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Abstract. This paper extends classical results on integral inequalities involving monotone func-
tions to the domain of Riemann-Liouville fractional integrals with positive arbitrary order  . By
employing a unified framework, our approach provides a more generalized understanding of the
interplay between monotonicity and integrability in the case of fractional integration. We review
classical results, introduce Riemann-Liouville integrals, and establish the fractional integral ex-
tensions. Our main results are presented, with discussions on their applications, contributing to a
broader comprehension of this type of inequalities in mathematical analysis and its applications.

1. Introduction

In the realm of mathematical analysis, inequalities involving monotone functions
have been a focal point of investigation due to their significance in various branches of
mathematics and applications. Classical results in this domain have laid the ground-
work for understanding the behavior of these functions under certain conditions [3, 4,
6, 8, 9, 10, 12]. The extension of these results to the realm of Riemann-Liouville inte-
grals with positive arbitrary order  introduces a novel perspective, unlocking a richer
understanding of the interplay between monotonicity and integrability, see for instance
[1, 2, 11]. Let us recall some results on the work of [7] that have inspired the present
paper. In Theorem 1 of this reference, it was proved that for any positive function
f ∈ C1([a,b]) , such that f ′ does not vanish over ]a,b[ and for any positive function
w ∈C([a,b[) , one has

∫ x

a
(x− t)n−1 f  (t)

(
f 2(a)


− f 2(t)
 +2

)
w(t)dt <

2 f +2(a)
( +2)

∫ x

a
(x− t)n−1w(t)dt,

provided that  ∈ R\ {0,−2}, n = 0,1,2,3, . . . .
In theorem 2, the authors proved that for any positive function f ∈ C1([a,b]) ,

such that its first derivative f ′ does not vanish over ]a,b[ and for any positive function
w ∈C([a,b[) , the inequality is valid for any integer n and for any x ∈]a,b[

∫ b

x
(t− x)n−1 f  (t)

(
f 2(b)


− f 2(t)
 +2

)
w(t)dt <

2 f +2(b)
( +2)

∫ b

x
(t − x)n−1w(t)dt,
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provided that  ∈ R\ {0,−2}.
Other integrals results with some important applications were also established in

[7]. Motivated by [5, 7] and some of the above cited papers, in this work, we delve
into the use of Riemann-Liouville integrals to broaden the scope of classical results on
inequalities involving monotone functions. The extension to positive arbitrary order
 presents an intriguing challenge and offers an opportunity to explore the nuanced
behavior of these functions in a more general context. Our approach aims to provide
a unified framework that encompasses and generalizes some of the classical results in
[7], opening avenues for applications in diverse analytical scenarios.

This paper is organized as follows: Section 2 introduces the Riemann-Liouville
integrals and establishes the framework for extension. Section 3 presents our main
results, followed by some examples in Section 4. We conclude with insights into future
directions for research in Section 5.

2. Preliminaries

We begin this section by the following definitions [5]:

DEFINITION 1. The left Riemann-Liouville fractional integral operator of order
 > 0, for a continuous function g on [a,b] is defined as

Ja [g(t)] =
1

()

∫ t

a
(t− )−1g()d,  > 0, a � t � b.

DEFINITION 2. The right Riemann-Liouville fractional integral operator of order
 > 0, for a continuous function g on [a,b] is defined as

Jb [g(t)] =
1

()

∫ b

t
(− t)−1g()d,  > 0, a � t � b.

We need the following properties and particular cases

Ja Ja [g(t)] = J+
a [g(t)],  � 0,  � 0,

Ja Ja [g(t)] = J Ja [g(t)],

Ja 1 =
(b−a)

( +1)
, Ja [b] =

(b−a)+1

( +2)
+

a(b−a)

( +1)
.

3. Main results

THEOREM 1. Let f ∈C1([a,b]) be a positive function such that its first derivative
f ′ does not vanish over the same interval. Suppose also that w ∈C([a,b]) is a positive
function. Then, for every  � 0 , we have

Ja

(
f  (x)

(
f 2(a)


− f 2(x)
 +2

)
w(x)

)
� 2 f +2(a)

( +2)
Ja w(x), x ∈ [a,b], (1)

provided that  ∈ R\ {0,−2}
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Proof. Let us introduce the quantity

F(t) := − f ′(t) f −1(t)
(
f 2(t)− f 2(a)

)
, t ∈ [a,b]

Due to the assumptions on f and f ′ , we can state that:

F([a,b]) ⊂]−,0].

Hence, the inequality

∫ s

a
F(t)dt � 0; s ∈ [a,b].

is valid. Consequently,

∫ s

a

(− f ′(t) f +1(t)+ f 2(a) f ′(t) f −1(t)
)
dt � 0. (2)

On the other hand, one can observe that

∫ s

a

(− f ′(t) f +1(t)+ f 2(a) f ′(t) f −1(t)
)
dt

=
[
− f +2(t)

 +2
+

f 2(a) f  (t)


]s

t=a

= − f +2(s)
 +2

+
f 2(a) f  (s)


+

f +2(a)
 +2

− f +2(a)


= f  (s)
(

f 2(a)


− f 2(s)
 +2

)
− 2
( +2)

f +2(a).

Hence, thanks to (2), it yields that

f  (s)
(

f 2(a)


− f 2(s)
 +2

)
� 2

( +2)
f +2(a). (3)

If we multiply (3) by
(x− s)(−1)

()
w(s) and then we integrate over [a,x] , where x ∈

[a,b] , we get (1). Theorem 1 is thus proved. �
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REMARK 1. The particular case where  = n, n ∈ N and f is a strictly monotone
function has been proved in Theorem 1 of [7].

Suppose now the particular case on the negativity of f ′ to prove the following
theorem.

THEOREM 2. Let f ∈ C1([a,b]) . Assume that f ′([a,b]) ⊂]−,0] . Then, for
every  � 2 , we have

J+1
a f (x) � Ja (x−a) f (x); x ∈ [a,b]. (4)

Proof.
H(t) = −(t−a) f ′(t); t ∈ [a,b].

Thanks to the hypothesis on f ′ , we have

H([a,b]) ⊂ [0,+[.

Therefore, for every s ∈ [a,b], we can write
∫ s

a
H(t)dt � 0. (5)

Integrating the right hand side of (6) by parts, we get
∫ s

a
H(t)dt = −

∫ s

a
(t −a) f ′(t)dt

= −
(

[(t−a) f (t)]st=a−
∫ s

a
f (t)dt

)

= −
(

(s−a) f (s)−
∫ s

a
f (t)dt

)

= −(s−a) f (s)+
∫ s

a
f (t)dt,

which implies by (5) that ∫ s

a
f (t)dt � (s−a) f (s). (6)

Multiplying (6) by
(x− s)−1

()
and integrating over [a,x] , where x ∈ [a,b] , we obtain

∫ x

a

(
(x− s)−1

()

∫ s

a
f (t)dt

)
ds �

∫ x

a

(x− s)−1

()
(s−a) f (s)ds.

Thanks to Fubini theorem, we have

∫ x

a

(
f (t)
()

∫ x

t
(x− s)−1ds

)
dt �

∫ x

a

(x− s)−1

()
(s−a) f (s)ds.
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That is ∫ x

a

(x− t)+1−1

( +1)
f (t)dt �

∫ x

a

(x− s)−1

()
(s−a) f (s)ds.

This ends the proof. �

REMARK 2. The particular case where  = n, n = 2,3, . . . , and f is a strictly
decreasing function has been proved in Theorem 3 of [7].

In the case where f ′ is positive, we have to prove the following result.

THEOREM 3. Let f ∈ C1([a,b]) and its first derivative is positive over the same
interval. Then, for every  � 2 , and x ∈ [a,b] , it holds that

J+1
a f (x) � Ja (x−a) f (x).

Proof. It is sufficient to apply (4) for − f instead of f . �
Now, using the right Riemann-Liouville integral, we present to the reader the fol-

lowing result.

THEOREM 4. Let f ∈C1([a,b]) be a positive function such that f ′ does not van-
ish on [a,b] . Suppose also that w ∈ C([a,b]) is a positive function. Then, for every
 � 0 , we have

Jb− f  (x)
(

f 2(b)


− f 2(x)
 +2

)
w(x) � 2 f +2(b)

( +2)
Jb−w(x).

Proof. Let

G(t) = − f ′(t) f −1(t)
(
f 2(b)− f 2(t)

)
; t ∈ [a,b].

The assumptions on f and its first derivative allow us to state that:

G([a,b]) ⊂]−,0].

Then, for every s ∈ [a,b] , we can write
∫ b

s
G(t)dt � 0,

which is equivalent to
∫ b

s

(− f ′(t) f −1(t) f 2(b)+ f ′(t) f +1(t)
)
dt � 0. (7)

On the other hand, we have
∫ b

s

(− f ′(t) f −1(t) f 2(b)+ f ′(t) f +1(t)
)
dt

= f  (s)
(

f 2(b)


− f 2(s)
 +2

)
− 2 f +2(b)
( +2)

,
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which implies by (7) that

f  (s)
(

f 2(b)


− f 2(s)
 +2

)
� 2 f +2(b)

( +2)
, s ∈ [a,b]. (8)

Multiplying (8) by
(s− x)(−1)

()
w(s) and integrating over [x,b] , where x ∈ [a,b] , we

obtain

Jb− f  (x)
(

f 2(b)


− f 2(x)
 +2

)
w(x) � 2 f +2(b)

( +2)
Jb−w(x). �

REMARK 3. The particular case where  = n, n ∈ N, and f is a strictly mono-
tone function has been proved in Theorem 2 of [7].

We present also the following result.

THEOREM 5. Let f ∈C1([a,b]) . Assume that f ′ is negative over the same inter-
val. Then, for every  � 2 , and x ∈ [a,b] , we have

J+1
b− f (x) � Jb−(b− x) f (x).

Proof. We consider the following function

H(t) = −(b− t) f ′(t),t ∈ [a,b].

So, with the same arguments as above, the desired inequality follows. �

THEOREM 6. Let f ∈ C1([a,b]) and suppose that f ′ is positive over the same
interval. Then, for every  � 2 and x ∈ [a,b] , we have

J+1
b− f (x) � Jb−(b− x) f (x).

Proof. We apply Theorem 5 for the function − f instead of f . �

REMARK 4. The particular case where  = n, n = 2,3 . . . , and f is a strictly
positive function has been proved in Theorem 6 of [7].

4. Some examples

We shall estimate some fractional inequalities involving trigonometric functions.

EXAMPLE 1. Taking f (x) = cosx , x ∈ [0,/2], one can see that all the assump-
tions of Theorem 1 are satisfied. Hence, we have

J0
(
(cos) (x)

(
1

− (cos)2(x)

 +2

)
w(x)

)
� 2

( +2)
J0 w(x), x ∈ [0,/2],
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where f (0) = 1. Taking w(x) = 1, we obtain

J0
(
(cos) (x)

(
1

− (cos)2(x)

 +2

))
� 2

( +2)
x

( +1)
, x ∈ [0,/2].

The second example is given by the cosinus hyperbolic function. We consider the
following example:

EXAMPLE 2. We take f (x) = ch x , x∈ [0,1], one can see that all the assumptions
of Theorem 1 are satisfied. If we consider the case w(x) = 1, then we can write

J0
(
(ch ) (x)

(
1

− (ch )2(x)

 +2

))
� 2

( +2)
x

( +1)
, x ∈ [0,1].

5. Conclusion

In summary, the generalization of integral inequalities presented in this study rep-
resents an advancement, extending beyond the limitations of previous works that fo-
cused on cases dependent on a natural parameter n. By generalizing these inequalities
to positive arbitrary orders, utilizing the Riemann-Liouville fractional integral, this re-
search introduces a more inclusive framework. The outcomes not only enrich the exist-
ing mathematical literature but also provide a foundation for exploring new dimensions
in fractional calculus and integral inequalities. This work opens avenues for further
investigations and applications, especially in fractional differential equations.
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