

 k
m = m

2l−1


i=0

(−1)k⊗iai ≡ mk, k =
2l−1


i=0

(−1)k⊗iai.

Moreover,
{
vk
m(x)

}
m=1 , k = 0,1, . . . ,2l −1 is a complete and orthonormal system

in the space L2 () .
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In what follows, we will assume that the inequalities k =
2l−1

i=0

(−1)k⊗iai > 0 are

valid for all k ∈ {0,1, . . . ,2l −1
}

.
Let us express the eigenfunctions vk

m(x) and eigenvalues  k
m as follows

v2lm−k(x) =
1
2l

2l−1


q=0

(−1)k⊗qw2lm−k

(
Sql

l . . .Sq1
1 x
)
,

2lm−k = k2lm−k, m = 1,2, . . . , k = 0,1, . . . ,2l −1.

EXAMPLE 1. Let n � 2 and mapping S1x = −x is given. Then l = 1 and

v2m(x) =
1
2

[w2m (x)+w2m−1 (−x)] , v2m−1(x) =
1
2

[w2m−1 (x)−w2m−1 (−x)] ,

2m = (a0 +a1)2m, 2m−1 = (a0−a1)2m−1.

EXAMPLE 2. Let n = 2 and S1x = (−x1,x2) , S2x = (x1,−x2) . Then l = 2 and

v4m(x) =
1
4

3


q=0

(−1)0⊗qw4m
(
Sq2

2 Sq1
1 x
)

=
1
4

[w4m (x)+w4m (S1x)+w4m (S2x)+w4m (S2S1x)] ,

v4m−1(x) =
1
4

3


q=0

(−1)1⊗qw4m−1
(
Sq2

2 Sq1
1 x
)

=
1
4

[w4m−1 (x)−w4m−1 (S1x)+w4m−1 (S2x)−w4m−1 (S2S1x)] ,

v4m−2(x) =
1
4

3


q=0

(−1)2⊗qw4m−2
(
Sq2

2 Sq1
1 x
)

=
1
4

[w4m−2 (x)+w4m−2 (S1x)−w4m−2 (S2x)+w4m−2 (S2S1x)] ,

v4m−3(x) =
1
4

3


q=0

(−1)3⊗qw4m−3
(
Sq2

2 Sq1
1 x
)

=
1
4

[w4m−3 (x)−w4m−3 (S1x)−w4m−3 (S2x)+w4m−3 (S2S1x)] .

Let us present some assertions about eigenfunctions wm(x) and eigenvalues m

proved by V. A. Il’in [11].
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LEMMA 2. ([11], Lemma 1) For the system {wm(x)}m=1 the following statements
are valid:

1) the series



m=1
−([ n

2 ]+1)
m w2

m(x) converges uniformly in a closed domain ;

2) series



m=1

−([ n

2 ]+2)
m

[
wm(x)
xi

]2
and




m=1

−([ n

2 ]+3)
m

[
 2wm(x)
xix j

]2
converge uniformly

in an arbitrary closed subdomain 0 located strictly inside  .

LEMMA 3. ([11], Lemma 5) Let the function g(x) satisfy the conditions

1) g(x) ∈Cp
(

)
,  p+1g(x)
x

p1
1 ...xpn

n
∈ L2 () , p1 + . . .+ pn = p+1 , p � 1 ,

2) g(x)| = g(x)| = . . . = [ p
2 ]g(x)

∣∣∣


= 0.

Then the number series



k=1
g2

k
p+1
k converges, where gk = 〈g,wk〉 .

LEMMA 4. ([11], Lemma 7) Let the function f (t,x) satisfy the conditions:

1) f (t,x) ∈C
0,[ n

2 ]+1
t,x

(
Q
)

,  p f (t,x)
x

p1
1 ...xpn

n
∈ L2 (Q) , p = (p1, p2, . . . , pn) , p =

[
n
2

]
+2 ;

2) f (t,x)|×[0,T ] =  f (t,x)|×[0,T ] = . . . = [ n+2
4 ] f (t,x)

∣∣∣
×[0,T ]

= 0.

Then the series



m=1

fm(t)wm(x)

converges uniformly in a closed cylinder Q, where fm(t) = 〈 f ,wm〉 .
As
{
v2lm−k(x)

}
m=1 , k = 0,1, . . . ,2l − 1, are eigenfunctions of problem (5) and

form a complete orthonormal system in L2 () , then Lemma 2 implies the following
assertions.

COROLLARY 1. For the system
{
v2lm−k(x)

}
m=1 , k = 0,1, . . . ,2l − 1 the follow-

ing statements are valid:

1) the series
2l−1


k=0




m=1
−([ n

2 ]+1)
2nm−k v2

2nm−k(x) converges uniformly in a closed domain

;

2) series
2l−1


k=0




m=1

−([ n

2 ]+2)
2nm−k

[
v2nm−k(x)

xi

]2
and

2l−1


k=0




m=1

−([ n

2 ]+3)
2nm−k

[
 2v2nm−k(x)

xix j

]2
converges uniformly in an arbitrary strictly closed subdomain 0 located inside  .

By assumption

(
2l−1

i=0

(−1)k⊗iai

)
> 0, and then there exist constants C1 and C2

such that the estimates hold

C12lm−k � 2lm−k � C22lm−k (8)

Hence, we obtain the following assertion.
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COROLLARY 2. For the system {v2nm−k(x)}m=1 , k = 0,1, . . . ,2l−1 the following
statements are valid:

1) the series



m=1

2l−1


k=0

−([ n

2 ]+1)
2nm−k v2

2nm−k(x) converges uniformly in a closed domain

;

2) series



m=1

2l−1


k=0

−([ n

2 ]+2)
2nm−k

[
v2nm−k(x)

xi

]2
and




m=1

2l−1


k=0

−([ n

2 ]+3)
2nm−k

[
 2v2nm−k(x)

xix j

]2
converge uniformly in an arbitrary strictly closed subdomain 0 of the domain  .

COROLLARY 3. Let the function g(x)satisfy the conditions of Lemma 3 with p �

1. Then the number series
2l−1


k=0




m=1

∣∣g2lm−k

∣∣2 p+1
2lm−k

converges.

COROLLARY 4. Let the function f (t,x) satisfy the conditions of Lemma 2.4. Then
the series




m=1

2l−1


k=0

f2lm−k(t) · v2lm−k(x)

converges uniformly in a closed cylinder Q.

3. Direct problem

According to the Fourier method, we seek the function u(t,x) as a formal series

u(t,x) =



m=1

2l−1


k=0

u2lm−k(t)v2lm−k(x). (9)

Here the functions u2lm−k(t) are a solution of the Cauchy problem

u2lm−k(t)+k, ju2lm−k(t) = f2lm−k(t), 0 < t < T, (10)

u2lm−k(0) = 2lm−k, (11)

where f2lm−k(t) = 〈 f ,v2lm−k〉 , 2lm−k = 〈 ,v2lm−k〉.
In [14], Th 4.3, 231 p. it is proved that if f2lm−k() ∈C[0,T ], problem (10)–(11)

has a unique solution, which can be written as:

u2lm−k(t)=2lm−kE ,1
(−2lm−kt

)+ t∫
0

(t− )−1E ,
(−2lm−k(t− )

)
f2lm−k()d.

In this case the functions u2lm−k(t) and u2lm−k(t) belong to the class C[0,T ] .

Here E , (z) =


j=0

zk

( j+ ) is a Mittag-Leffler type function.
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Thus, the formal solution to problem (1)–(3) has the form:

u(t,x) =



m=1

2l−1


k=0

2lm−kE ,1
(−2lm−kt

)v2lm−k(x) (12)

+



m=1

2l−1


k=0

⎡
⎣ t∫

0

(t− )−1E ,
(−2lm−k(t− )

)
f2lm−k()d

⎤
⎦v2lm−k(x).

Here we use the notation:

u1(t,x) =



m=1

2l−1


k=0

2lm−kE ,1
(−2lm−kt

)v2lm−k(x), (13)

u2(t,x) =



m=1

2l−1


k=0

F2lm−k(t)v2lm−k(x), (14)

where

F2lm−k(t) =
t∫

0

(t− )−1E ,
(−2lm−k(t− )

)
f2lm−k()d.

Let us estimate the series representing the functions u j(t,x) , t u j(t,x) and
Lxu j(t,x), j = 1,2. In what follows, the symbol C will denote a positive constant,
not necessarily the same one.

To do this, we use the following property of the function E , (z) :
1) for  ∈ (0,2),  � |argz| �  ,  ∈ R,  ∈ (/2;min{ ;}) satisfies the

estimate (see, for example, [23], 35 p.),

∣∣E , (z)
∣∣� C

1+ |z| ,  � |arg(z)| �  . (15)

2) if Re() > 0,  /∈ −N0 , then (see, for example, [17], 274 p.),

E ,+ (z) = zE , (z)− 1
( )

(16)

Using estimate (15), as well as the Cauchy-Bunyakovsky inequalities for the func-
tion u1(t,x) , we obtain

|u1(t,x)| � C



m=1

2l−1


k=0

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣

� C



m=1

2l−1


k=0

∣∣2lm−k

∣∣([ n
2 ]+1)

2lm−k

−([ n

2 ]+1)
2lm−k

∣∣v2lm−k(x)
∣∣

� C

√√√√ 


m=1

2l−1


k=0

∣∣2lm−k

∣∣2([ n
2 ]+1)

2lm−k

√√√√ 


m=1

2l−1


k=0


−([ n

2 ]+1)
2lm−k

∣∣v2lm−k(x)
∣∣2.
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Further, as the function
∣∣−2lm−kt

E2lm−k

(−2lm−kt
)∣∣ is limited in the domain

0 <  � t � T , x ∈ , then in this domain for the function t u1(t,x) we get:

|t u1(t,x)| =

∣∣∣∣∣−



m=1

2l−1


k=0

2lm−k2lm−kE ,1
(−2lm−kt

)v2lm−k(x)

∣∣∣∣∣
�




m=1

2l−1


k=0

t−
∣∣2lm−k

∣∣ ∣∣−2lm−kt
E ,1

(−2lm−kt
)∣∣ ∣∣v2lm−k(x)

∣∣

� C

√√√√ 


m=1

2l−1


k=0

∣∣2lm−k

∣∣2([ n
2 ]+1)

2lm−k

√√√√ 


m=1

2l−1


k=0


−([ n

2 ]+1)
2lm−k

∣∣v2lm−k(x)
∣∣2.

Now, if the function (x) satisfies the conditions of Lemma 3 with the exponent

p =
[

n
2

]
, then according to Corollary 3 the number series




m=1

2l−1


k=0

∣∣2lm−k

∣∣2([ n
2 ]+1)

2lm−k

converges. In addition, according to Corollary 1 the series



m=1

2l−1


k=0

−([ n

2 ]+1)
2lm−k

∣∣v2lm−k(x)
∣∣

converges uniformly in a closed domain  . Then, the series representing the function
u1(t,x)converges uniformly in the closed domain Q , and the series representing the
function t u1(t,x) converges uniformly in any closed subdomain Q of the domain

Q . Hence, u1(t,x) ∈C
(
Q
)

and u1(t,x) ∈C (Q) . The inclusion Lxu1(t,x) ∈C (Q)
is proved in a similar way.

Further, we consider the smoothness of the function u2(t,x) .
Let us assume that the function f (t,x) belongs to the class C0,p

t,x

(
Q
)

for some

p � 1. Then, f2lm−k() ∈ C[0,T ] and, hence, F2lm−k(t) exists and belongs to the
class C[0,T ] . Denote∣∣ f2lm−k(tM)

∣∣= max
0�t�T

∣∣ f2lm−k(t)
∣∣ , tM ∈ [0,T ].

Then, the function F2lm−k(t) satisfies the following estimate∣∣F2lm−k(t)
∣∣� ∣∣ f2lm−k(tM)

∣∣ tE ,+1
(−2lm−kt

) (17)

Hence, as the function tE ,+1
(−2lm−kt

) is limited, for u2(t,x) we get

|u2(t,x)|�



m=1

2l−1


k=0

⎡
⎣ t∫

0

(t− )−1E ,
(−2lm−k(t − )

) ∣∣ f2lm−k()
∣∣d
⎤
⎦∣∣v2lm−k(x)

∣∣.
As F2lm−k(t) = f2lm−k(t)−2lm−kF2lm−k(t), then for u2(t,x) we obtain

|u2(t,x)| �



m=1

2l−1


k=0

∣∣ f2lm−k(t)v2lm−k(x)
∣∣+ 


m=1

2l−1


k=0

2lm−k

∣∣F2lm−k(t)v2lm−k(x)
∣∣.
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From estimates (15) and (17) for the second series in the last expression, for all
0 <  � t � T , x ∈ we get




m=1

2l−1


k=0

2lm−k

∣∣F2lm−k(t)v2lm−k(x)
∣∣

� C



m=1

2l−1


k=0

∣∣ f2lm−k(tM)
∣∣ t2lm−kE ,+1

(−2lm−kt
)∣∣v2lm−k(x)

∣∣
� C




m=1

2l−1


k=0

∣∣ f2lm−k(tM)
∣∣ ∣∣v2lm−k(x)

∣∣.
Similarly, for the function Lxu2(t,x) we get

|Lxu2(t,x)|=
∣∣∣∣∣




m=1

2l−1


k=0

2lm−kF2lm−k(t)v2lm−k(x)

∣∣∣∣∣�C



m=1

2l−1


k=0

∣∣ f2lm−k(tM)
∣∣ ∣∣v2lm−k(x)

∣∣.

Thus, the series



m=1

2l−1


k=0

∣∣ f2lm−k(t)
∣∣ ∣∣v2lm−k(x)

∣∣ is majorant with respect to series

representing functions u2(t,x) , t u2(t,x) and Lxu2(t,x) .
If the function f (t,x) satisfies the conditions of Lemma 4, then from Corollary 4

we obtain that the series




m=1

2l−1


k=0

∣∣ f2lm−k(t)
∣∣ ∣∣v2lm−k(x)

∣∣
converges uniformly in a closed cylinder Q . Then the series (14) also converges uni-
formly in a closed cylinder, and the series

u2(t,x) =



m=1

2l−1


k=0

[
f2lm−k(t)−2lm−kF2lm−k(t)

]
v2lm−k(x),

Lxu2(t,x) = −



m=1

2l−1


k=0

2lm−kF2lm−k(t)v2lm−k(x)

converge uniformly in any closed subdomain Q of the domain Q . Hence, u2(t,x) ∈
C
(
Q
)

, and functions t u2(t,x) and Lxu2(t,x) belong to class C (Q) .

Let us investigate the uniqueness of the solution. Assume the opposite, i.e. let
problem (1)–(3) have two solutions u1(t,x) and u2(t,x) . Let us prove that u(t,x) =
u1(t,x)− u2(t,x) ≡ 0. As the problem is linear, for u(t,x) we get a homogeneous
problem (1)–(3). By definition of the solution, the function u(t,x) has the following

properties: u(t,x) ∈ C
(
Q
)

, t u(t,x) ∈ C (Q) and Lxu(t,x) ∈ C (Q) . Then due to
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continuity, the function u2lm−k(t) =
(
u(t,x),v2lm−k(x)

)
satisfies the homogeneous con-

dition (11). If  is an arbitrary small number, then according to the condition t u(t,x) ,
Lxu(t,x) ∈C

(
Q

)
, Q ⊂ Q for all t �  > 0, the equality

u2lm−k(t)+k, ju2lm−k(t) = 0 (18)

is satisfied. As  is an arbitrary number, equation (18) is satisfied in the domain 0 < t <
T . Thus, the function u2lm−k(t) =

〈
u(t,x),v2lm−k(x)

〉
is a solution to the homogeneous

problem (10), (11). Then, due to the uniqueness of the solution to this problem, we
get
〈
u(t,x),v2lm−k(x)

〉
= 0, i.e. the function u(t,x) is orthogonal to all elements of

the system {v2lm−k(x)} . Therefore, u(t,x) = 0 for almost all t ∈ [0,T ] . As u(t,x) ∈
C
(
Q
)

, then u(t,x) ≡ 0, (t,x) ∈ Q.

Thus, we proved the following assertion.

THEOREM 1. Let the coefficients ai , 0 � i � 2l − 1 in Problem (1)–(3) be such

that the conditions k =
2l−1

i=0

(−1)k⊗iai > 0 , k = 0,1, . . . ,2l −1 are satisfied, the func-

tion (x) satisfies the conditions of Lemma 3 with the exponent p =
[

n
2

]
, and the

function f (t,x) satisfies the conditions of Lemma 4 with the exponent p =
[

n
2

]
+ 1 .

Then a solution to Problem (1)–(3) exists, is unique, and can be represented as (12).

4. Inverse problem for the case g(t) = 1

In this section, the inverse problem is studied. Let us first consider the problem for
the case of g(t) = 1. The following assertion is valid.

THEOREM 2. Let the conditions i > 0 , i = 1,2 . . . ,2l −1 , g(t) = 1 be satisfied
and functions (x) and (x) satisfy the conditions of Lemma 3 with the exponent
p =
[

n
2

]
+2 . Then the solution to Problem (1)–(4) exists, is unique, and is represented

in the form of series

f (x) =



m=1

2l−1


k=0

[
1

1−E ,1
(−2lm−kt


0

)2lm−k −
E ,1

(−2lm−kt

0

)
1−E ,1

(−2lm−kt

0

)2lm−k

]

×2lm−kv2lm−k(x), (19)

u(t,x) =



m=1

2l−1


k=0

[
E ,1

(−2lm−kt
)−E ,1

(−2lm−kt

0

)
1−E ,1

(−2lm−kt

0

) 2lm−k

+
1−E ,1

(−2lm−kt
)

1−E ,1
(−2lm−kt


0

)2lm−k

]
v2lm−k(x). (20)
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Proof. Suppose that the function u(t,x) is a solution to Problem (1)–(4) for g(t) =
1. Consider the functions

u2lm−k(t) =
∫


u(t,x)v2lm−k(x)dx, k = 0,1, . . . ,2l −1.

Using the conditions of Problem (1)–(4) for the function u2lm−k(t) , we obtain

D
t u2lm−k(t) =

∫


D
t u(t,x)v2lm−k(x)dx =

∫


[Lu(t,x)+ f (x)]v2lm−k(x)dx

=
∫


u(t,x)Lv2lm−k(x)dx+
∫


f (x)v2lm−k(x)dx

= −2lm−k

∫


u(t,x)v2lm−k(x)dx+ f2lm−k = −2lm−kv2lm−k(x)+ f2lm−k,

where 2lm−k = k2lm−k.
Further, from conditions (3) and (4) for the function u2lm−k(t) we get

u2lm−k(0) =
∫


u(0,x)v2lm−k(x)dx =
∫


(x)v2lm−k(x)dx = 2lm−k,

u2lm−k(t0) =
∫


u(t0,x)v2lm−k(x)dx =
∫


(x)v2lm−k(x)dx = 2lm−k.

Thus, the function u2lm−k(t) satisfies the conditions of the following problem

D
t u2lm−k(t)+2lm−ku2lm−k(t) = f2lm−k, 0 < t < T, (21)

u2lm−k(0) = 2lm−k, u2lm−k(t0) = 2lm−k. (22)

The general solution of equation (21) has the form

u2lm−k(t) = C2lm−k ·E ,1
(−2lm−kt

)+ f2lm−kt
E ,+1

(−2lm−kt
) , (23)

where C2lm−k are arbitrary constants. Substituting function (23) into conditions (22),
we obtain

C2lm−k = 2lm−k,

and
C2lm−k ·E

(−2lm−kt

0

)
+ f2lm−kt


0 E ,+1

(−2lm−kt

0

)
= 2lm−k.

Then we find

f2lm−k =
2lm−k −2lm−k ·E

(−2lm−kt

0

)
t0 E ,+1

(−2lm−kt

0

) .

From equality (16) for the function t0 E ,+1
(−2lm−kt


0

)
we get

t0 E ,+1
(−2lm−kt


0

)
= − 1

2lm−k

[
E ,1

(−2lm−kt

0

)−1
]
.
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Then the coefficients f2lm−k and functions u2lm−k(t) are represented as

f2lm−k =
2lm−k

1−E ,1
(−2lm−kt


0

)2lm−k −
2lm−kE ,1

(−2lm−kt

0

)
1−E ,1

(−2lm−kt

0

) 2lm−k, (24)

u2lm−k(t) =
E ,1

(−2lm−kt
)−E ,1

(−2lm−kt

0

)
1−E ,1

(−2lm−kt

0

) 2lm−k

+
1−E ,1

(−2lm−kt
)

1−E ,1
(−2lm−kt


0

)2lm−k. (25)

Note that if under the conditions of Problem (1)–(4) the equalities (x) ≡ 0 and
(x)≡ 0 are satisfied, then from (24) and (25) it follows that u2lm−k(t) = 0, f2lm−k = 0
for all m � 1, k = 0,1, . . . ,2l −1. .

Hence, 〈u,v2lm−k〉 = 0, 〈 f ,v2lm−k〉 = 0, m � 1, k = 0,1, . . . ,2l −1. As v2lm−k(x)
is a complete orthonormal system, then f (x) ≡ 0, x ∈  and u(t,x) ≡ 0, x ∈  for
almost all t ∈ [0,T ] . By assumption, u(t,x) is a continuous function in a closed domain
Q . Then u(t,x) ≡ 0,(t,x) ∈ Q . This implies that Problem (1)–(4) is unique. Indeed,
if there are two solutions {u1(t,x), f1(x)} and {u2(t,x), f2(x)} , then for the functions
u(t,x) = u1(t,x)− u2(t,x) and f (x) = f1(x)− f2(x) we obtain Problem (1)–(4) with
homogeneous conditions (3) and (4). Hence, in this case f (x) ≡ 0, x ∈ and u(t,x)≡
0,(t,x) ∈ Q , i.e., u1(t,x) ≡ u2(t,x) , f1(x) ≡ f2(x).

Let us study the existence of a solution to Problem (1)–(4). Under certain con-
ditions for the functions (x) and (x) we will show that the function f (x) from
equality (19) and the function u(t,x) from equality (20) are a solution to Problem (1)–
(4). By construction, these functions formally satisfy all the conditions of Problem
(1)–(4). Now we have to investigate smoothness of these functions.

To do this, it suffices to show that the series (19) and (20), respectively, converge
uniformly in the closed domain  and Q , while the series obtained by applying the
operators D

t and Lx to the series (20) converge in any strictly closed subdomain Q0 of
the domain Q . If we denote 2lm−k = 1−E ,1

(−2lm−kt

0

)
, then from the conditions

E ,1 (0) = 1, 2lm−k > 0 it follows that there exists such  > 0 that |nk| �  > 0.
Then the following functions

1

1−E ,1
(−2lm−kt


0

) , E ,1
(−2lm−kt


0

)
are bounded for all m ∈ N , k = 0,1, . . . ,2l − 1. Therefore, for the series (19), taking
into account estimate (8), we obtain

| f (x)| � C

(



m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣+ 


m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣)

� C



m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣+C




m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣.
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Let us consider the convergence of the series




m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣ (26)

and



m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣. (27)

Using the Bessel inequality for the series (26), we obtain the following estimates




m=1

2l−1


k=0

2lm−k

∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣

=



m=1

2l−1


k=0

2lm−k

(√
2lm−k

)[ n
2 ]+1 ∣∣2lm−k

∣∣(√2lm−k

)−([ n
2 ]+1) ∣∣v2lm−k(x)

∣∣

�

√√√√ 


m=1

2l−1


k=0


[ n

2 ]+3

2lm−k

∣∣2lm−k

∣∣2 ·
√√√√√ 


m=1

2l−1


k=0

∣∣v2lm−k(x)
∣∣2


[ n

2 ]+1

2lm−k

.

According to Lemma 2, the series




m=1

2l−1


k=0

−([n/2]+1)
2lm−k

∣∣v2lm−k(x)
∣∣2

converges uniformly in a closed domain  . Further, as the function (x) satisfies the
conditions of Lemma 3 for p =

[
n
2

]
+2, the numerical series




m=1

2l−1


k=0


[ n

2 ]+3

2lm−k

∣∣2lm−k

∣∣2
converges. This implies the uniform convergence of the series (26) in the closed domain
 . The uniform convergence of the series (27) in the closed domain  is proved in a
similar way. Then the series on the right-hand side of equality (19) converges uniformly

in a closed domain Q and its sum f (x) belongs to the class C
(
Q
)

.

Let us study the convergence of the series (20). As the functions
1−E,1

(
−2lm−kt


)

1−E,1

(
−

2lm−k
t0

)

and
E,1

(
−

2lm−k
t
)
−E,1

(
−

2lm−k
t0

)
1−E,1

(
−2lm−kt


0

) are bounded on the interval 0 � t � T , then we can

use the estimate

|u(t,x)| � C



m=1

2l−1


k=0

(∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣+ ∣∣2lm−k

∣∣ ∣∣v2lm−k(x)
∣∣).
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As we have already noticed, the series on the right side of the last inequality con-
verge uniformly in a closed domain  . This implies that the functional series (20)
representing the function u(t,x) converges uniformly in a closed domain Q and there-

fore u(t,x) ∈C
(
Q
)

.

Further, we study the smoothness of the functions D
t u(t,x) and Lxu(t,x) . For-

mally applying the operators D
t u(t,x) and Lxu(t,x) to the function (20), we obtain

D
t u(t,x) = −




m=1

2l−1


k=0

2lm−k

E ,1
(−2lm−kt

)
1−E ,1

(−2lm−kt

0

) [2lm−k −2lm−k

]
v2lm−k(x),

Lxu(t,x) = −



m=1

2l−1


k=0

2lm−k

[
E ,1

(−2lm−kt
)−E ,1

(−2lm−kt

0

)
1−E ,1

(−2lm−kt

0

) 2lm−k

+
1−E ,1

(−2lm−kt
)

1−E ,1
(−2lm−kt


0

)2lm−k

]
v2lm−k(x).

Hence, using estimate (17), we have

|D
t u(t,x)| � C

(



m=1

2l−1


k=0

[∣∣2lm−k

∣∣+ ∣∣2lm−k

∣∣]v2lm−k(x)

)
,

|Lxu(t,x)| � C

(



m=1

2l−1


k=0

[
2lm−k

∣∣2lm−k

∣∣+2lm−k

∣∣2lm−k

∣∣]∣∣v2lm−k(x)
∣∣) .

Under the conditions of the theorem, the last two series converge uniformly in a
closed domain  . Then the series representing the functions D

t u(t,x) and Lxu(t,x)
converge uniformly in a closed domain Q and their sums, i.e. functions D

t u(t,x) and

Lxu(t,x) f (x) belong to the class C
(
Q
)

. The theorem is proved. �

5. Inverse problem for the case g(t) 	= 1

Let now the function g(t) be not identical to 1 and the function u(t,x) be a solution
to Problem (1)–(4). As in the case g(t) = 1, consider the function

u2lm−k(t) =
∫


u(t,x)v2lm−k(x)dx.

In this case, with respect to the function u2lm−k(t) , we obtain the equation

D
t u2lm−k(t) = −2lm−ku2lm−k(t)+g(t) f2lm−k. (28)

The general solution to equation (28) is written as

u2lm−k(t) = C2lm−kE ,1
(−2lm−kt

)+ f2lm−kg2lm−k(t),
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where

g2lm−k(t) =
t∫

0

(t− )−1E ,
(−2lm−k(t− )

)
g()d . (29)

Using the conditions of Problem (1)–(4), we obtain

2lm−k = u2lm−k(0) = C2lm−k,

2lm−k = u2lm−k(t0) = 2lm−kE ,1
(−2lm−kt


0

)
+ f2lm−kg2lm−k(t0).

Hence,

f2lm−kg2lm−k(t0) = 2lm−k −2lm−kE ,1
(−2lm−kt


0

)
. (30)

Further, two cases are possible: g2lm−k(t0) 	= 0 and g2lm−k(t0) = 0.
If for some values, the condition g2lm−k(t0) = 0 is satisfied, then the uniqueness

may be violated. As it is noted in [8], this is due to the variable sign of the function
g(t) . Following the results of [8], consider the following example.

EXAMPLE 3. Consider equation (1) with the function F(t,x) = f (x)g(t) and ho-
mogeneous conditions (2)–(4).

Take any eigenfunction v(x) of the nonlocal Laplace operator obeying homoge-
neous Dirichlet boundary conditions, i.e. Lxv(x) +v(x) = 0 with v(x)| = 0 and
set t0 = 1, g(t) = t

(
1− tb

)
, b > 0. In this case, u(t,x) = g(t)v(x) satisfies problem

(2)–(4) with (x) = (x) = 0, f (x) = v(x) and g(t) = t
(
1− t

)
. Then, besides the

trivial solution {u(t,x), f (x)} = {0,0} to problem (2)–(4), we also have the following
non-trivial solution u(t,x) = g(t)v(x) , f (x) = v(x) .

For further investigation, as suggested in [8], we divide the set N0 = N ∪ {0}
into two groups: N0 = K ∪K0, , where the number m ∈ N , k ∈ {0,1, . . . ,2l −1

}
is

assigned to K0, , if g2lm−k(t0) = 0, and if g2lm−k(t0) 	= 0, then this number is assigned
to K . Note that for some t0 the set K0, can be empty, then K = N0. For example,
if g(t) does not change the sign, then K0, = N0 for all t0 .

Let us establish two-sided estimates for g2lm−k(t0) . First, we suppose that g(t)
does not change sign for the diffusion equation.

LEMMA 5. Let g(t) ∈C [0,T ] and g(t) 	= 0 , t ∈ [0,T ] . Then there are constants
C1,C2 > 0 , depending on t0 , such that for all m � 1 , k = 0,1, . . . ,2l −1 :

C1

2lm−k
�
∣∣g2lm−k(t0)

∣∣� C2

2lm−k
. (31)

Proof. According to the Weierstrass theorem, we have
∣∣g2lm−k(t)

∣∣� g0 = const >
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0. From equality (29), on the basis of the mean value theorem, we have

∣∣g2lm−k(t0)
∣∣ =
∣∣∣∣∣∣

t0∫
0

−1E ,
(−2lm−k

)g(t0− )d

∣∣∣∣∣∣
=

∣∣∣∣∣∣g(k)
t0∫

0

−1E ,
(−2lm−k

)d
∣∣∣∣∣∣

= |g(k)|t0 E ,+1
(−2lm−kt


0

)
=

|g(k)|
2lm−k

[
1−E ,1

(−2lm−kt

0

)]
, k ∈ [0,t0].

From here, using the boundedness of the function 1−E ,1
(−2lm−kt


0

)
, inequal-

ities (15) and the estimate
∣∣g2lm−k(t)

∣∣� g0 , we obtain (31). The lemma is proved. �

Further, if the condition g2lm−k(t0) 	= 0, is satisfied for allm � 1, k = 0,1, . . . ,2l −
1, then for the coefficients f2lm−k and u2lm−k(t) we get

f2lm−k =
1

g2lm−k(t0)
[
2lm−k −2lm−kE ,1

(−2lm−kt0
)]

(32)

and

u2lm−k(t) =
(

E ,1
(−2lm−kt

)− g2lm−k(t)
g2lm−k(t0)

E ,1
(−2lm−kt


0

))
2lm−k

+
g2lm−k(t)
g2lm−k(t0)

2lm−k. (33)

Using the estimate (31) for the coefficients f2lm−k and u2lm−k(t) as well as repre-
sentations (32) and (33), we get the following inequalities:∣∣ f2lm−k

∣∣� C2lm−k

[|2lm−k|+ |2lm−k|
]
, (34)

u2lm−k(t) = C
[|2lm−k|+ |2lm−k|

]
, (35)∣∣D

t u2lm−k(t)
∣∣� C2lm−k

[|2lm−k|+ |2lm−k|
]
. (36)

Let us study the main assertion from Problem (1)–(4) for the case g(t) 	= 0. First,
consider the case when the function does not change its sign. The following assertion
is valid.

THEOREM 3. Let g(t) ∈ C [0,T ] and g(t) 	= 0 , functions (x) and (x) satisfy
the conditions of Lemma 3 for p = [n/2] + 2 . Then, the solution to Problem (1)–(4)
exists, is unique, and is defined by the series

f (x) =



p=1

2l−1


k=0

1
g2l p−k(t0)

[
2l p−k −2l p−kE ,1

(
−2l p−kt0

)]
v2l p−k(x), (37)
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u(t,x) =



m=1

2l−1


k=0

[(
E ,1

(−2lm−kt
)− g2lm−k(t)

g2lm−k(t0)
E ,1

(−2lm−kt

0

))
2lm−k

+
g2lm−k(t)
g2lm−k(t0)

2lm−k

]
v2lm−k(x). (38)

Proof. By construction, the functions f (x) and u(t,x) from equalities (37) and
(38) formally satisfy all the conditions of Problem (1)–(4). Estimate (34) implies
uniform convergence of the series (37) in a closed domain  and, therefore, f (x) ∈
C
(

)

. Similarly, the estimate (35) implies uniform convergence of the series (38) in

a closed domain Q and, therefore, the sum of this series, i.e. the function u(t,x) will
be continuous in Q . If we apply the operator  to the series (38), then from estimate
(36) for u(t,x) we obtain

|u(t,x)| � C



m=1

2l−1


k=0

(
2lm−k|2lm−k|+ 2lm−k|2lm−k|

) |v2lm−k(x)|.

As the series on the right side of the last inequality converges uniformly in the
closed domain  , the series representing the function u(t,x) also converges uni-

formly in a closed domain Q , and therefore u(t,x)∈C
(
Q
)

. The inclusion Lnu(t,x)

∈C
(
Q
)

is proved similarly.

To prove the uniqueness of the solution, we assume the contrary. Let there exist
two different solutions {u1(t,x), f1(x)} and {u2(t,x), f2(x)} satisfying inverse problem
(1)–(4). We must show that u(t,x) = u1(t,x)−u2(t,x) ≡ 0, f (t) = f1(x)− f2(x) ≡ 0.
For {u(t,x), f (x)} we have the following problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t,x)−Lxu(t,x) = f (x)g(t), (t,x) ∈ Q,

u(t,x) = 0, x ∈ ,

u(0,x) = 0, 0 � t � T, x ∈

u(t0,x) = 0, x ∈, t0 ∈ (0,T ]

(39)

Let {u(t,x), f (x)} be a solution to problem (39). Determine the coefficients
u2lm−k(t) =

〈
u,v2lm−k

〉
, f2lm−k =

〈
f ,v2lm−k

〉
. Then, using the conditions t u(t,x) ,

Lxu(t,x) ∈C
(
Q
)

and taking into account that u(t,x)−Lxu(t,x) = f (x)g(t) we get

u2lm−k(t) =
〈
u,v2lm−k

〉
=
〈
Lxu,v2lm−k

〉
+g(t)

〈
f ,v2lm−k

〉
= −〈2lm−k,v2lm−k

〉
+ f2lm−kg(t) = −2lm−ku2lm−k + f2lm−kg(t).

Thus, for the function u2lm−k(t) we obtain the following Cauchy problem

u2lm−k(t) = −2lm−ku2lm−k(t)+g(t) f2lm−k, t > 0, u2lm−k(0) = 0.
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If f2lm−k is known, then the unique solution to the Cauchy problem has the form

u2lm−k(t) = f2lm−k

t∫
0

(t− )−1E ,
(−2lm−k(t − )

)
g()d = f2lm−kg2lm−k(t).

Applying the additional condition, we get

u2lm−k(t0) = f2lm−kg2lm−k(t0) = 0.

It is assumed that g2lm−k(t0) 	= 0 for all m ∈ N , k ∈ {0,1, . . . ,2l −1
}

. Then,
f2lm−k ≡ 0 and u2lm−k(t) ≡ 0. By virtue of completeness of the system of eigenfunc-
tions v2lm−k(x) in L2 () we obtain that f (x) ≡ 0 and u(t,x) ≡ 0. The theorem is
proved. �

Let us consider the case when g(t) changes its sign. In this case, the function
g2lm−k(t0) can go to zero, and as a result, the set K0, may turn out to be non-empty.
Therefore, we should consider separately the case of diffusion ( = 1) and subdiffusion
(0 <  < 1) equations.

The following assertions are proved in the same way as in [8].

LEMMA 6. Let  = 1 , g(t) ∈ C1[0,T ] and g(t0) 	= 0. Then there exist numbers
m0 ∈ N and k0 ∈

{
0,1, . . . ,2l −1

}
such that, starting from the number m � m0 , the

following estimates

C1

2lm0−k0

�
∣∣∣g2lm0−k0

(t0)
∣∣∣� C2

2lm0−k0

, (40)

where constants C1 and C2 > 0 depend on m0,k0 and t0 , are satisfied.

LEMMA 7. Let 0 <  < 1 , g(t) ∈C1[0,T ] and g(0) � 0. Then there exist num-
bers m0 > 0 , k0 ∈ 0,1, . . . ,2l−1 and n0 such that, for all t0 � n0 and m � m0 , the
following estimates

C1

2lm0−k0

�
∣∣∣g2lm0−k0

(t0)
∣∣∣� C2

2lm0−k0

, (41)

where constants C1 and C2 > 0 depend on n0 and m0, are satisfied.

COROLLARY 5. If conditions of Lemma 6 are satisfied, then estimate (40) holds
for all m,k ∈ K1 .

COROLLARY 6. If conditions of Lemma 6 are satisfied, then the set K0,1 has a
finite number of elements.

COROLLARY 7. If conditions of Lemma 7 are satisfied, then estimate (41) holds
for all t0 � n0 and m,k ∈ K0, .
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COROLLARY 8. If conditions of Lemma 7 are satisfied and t0 is sufficiently small,
then the set K0, has a finite number of elements.

THEOREM 4. Let g(t)∈C1[0,T ] , functions (x) and (x) satisfy the conditions
of Lemma 3 for p = [n/2]+2 . Further, let us assume that for  = 1 the conditions of
Lemma 6 are satisfied, and for 0 <  < 1 the conditions of Lemma 7 are satisfied and
t0 is sufficiently small.

1) If the set K0, is empty, i.e. g2lm−k(t0) 	= 0 for all m∈N , k∈ {0,1, . . . ,2l −1
}

,
then there is a unique solution to the inverse problem (1)- (4) which is represented in
the form of series (37) and (38);

2) If the set K0, is not empty, then for the existence of a solution to the inverse
problem it is necessary and sufficient that the following conditions be satisfied:

2lm−k = 2lm−kE ,1
(−2lm−kt


0

)
, m,k ∈ K1 (42)

If a solution to problem (1)–(4) exists, then it is not unique:

f (x) = 
m,k∈K

1
g2lm−k(t0)

[
2lm−k −2lm−kE ,1

(−2lm−kt0
)]

v2lm−k(x)

+ 
m,k∈K

 f2lm−kv2lm−k(x),

u(t,x) =



m=1

2l−1


k=0

[
2lm−kE ,1

(−2lm−kt
)+ f2lm−k

]
v2lm−k(x),

where f2lm−k,m,k ∈ K0, are arbitrary real numbers.

Proof. In the first case, the theorem is proved in exactly the same way as in the case
of Theorem 2. Let us consider the second case. If m,k ∈ K , then from equality (30)
we get (32) and (33). If m,k ∈ K0, , i.e. g2lm−k(t0) = 0, then a solution to equation
(30) with respect to f2lm−k exists if and only if conditions (42) are satisfied. In this
case, the solution to equation (30) can be arbitrary numbers f2lm−k . As shown above
(see Corollaries 6 and 8), under the conditions of the theorem, the set K0, ,  ∈ (0,1]
contains a finite number of elements. The theorem is proved. �

6. Conclusion

In this paper, the solvability of some inverse problems for a nonlocal analogue of
a parabolic equation is studied. The nonlocal operator is introduced using involutive
mappings.

Unlike the previous works of the authors, in this work the problems are studied in
the n-dimensional case. Solutions to the main problems are constructed in the form of
series using the completeness of the system of eigenfunctions of the nonlocal Laplace
operator. The results of this work can be generalized to the case of high-order equations.
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