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THE HELP OF SIMULATION TYPE CONDENSING OPERATOR

ANUPAM DAS, BHUBAN CHANDRA DEURI ∗ AND SUSANTA SARMAH PATHAK

(Communicated by S. K. Ntouyas)

Abstract. The purpose of this paper is to prove the existence of a solution for Erdélyi-Kober
fractional integral equations using the generalised form of Darbo’s fixed point theorem and a
simulation form condensing operator in Banach space  . The primary purpose is to show that
the Erdélyi-Kober fractional integral equation has solutions in �[0,1]. Finally, to illustrate that
our abstract conclusions are simple to verify, we give an example.

1. Introduction

In the theory of neutron transport, radiation, gas kinetic theory and traffic theory,
the integral equations play significant roles in applied problems, numerous problems
also occurrences of the real world (see [4,5,9,20,24,25]). Darbo’s stated the fixed point
theorem using the definition of a measure of noncompactness in 1955 [7]. The fixed
point theorem of Darbo is a significant extension of Schauder’s fixed point theorem and
serves an important role in the study of an integral equation form (see [6,8,10,11,28]).

Kuratowski’s measure of noncompactness introduced in 1930 [1], has been ex-
tensively studied in various mathematical contexts. Different research papers have ex-
plored the application of this measure in other areas. Application of the measure of
noncompactness proposed the concept of condensing operators, focusing on best prox-
imity points and fractional differential equations. The Kuratowski measure of noncom-
pactness in studying boundary-value problems for fractional differential equations with
variable order and delays showcases the measure’s applicability in stability criteria.

J. Banaś [3] introduced the measure of noncompactness in 1980, and its study
in Banach spaces has since become a key research area. These measures play a cru-
cial role in determining the existence of solutions to integral boundary value problems,
studying the representation of a measure of noncompactness and their applications in
Banach spaces, exploring interpolation of a measure of noncompactness of polynomi-
als on Banach spaces, examining solvability conditions for fractional integral equations
in Banach spaces using the theory of a measure of noncompactness, and applying the
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measure of noncompactness in characterizing classes of compact operators, solving
integral equations, and establishing the existence of optimal solutions for systems of
integro-differentials in Banach spaces (see [2,19,23,26,30,31,33]). These research ef-
forts collectively contribute to a deeper understanding of measures of noncompactness
and their diverse applications in various mathematical contexts.

The noncompactness measure can be extended and show the effects of existence
on integral equations of various forms, integro-differential equations, differential equa-
tions, and their infinite structures (see [12,14,29]). Recently, the solvability of fractional
integral equations has been established (see [15–18, 21, 22]).

In this work, we have presented Darbo’s fixed point theorem to solve Erdélyi-
Kober fractional integral equations in Banach space with the different functions used.
Herein, we also illustrated a suitable example for verifying the proposed theorem.

Let  be a real Banach space with the norm ‖ . ‖ . Suppose B(a,b) in  radius
b is also a closed ball,centered on a. If Y is a nonempty subset of . Then, Y and
ConvY notation are the closure and convex closure of Y. Moreover, suppose M is
denote the family of all bounded and nonempty subsets of  and N its subfamily
consisting of all relatively compact sets. Also, the real numbers set is denote by R and
R+ = [0,) .

The following definition of a noncompactness measure is presented in [3].

DEFINITION 1.1. A function  : M → R+ is called a measure of noncompact-
ness(MNC) in  if it satisfies the following conditions:

(i) The family ker  = {Y ∈ M : (Y) = 0} is nonempty and ker ⊂ N.

(ii) Y ⊆ Z =⇒ (Y) � (Z) .

(iii) 
(

Y

)
= (Y) .

(iv) (ConvY) = (Y) .

(v) (Y+(1−)Z) � (Y)+ (1−)(Z) for  ∈ [0,1] .

(vi) If Yn ∈ M, Yn = Yn, Yn+1 ⊂ Yn for n = 1,2,3, . . . and lim
n→

(Yn) = 0 then

Y =
⋂

n=1 Yn 	=  .

The ker family is kernel of measure . Note that the intersection set Y from
(vi) is a member of the family ker. In fact, since (Y) � (Yn) for any n, we
conclude that (Y) = 0. This is giving Y ∈ ker.

We recall the following well-known theorems:

THEOREM 1.2. (Schauder [1]) Let S be a non-empty, closed and convex subset
of a Banach space . Then every compact, continuous map W : S→ S has at least one
fixed point.
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THEOREM 1.3. (Darbo [7]) Let D be a non-empty, bounded, closed and con-
vex(NBCC) subset of a Banach space . Let W : D → D be a continuous mapping.
Assume that there is a constant p ∈ [0,1) such that

(WY) � p(Y), Y ⊆ D.

Then W has a fixed point.

In formulating our fixed point theorem, we require certain analogous principles
from the following set of methods.

DEFINITION 1.4. ([32]) Let C denote the class of all simulation function of the
form  : R+×R+ → R+ satisfying:

1.  (0,0) = 0;

2.  (s, t) < t− s, for all s,t > 0;

3. if {sn} ,{tn} are sequences in (0,) such that lim
n→

sn = lim
n→

tn > 0 and sn < tn

for all n ∈ N , then lim
n→

sup (sn,tn) < 0.

EXAMPLE 1.5. Let  j : R+ ×R+ → R, j = 1,2,3,4 be defined by

1. 1(s, t) = (t)− (s) ∀ s,t ∈ R+ , where , : R+ → R+ are two continuous
functions such that (s) = (s) = 0 ⇔ s = 0 and (s) < s � (s) for all s > 0.

If we consider, (s) = s and (s) = px ∀ s � 0, where p ∈ [0,1) , then we get

the particular case of simulation function  1(s,t) = ps− t ∀ s,t ∈ R+ .

2. 2(s, t) = t−(t)−s ∀ s,t ∈R+ , where  : R+ →R+ is lower semi-continuous
mapping such that −1(0) = 0

3. 3(s, t) = (t)− s ∀ s,t ∈ R+ , where  : R+ → R+ is a upper semi-continuous
function with (s) < s ∀ s > 0 also (0) = 0.

4. If g : R+ → R+ is a function such that
∫ 
0 g(v)dv exists and

∫ 
0 g(v)dv >  for

each  > 0, with we set 4(s,t) = t− ∫ s
0 g(v)dv ∀ s,t � 0.

DEFINITION 1.6. ([13]) Let C be the class of all functions M : R+ ×R+ → R+
satisfying:

1. max{m1,m2} � M(m1,m2) for m1,m2 � 0.

2. M is a continuous

3. M(m1 +m2,n1 +n2) � M(m1,n1)+M(m2,n2).

Example: M(m1 +m2) = m1 +m2.
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DEFINITION 1.7. Let D be a non-empty subset of a Banach space  and  is an
arbitrary MNC on . We say that an operator W : D→D is generalized  -condensing
operator if there exists  ∈C such that

 (M((WY),H((WY))),M((Y),H((Y)))) � 0 (1.1)

for any bounded subset Y of D, where M ∈ C and H : R+ → R+ is non-decreasing
continuous function.

In this article, we establish a generalization of Darbo’s fixed point theorem and
then apply it to check the solvability of Erdélyi-Kober fractional integral equation.

2. Main result

THEOREM 2.1. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC. If W : D→D is a continuous with generalized  -condensing operator
and M ∈C. Then W has at least one fixed point.

Proof. Let D1 = D and construct a sequence {Dn} such that Dn+1 =Conv(WDn)
for n ∈ N. Also WD1 = WD ⊆ D = W1 , D2 = Conv(WD1) ⊆ D = D1 , therefore by
continuing this process, we have

D1 ⊇ D2 ⊇ . . . ⊇ Dn ⊇ Dn+1 ⊇ . . .

If there exists a positive integer N0 ∈ N such that M((DN0 ),H((DN0))) = 0. Then
(DN0) = 0. So DN0 is relatively compact and since W (DN0)⊆Conv(WDN0) = DN0+1

⊆ DN0 . Then by Theorem 2.1, we conclude that W has a fixed point. So, we assume
that M((Dn),H((Dn))) > 0 ∀ n ∈ N. Suppose that

M((Dn),H((Dn))) < M((Dn+1),H((Dn+1))) (2.1)

for some n0 ∈ N. By using equation (1.1) and definition (1.7) with Y = Dn , we have

0 �  [M((WDn0),H((WDn0))),M((Dn0 ),H((Dn0)))]
=  [M((convWDn0),H((convWDn0))),M((Dn0 ),H((Dn0)))]
=  [M((Dn0+1),H((Dn0+1))),M((Dn0),H((Dn0)))]
< M((Dn0),H((Dn0)))−M((Dn0+1),H((Dn0+1)))
< 0,

which is contradiction. So, this implies,

M((Dn+1),H((Dn+1))) � M((Dn),H((Dn))) for all n ∈ N.

Therefore, M((Dn),H((Dn))) is nonnegative and non-increasing, we infer that

lim
n→

M((Dn),H((Dn))) = a. (2.2)
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We need to show that a = 0.
Suppose to the contrary that a > 0. Then by using equation (1.1) with Y = Dn,

we have

0 �  [M((WDn),H((WDn))),M((Dn),H((Dn)))]
=  [M((convWDn),H((convWDn))),M((Dn),H((Dn)))]
=  [M((Dn+1),H((Dn+1))),M((Dn),H((Dn)))].

Using the above inequality and the definition (1.7) with tn = M((Dn+1),H((Dn+1)))
and sn = M((Dn),H((Dn))) , we have

0 � lim
n→

sup [M((Dn+1),H((Dn+1))),M((Dn),H((Dn)))] < 0

which is contradiction.
So, a = 0 and from (2.2), we get

lim
n→

M((Dn),H((Dn))) = 0. (2.3)

Also, using definition (1.6), we get

max{(Dn),H((Dn))} � M((Dn),H((Dn))).

As n → , we get

0 � max{ lim
n→

(Dn), lim
n→

H((Dn))} � 0.

Since H � 0, we obtain

lim
n→

(Dn) = 0 and lim
n→

H((Dn)) = 0.

Since, Dn ⊇ Dn+1 in the view of definition (1.1), we conclude that D =
⋂

n=1 Dn

is non-empty, convex closed set, invariant under the mapping W and belongs to ker.
Thus, Theorem 1.2 conclude that W has a fixed point in D. This is completing the
proof. �

An essential significance of Theorem 2.1 is as follows:

THEOREM 2.2. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . If W : D → D is a continuous and satisfy

M((WY),H((WY))) � pM((Y),H((Y))); p ∈ [0,1)

for any bounded subset Y of D, where M ∈ C and H : R+ → R+ is a continuous
function. Then W has atleast one fixed point.

Proof. Taking  (s,t) = pt− s ; s,t � 0 in Theorem 2.1. �
The statement in the next corollary is a result of Theorem 2.1.
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COROLLARY 2.3. Let D be a NBCC subset of a Banach space  and  is an ar-
bitrary MNC on . Also, let W : D→D be a continuous mapping such that a constant
p ∈ [0,1) with the property

(WY) � p(Y)

for any bounded subset Y of D. Then W has atleast one fixed point in the set D.

Proof. Taking M(m1,m2) = m1 +m2 and H ≡ 0 in Theorem 2.2. So, we get the
required result. �

THEOREM 2.4. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping such that there
exist altering distance functions  , : R+ →R+ verifying (s) < s � (s) for all s > 0
and (s) = (s) = 0 ⇔ s = 0 satisfying

(M((WY),H((WY)))) � (M((Y),H((Y))))

for any bounded subset Y of D, where M ∈ C and H : R+ → R+ is a continuous
function. Then W has atleast one fixed point.

Proof. Taking  (s,t) = (t)− (s); s,t � 0 in Theorem 2.1. �

COROLLARY 2.5. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping such that there
exist maps  , : R+ → R+ verifying (s) < s � (s) ∀ s > 0 and (s) = (s) = 0 ⇔
s = 0 satisfying

((WY)) � ((Y))

for any bounded subset Y of D. Then W has atleast one fixed point.

Proof. Taking M(m1,m2) = m1 +m2 and H ≡ 0 in Theorem 2.4. So, we obtain
the required result. �

COROLLARY 2.6. Let D be a NBCC subset of a Banach space  and  is an ar-
bitrary MNC on . Also, let W : D→D be a continuous mapping such that a constant
p ∈ [0,1) with the property

(WY) � p(Y)

for any bounded subset Y of D. Then W has atleast one fixed point.

Proof. Taking (t) = pt , (t) = t , p ∈ [0,1) in Corollary 2.5, we get required
result. �

COROLLARY 2.7. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping such that there
exist a lower semi-continuous function  : R+ → R+ verifying −1(0) = 0 with

(WY) � (Y)−((Y))

for any bounded subset Y of D. Then W has atleast one fixed point.
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Proof. Taking  (s,t) = t−(t)−s for all s,t ∈ [0,) , M(m1,m2) = m1 +m2 and
H ≡ 0 in Theorem 2.1. So, we get the required result. �

THEOREM 2.8. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping such that there
exist a upper semi continuous mapping  : R+ →R+ verifying (0) = 0 and (s) < s
∀ x > 0 satisfying

M((WY),H((WY)) � (M((Y,H((Y)))

for any bounded subset Y of D, where M ∈ C and H : R+ → R+ is a continuous
function. Then W has atleast one fixed point.

Proof. Taking  (s,t) = (t)− s ; s,t � 0 in Theorem 2.1. �

COROLLARY 2.9. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping such that there
exist a upper semi continuous mapping  : R+ → R+ verifying

(WY) � (Y)

for any bounded subset Y of D. Then W has atleast one fixed point.

Proof. Taking M(m1,m2) = m1 +m2 and H ≡ 0 in Theorem 2.8. So, we get the
required result. �

THEOREM 2.10. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping satisfying∫ M((WY),H((WY)))

0
g(v)dv � M((Y),H((Y)))

for any bounded subset Y of D, where M ∈ C and g,H : R+ → R+ are a functions
such that

∫ 
0 g(v)dv exists and

∫ 
0 g(v)dv >  for each  > 0 . Then W has atleast one

fixed point.

Proof. Taking  (s,t) = t− ∫ s
0 g(v)dv ; s,t � 0 in Theorem 2.1. �

COROLLARY 2.11. Let D be a NBCC subset of a Banach space  and  is an
arbitrary MNC on . Also, let W : D → D be a continuous mapping satisfying the
following condition : ∫ (WY)

0
g(v)dv � (Y)

for any bounded subset Y of D, where g : R+ → R+ is a function such that
∫ 
0 g(v)dv

exists and
∫ 
0 g(v)dv >  for each  > 0 . Then W has atleast one fixed point.

Proof. Taking M(m1,m2) = m1 +m2 and H ≡ 0 in Theorem 2.10. So, we get the
required result. �
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3. Measure of noncompactness on �(I)

From [27], we recall that the fractional integral as Erdélyi-Kober of a continuous
mapping f is defined as

I f (t) =


()

∫ t

0

−1 f ( )
(t − )1− d ,  > 0, 0 <  < 1.

Consider, the Erdélyi-Kober fractional integral equation is given below:

x( ) = F1( ,x( ))+
F2( ,x( ))

()

∫ 

0

s−1k( ,s,x(s))
( − s )1− ds,  ∈ I = [0,1], (3.1)

where  > 0 and  ∈ (0,1).
The solvability of equation (3.1) in the Banach space �(I) where I = [0,1] con-

sisting of all real continuous maps based on I with norm ||x|| = max {|x(t)| : t ∈ I} ,
will be studied in this section.

Let us fix the non-empty and bounded subset X of �(I). For x ∈ X and  > 0,
We define by (x,) the modulus of continuity of a mapping x, that is (i.e.)

(x,) = sup{|x( )− x(t)| : t, ∈ I, | − t|� }.

Next, the succeeding quantities are known

(X ,) = sup{(x,) : x ∈ X}

and
0(X) = lim

→0
(X ,).

It is possible to show [3] that 0(X) is an MNC in �(I).

4. Application

In this section, we shall consider in our study eq. (3.1) the following assumptions:

(i) Fi : I×R → R, i = 1,2 are nondecreasing and continuous function. Then, there
exist constants Ci � 0; i = 1,2 with

|Fi( ,x)−Fi( ,y)| � Ci|x− y| for all  ∈ I and x,y ∈ R.

(ii) A continuous function k : I× I×R+ → R+ such that k( ,s,x) is non-decreasing
mapping with respect to each variable  , s and x separately.

(iii) There exist a nondecreasing mapping  : R+ → R+ with |k( ,s,x)| � (|x|);
for all  , s ∈ I and all x ∈ R.
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(iv) There exists a fix constant b > 0 that satisfies the inequality that follows

(bc1 +F∗
1 )( +1)+ (bc2 +F∗

2 )(b) � b( +1) (4.1)

such that
c1( +1)+ c2((b)) < ( +1)

where F∗
i = max{Fi( ,0) :  ∈ I} ; i = 1,2.

We can re-write equation (3.1) in the form for further purposes i.e.

x = x, (4.2)

where
(x)( ) = (F̂1x)( )+ (F̂2x)( ).(Kx)( ),  ∈ I (4.3)

also, the Erdelyi-Kober integral operator is K given by

(Kx)( ) =


()

∫ 

0

s−1k( ,s,x(s))
( − s )1− ds,  ∈ I, 0 <  < 1,  > 0.

(4.4)

In the proof of our main theorem, we will need the following two lemmas [10,11].

LEMMA 4.1. If f : R+ → R+ is a concave mapping with f (0) = 0 . Then F is
subadditive, i.e. f (u+ v) < f (u)+ f (v) for any u,v ∈ R+.

LEMMA 4.2. If f : R+ → R+ is the mapping defined by f (u) = u .
(i) If 0 <  < 1 and 1,2 ∈ I with 2 > 1. Then 2 −1 � (2−1) .
(ii) If  � 1 and 1,2 ∈ I with 2 > 1. Then 2 −1 � (2−1).

Therefore, define B̂b ⊆ Bb in the form

B̂b = {x ∈ Bb : x( ) � 0 for  ∈ l}.

So, B̂b is non-empty, closed and convex.

THEOREM 4.3. Under the assumption (1)–(4) , the equation (3.1) has at least
one solution x ∈�(I) which is non-decreasing and non-negative on I .

Proof. Step 1 st , we shall prove that  :�(I)→�(I). In order to make this claim,
it is sufficient to prove that x ∈�(I) implies that Kx is continuous mapping on I , due
to (i). Then, take the arbitrary numbers 1,2 ∈ I and set  > 0 with |2 − 1| �  .
Now, assume that 2 > 1 , we have

|(Kx)(2)− (Kx)(1)|

=
∣∣∣ 
()

∫ 2

0

s−1k(2,s,x(s))

(2 − s )1−
ds− 

()

∫ 1

0

s−1k(1,s,x(s))

(1 − s )1−
ds

∣∣∣
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�
∣∣∣ 
()

∫ 2

0

s−1k(2,s,x(s))

(2 − s )1−
ds− 

()

∫ 1

0

s−1k(2,s,x(s))

(2 − s )1−
ds

∣∣∣
+

∣∣∣ 
()

∫ 1

0

s−1k(2,s,x(s))

(2 − s )1−
ds− 

()

∫ 1

0

s−1k(1,s,x(s))

(2 − s )1−
ds

∣∣∣
+

∣∣∣ 
()

∫ 1

0

s−1k(1,s,x(s))

(2 − s )1−
ds− 

()

∫ 1

0

s−1k(1,s,x(s))

(1 − s )1−
ds

∣∣∣
� 

()

∫ 2

1

s−1|k(2,s,x(s))|
(2 − s )1−

ds

+


()

∫ 1

0

s−1|k(2,s,x(s))− k(1,s,x(s))|
(2 − s )1−

ds

+


()

∫ 1

0
s−1|k(2,s,x(s))|

[
1

(1 − s )1−
− 1

(2 − s )1−

]
ds

� 
()

∫ 2

1

s−1(|x|)
(2 − s )1−

ds+


()

∫ 1

0

s−1(|x|)(k,)

(2 − s )1−
ds

+


()

∫ 1

0
s−1(|x|)

[
(1 − s )−1 − (2 − s )−1

]
ds

� (|x|)
( +1)

(2 −1 ) +
(|x|)(k,)
( +1)

2

+
(|x|)

( +1)

[
1 −2 +(2 −1 )

]
�

(|x|)(k,)
( +1)

2 +
2(|x|)
( +1)

(2 −1 ) . (4.5)

Where, we defined

b(k,) = sup[|k(2,s,x)− k(1,s,x)| : s,1,2 ∈ l,1 � s, 2 � s, x ∈ [−b,b]
and |2 −1| � ].

We must now differentiate between two cases.

Case 1: 0 <  < 1

Using Lemma 4.2, (2 −1 ) � (2 −1) and from inequality (4.5), we get

|(Kx)(2)− (Kx)(1)| �
(|x|)(k,)
( +1)

+
2(|x|)
( +1)

(2 −1)

�
(|x|)(k,)
( +1)

+
2(|x|)
( +1)

 .
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Case 2:  � 1

By Lemma 4.2, (2 −1 ) �  (2 −1) and from (4.5), we obtain

|(Kx)(2)− (Kx)(1)| �
(|x|)(k,)
( +1)

+
2(|x|)
( +1)

 (2 −1)

�
(|x|)(k,)
( +1)

+
2(|x|)
( +1)

 .

In both cases, via the uniform continuity of the mapping k on I× I× [−(|x|),(|x|)] ,
we obtain that (|x|)(k,) → 0 as  → 0. Thus, Kx is a continuous on I .

Step 2nd , we shall claim that F̂ :Br0 → Br0 . For x ∈�(I) with  ∈ l , we get

|(x)( )| �
∣∣∣F1( ,x( ))+

F2( ,x( ))
()

∫ 

0

s−1k( ,s,x(s))
( − s )1− ds

∣∣∣
� |F1( ,x( ))−F1( ,0)|+ |F1( ,0)|

+
 [|F2( ,x( ))−F2( ,0)|+ |F2( ,0)|

()

∫ 

0

s−1|k( ,s,x(s))|
( − s )1− ds

� c1|x−0|+F∗
1 +

c2|x|+F∗
2

( +1)
(|x|).

Therefore,

|x| � c1|x|+ c2|x|+F∗
2

( +1)
(|x|).

From this analysis, we conclude that the ball Bb is applied by the operator  .
Step 3 rd , based on our assumptions (i), (ii) and (iv) that B̂b is NBCC, we conclude

that  applies the ball B̂b into itself.
Step 4 th , we shall prove that  is a continuous mapping on B̂b . For this purpose,

set  > 0 and x ∈ B̂b . We take y ∈ B̂b and ‖ x− y ‖< . So, for  ∈ I , we get

|(x)( )− (y)( )|

� |F1( ,x( ))−F1( ,y( ))|+
∣∣∣F2( ,x( ))

()

∫ 

0

s−1k( ,s,x(s))
( − s )1− ds

− F2( ,y( ))
()

∫ 

0

s−1k( ,s,y(s))
( − s )1− ds

∣∣∣
� c1|x( )− y( )|

+


()

∣∣∣F2( ,x( ))
∫ 

0

s−1k( ,s,x(s))
( − s )1− ds−F2( ,y( ))

∫ 

0

s−1k( ,s,x(s))
( − s )1− ds

∣∣∣
+


()

∣∣∣F2( ,y( ))
∫ 

0

s−1k( ,s,x(s))
( − s )1− ds−F2( ,y( ))

∫ 

0

s−1k( ,s,y(s))
( − s )1− ds

∣∣∣
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� c1|x( )− y( )|

+
 |F2( ,x( ))−F2( ,y( ))|

()

∫ 

0

s−1|k( ,s,x(s))|
( − s )1− ds

+
 [|F2( ,x( ))−F2( ,0)|+ |F2( ,0)|

()

∫ 

0

s−1|k( ,s,x(s))− k( ,s,y(s))|
( − s )1− ds

� c1|x( )− y( )|+ c2|x( )− y( )|
()

∫ 

0

s−1(|x|)
( − s )1− ds

+
 [c2|x( )|+ |F2( ,0)|

()

∫ 

0

s−1k()
( − s )1− ds.

Where, we denote

k() = sup

{ |k ( ,s,x)− k ( ,s,y)| :  ,s ∈ l,
‖ x− y ‖� ,x,y ∈ [0,(r0)]

}
.

Thus,

‖ x−y ‖ �
{

c1 +
c2(r0)
( +1)

}
‖ x− y ‖ +

c2r0 +F∗
2

(+1)
k(). (4.6)

Since, k is uniformly continuous function on I× I× [0,(b)] , so k()→ 0. Therefore,
from eq. (4.6),  is a continuous operator on B̂b.

We consider the subset Q of B̂b identified by the subsequent

Q = {x ∈ B̂b : x is a non-decreasing on I}.
So, Q is NBCC.

Step 5 th , we show that  applies Q into itself. Taking into account (i) assump-
tions, it is sufficient to show that K applies Q to itself to establish our claim. For this,
we take x∈Q , it is clear from our assumption that Kx � 0. Set 1,2 ∈ I and 1 < 2 .
So, given our assumptions, we get

(Kx)(2)− (Kx)(1) =


()

[∫ 2

0

s−1k(2,s,x(s))

(2 − s )1−
ds−

∫ 1

0

s−1k(1,s,x(s))

(1 − s )1−
ds

]
=


()

[∫ 1

0

s−1k(2,s,x(s))

(2 − s )1−
ds−

∫ 1

0

s−1k(1,s,x(s))

(1 − s )1−
ds

+
∫ 2

1

s−1k(2,s,x(s))

(2 − s )1−
ds

]
� 

()

[∫ 1

0

s−1k(2,s,x(s))

(2 − s )1−
ds−

∫ 1

0

s−1k(2,s,x(s))

(1 − s )1−
ds

+
∫ 2

1

s−1k(2,s,x(s))

(2 − s )1−
ds

]
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=


()

[∫ 1

0
s−1k(2,s,x(s))[(


2 − s )−1− (1 − s )−1]ds

+
∫ 2

1

s−1k(2,s,x(s))

(2 − s )1−
ds

]
. (4.7)

Since, (2 − s )−1 − (1 − s )−1 � 0 and x is non-decreasing,therefore given our
assumptions (iii) and (iv) from eq. (4.7), we get

(Kx)(2)− (Kx)(1)

� 
()

[∫ 1

0
s−1k(2,1,x(1))[(


2 − s )−1− (1 − s )−1]ds

+
∫ 2

1

s−1k(2,1,x(1))

(2 − s )1−
ds

]
=

k(2,1,x(1))
()

(∫ 2

0

s−1

(2 − s )1−
ds−

∫ 1

0

s−1

(1 − s )1−
ds

)
=

k(2,1,x(1))
( +1)

(
2 −1

)
� 0.

This shows that, the function Kx is non-decreasing. Hence, K maps Q into itself also
 maps Q into itself.

Step 6 th , for /0 	= X ⊂ Q , We’re going to create an estimate of 0(X). This is
to be obtained, set  > 0 with x ∈ X . We’re taking 1,2 ∈ I and |2 − 1| � . We
can assume that without the loss of generality, 1 � 2. So, using our assumptions, we
obtain

|(x)(2)− (x)(1)|
� |(F̂1x)(2)− (F̂1x)(1)|+ |(F̂2x)(2)||(Kx)(2)− (Kx)(1)|

+ |(F̂2x)(2)− (F̂2x)(1)||(Kx)(1)|
� |F1(2,x(2))−F1(2,x(1))|+ |F1(2,x(1))−F1(1,x(1))|

+
|F2(2,x(2))−F2(2,0)|+ |F2(2,0)|

( +1)

[
(b)(k,)


2 +2(|b|)(2 −1 )

]
+[|F2(2,x(2))−F2(2,x(1))|+ |F2(2,x(1))−F2(1,x(1))|] (b)

( +1)

� c1|x(2)− x(1)|+ F1()+
c2|x(2)|+F∗

2

( +1)
[(b)(k,)


2 +2(b)(2 −1 ) ]

+ [c2|x(2)− x(1)|+ F2()]
(b)

( +1)
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� c1(x,)+ F1()+
c2b+F∗

2

( +1)
[(b)(k,)


2 +2(b)(2 −1 ) ]

+ [c2(x,)+ F2()]
(b)

( +1)
. (4.8)

Where, we defined

g() = sup{|g(2,v)−g(1,v)| : 1,2 ∈ I,v ∈ [0,b], |2−1 � }.

Again, we have to differentiate between two cases in the first case 0 <  < 1 and  � 1
respectively. Using Lemma 4.2, eq. (4.8) gives

(X ,) �
(
c1 +

c2(b)
( +1)

)
(X ,)+ F1()+ F2()

(b)
( +1)

+
c2b+F∗

2

( +1)
(b)(k,)+

2[c2b+F∗
2 ]

( +1)
(b)

and

(X ,) �
(
c1 +

c2(b)
( +1)

)
(X ,)+ F1()+ F2()

(b)
( +1)

+
c2b+F∗

2

( +1)
(b)(k,)+

2 [c2b+F∗
2 ]

( +1)
(b)

respectively. Therefore, the last two inequalities implies that

0(X) �
(
c1 +

c2(b)
( +1)

)
0(X). (4.9)

Step 7 th , we now apply Darbo fixed point theorem. Currently, the fact that c1 +
c2(b)
( +1)

< 1 (assumption (iv)) hostage an application of Theorem 1.3 with the op-

erator  has a fixed point in Q. Hence, eq. (3.1) has atleast one nondecreasing and
nonnegative solution x ∈�(I). This is completing the proof. �

EXAMPLE 4.4. Consider the following integral equation to illustrate our investi-
gations:

x( ) =
x( )
 +9

+
3x( )
48( 1

5)

∫ 

0

sin−1
(
x2()
1−s2

)
√

s( 3
2 − s

3
2 )

2
3

ds (4.10)

which is a special case of eq. (3.1).
Here, we have

 =
3
2
,  =

1
3
,

F1( ,x) =
x

 +9
, F2( ,x) =

x
24
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and

k( ,s,x) = sin−1
( x2

1− s2

)
.

The function F1( ,x) = x
+9 is continuous of F1 : I ×R → R and F1 : I ×R+ → R+

and |F1( ,x)−F1( ,y)| � c1|x−y| , where c1 = 1
10 . Again, the function F2( ,x) = x

24
is continuous and F2 : I×R→R. Also |F2( ,x)−F2( ,y)|� c2|x−y| , where c2 = 1

24 .
So, Fi( ,x) (i = 1,2) satisfied assumption (i) with F∗

i = 0, i = 1,2.

Now, the function k( ,s,x) = sin−1( x2

1−s2
) is continuous and k : I × I ×R → R.

Also, in each variable, it is non-decreasing, i.e. k( ,s,x) checks assumption (ii). forby,

|k( ,s,x)| � |x2|, for all  ,s ∈ I x ∈ R.

Thus, k( ,s,x) satisfied assumption (iii) and (b) = b2.
Using all the above results in the inequality 4.1, we get the form

b
10


(

4
3

)
+

b3

24
� b

(
4
3

)
or

8b
(

1
3

)
+10b3 � 80b

(
1
3

)
.

The final inequality concedes a solution b ∈ (0,4.39). Forby, c1( 4
3 )+ c2(b) < ( 4

3 )
for all b ∈ (0,4.39). In fact, take b = 4.38 we have

c1
(

4
3

)
+ c2(b) =

1
10


(

4
3

)
+

1
24

(4.38)2

∼= 0.089+0.799

= 0.888

< 0.893

∼= 
(

4
3

)
.

Hence, Theorem 4.3 proofs that the eq. (4.10) has atleast one non-negative and nonde-
creasing and continuous solution x( ) such that |x| � 4.39.
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[3] J. BANAŚ AND K. GOEBEL, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure
and Applied Mathematics, Marcel Dekker, New York, vol. 60, (1980).

[4] V. C. BOFFI AND G. SPIGA, An equation of Hammerstein type arising in particle transport theory,
Journal of Mathematical Physics, 24 (6) (1983), 1625–1629.

[5] K. M. CASE, P. F. ZWEIFEL AND G. C. POMRANING, Linear transport theory, Addison-Wesley,
Reading, MA, (1968).

[6] J. CHEN AND X. TANG, Generalizations of Darbo’s fixed point theorem via simulation functions with
application to functional integral equations, Journal of Computational and Applied Mathematics, 296,
(2016), 564–575.

[7] G. DARBO,Punti uniti in trasformazioni a codominio non compatto, Rendiconti del Seminario matem-
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ERDÉLYI-KOBER FRACTIONAL INTEGRAL EQUATION 271

[25] C. T. KELLEY, Approximation of solutions of some quadratic integral equations in transport theory,
The Journal of Integral Equations, (1982), 221–237.

[26] H. K. NASHINE, R. W. IBRAHIM, R. ARAB AND M. RABBANI, Solvability of fractional dynamic
systems utilizing measure of noncompactness, Nonlinear Analysis: Modelling and Control, 25 (4)
(2020), 618–637.
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