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Abstract. In this work, we investigate a novel nonlinear differential problem involving Caputo
derivatives. The problem features sequential derivatives that do not adhere to the semi-group and
commutativity properties. Under certain specific conditions, the problem simplifies to a fourth-
order ordinary problem, representing the static equilibrium of an elastic beam. Using the Banach
contraction principle followed by Schaefer’s fixed point theorem, we establish two key results
regarding the uniqueness of solutions and the existence of at least one solution. We provide an
example to validate one of these results. Additionally, we discuss Ulam-Hyers stability, including
noteworthy limiting-case examples.

1. Introduction

Fractional calculus generalizes the concepts of classic differential calculus to non-
integer order, so fractional differential equations are a generalization of classical dif-
ferential equations, where the order of differentiation [17] can be a fractional or non-
integer. These equations have attracted the interest of many researchers due to their abil-
ity for modelling complex mechanisms displaying innate qualities and memory, when
integer-order differential equations are not entirely descriptive [1, 2, 3, 4, 5, 13, 21].
One of the most used concepts in fractional calculus, the Caputo derivative, which is
exceptionally useful [9, 14] for starting value problems, and that makes it appropriate
for physical applications. A significant use of fractional differential equations is in the
analysis of beam deflection systems and/or equations. The potential of beams to re-
sist forces imposed across to their axis makes them structural elements. The classical
beam theory explores how beams bend and deflect under different weights; it is gen-
erally modelled using fourth-order ordinary differential equations [27]. But the pres-
ence of fractional derivatives in these models can provide a more precise description
of materials possessing viscoelastic characteristics and non-local behaviour, which are
frequently found in intricate engineering materials and complex structures. This results
in fractional differential models that provide profound understanding and better design
skills in applied physics and engineering by more precisely modelling the deflection
and dynamic response of beams. Let’s mention some of the published articles that are
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related to the work underway presently. First in [27], the authors studied the existence
of positive solutions for the following nonlinear system. It is employed to characterise
the buckling of an elastic beam that has endpoint support.

u(4)(t)+1u
′′(t)−1u(t) = f1(t,u(t),v(t)), t ∈ (0,1)

v(4)(t)+2v
′′(t)−2v(t) = f2(t,u(t),v(t)), t ∈ (0,1)

u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0,

(1.1)

where, fi ∈ C([0,1]×R+×R+,R+) , R+ = [0,+) and i,i ∈ R verify i < 22 ,
− 2

i � i , i/4 +i/2 < 1, i = 1,2.
By giving a cone P in C([0,1])×C([0,1]) ; where C([0,1]) is the space of all

continuous functions from [0,1] to R , the authors proved an existence of positive solu-
tion results, then by constructing over a product cone, they estabilished another positive
solution result.

In [28], the authors studied the classical problem of elastic beam differential equa-
tion with two parameters, when the nonlinear term satisfies some growth conditions
only near the origin.{

u(4)(x)+2h(x)u′′(x)+ (h2(x)+h′(x))u′′(x) =  f (x,u(x)), x ∈ [0,1],

u(0) = u′(0) = u′′(1) = u′′′(1)− g(u(1)) = 0,
(1.2)

where  > 0,  ∈ R , f : [0,1]×R → R , g : R → R is a continuous function, h ∈
C1[0,1] is nonnegative, for h = 0, the problem describes the static equilibrium of an
elastic beam which is fixed at the left end of x = 0 and is attached to a bearing device
at the right end of x = 1.

In [26], the authors investigated the existence and uniqueness of solutions for the
following system which contains sequential Caputo derivatives; the Caputo derivative
is a particular case of the new mixed fractional derivative introduced by K. Hattaf [12].{

(cD + cD−1)x(t) = f (t,x(t),y(t), I p1
0+x(t), I p2

0+y(t)), t ∈ (0,1)

(cD + cD−1)y(t) = f (t,x(t),y(t), Iq1
0+x(t), Iq2

0+y(t)), t ∈ (0,1),
(1.3)

with {
x(0) = x′(0) = 0,x′(1) = 0,x(1) =

∫ 1
0 x(s)d1(s)+

∫ 1
0 y(s)d2(s),

y(0 = y′(0) = 0,y′(1) = 0,y(1) =
∫ 1
0 x(s)d1ג(s)+

∫ 1
0 y(s)d2ג(s),

where, IJ
0+ is the Riemann-Liouville integral of order  , with  = (p1,q1, p2,q2) and

the Riemann-Stieltjes integrals with given bounded variation functions 1,2,2ג,1ג .
Such systems can be used in bio sciences, see [1, 2] and their references. The authors
obtained existence and uniqueness results for solutions of the system.

In [4], the authors investigated the existence of solutions and their Ulam-stability
for the problem.{

Du(x) = f1(x,u(x),v(x))+a1g1(x,u(x))+b1h1(x,u′′(x)),

D v(x) = f2(x,u(x),v(x))+a2g2(x,v(x))+b2h2(x,v′′(x)),
(1.4)
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under the conditions. {
u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0,

where, x ∈ [0,1] , 3 < , � 4, D and D denote the fractional derivatives in the
sense of Caputo, and fi ∈C([0,1]×R×R,R) , gi,hi ∈C([0,1]×R,R) , ai,bi ∈ R.

In [7], K. Bensaassa et al. studied existence and uniqueness of solutions and sta-
bility in the sense of Ulam Hyers of the system.{

D1D2 = f1(x,u(x),v(x))+a1g1(x,u(x))+b1h1(x,D u(x)),

D1D2v(x) = f2(x,u(x),v(x))+a2g2(x,u(x))+b2h2(x,D u(x)),
(1.5)

under the conditions. ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(0) = u(1) = a,

u′(0) = u′(1) = 0,

v(0) = v(1) = b,

v′(0) = v′(1) = 0,

where, ai,bi ∈ R , for i = 1,2, Di ,Di ,D are some fractional derivatives, 0 <  � 1,
fi ∈C([0,1]×R×R,R) , gi,hi ∈C([0,1]×R,R).

In [6], the authors studied with the existence and uniqueness of solutions for the
following coupled system with several seqential derivatives.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1D2D3D4x(t) = H1(t,x(t),y(t))+a1 f1(x(t))+b1g1(D1D2x(t)),
t ∈ J = [0,1]

D1D2D3D4y(t) = H2(t,x(t),y(t))+a2 f2(y(t))+b2g2(D1D2y(t)),
t ∈ J = [0,1]

x(0) = x(1) = D1D2x(1) = D4x(0) = 0,

y(0) = y(1) = D1D2y(1) = D4y(0) = 0,

(1.6)

where, D1 ,D2 ,D3 ,D4 ,D1 ,D2 ,D3 ,D4 are Caputo fractional derivatives, 0 <
i � 1, 0 < i � 1, i = 1, · · · ,4, 2 +1 < 4 , 1 +2 < 4 , f j : R → R , g j : R → R

and Hj : [0,1]×R2 →R , j = 1,2 are continuous functions, and Hi(t,0,0) �= 0, fi(0) �=
0, gi(0) �= 0, i = 1,2.

Very recently, Y. Boulatriour et Z. Dahmani [8] studied the following generalized
problem associated with elastic beam system in which the authors introduced a supple-
mentary derivative in the sense of Caputo of order  − 1; 1 <  < 2 and two general
nonlinearities F1,F2 .

D1D1u1(x) = F1(x,u1(x),u2(x),D−1u1(x),D u1(x)), (1.7)

D2D2u2(x) = F2(x,u1(x),u2(x),D−1u2(x),D u2(x)), (1.8)
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under the conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1(0) = u1(1) = 1,

u′1(0) = u′1(1) = 0,

u2(0) = u2(1) = 2,

u′2(0) = u′2(1) = 0,

where, for i = 1,2, i ∈ R+ , Fi ∈C([0,1]×R4,R) and Di ,Di ,D are Caputo frac-
tional derivatives, with 0 <1,2 � 1, 2 < 1,2 � 3. The authors explored the system
by using the Banach contraction principle and the Schauder fixed point theorem to prove
the uniqueness of solutions and the existence of at least one solution. Ulam-Hyers was
also discussed by the authors.

In the present paper and with the intention of advancing the research mentioned
previously and done in [29] in the fractional case, we investigate the existence of solu-
tions and Ulam-stability of the following Caputo fractional problem including sequen-
tial derivatives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1D2D3D4(t) = h1(t,D2D3D4(t))+h2(t,D4(t),D3D4(t))
+h3(t,(t)), t ∈ J,

(0) = 0

D4(0) = 0

D3D4(1) = 0

D2D3D4(1)− g((1)) = 0

0 < i � 1, i = 1,2,3,4,  ∈ R,

(1.9)

where J := [0,1] , Di are Caputo fractional derivatives, 1 +2 > 1; 2 +3 > 1;
3 +4 > 1. For i = 1,3, hi : [0,1]×R → R , h2 : [0,1]×R×R→ R and g : R → R

represents force of the bearing device.

The reader can observe that our problem is more general than the above problems,
they also can see that when i ; i = 1,2,3 are close to 1, we approach the particular
case [28]. The sequential idea on the derivatives of the system’s left side and the occur-
rence of derivative terms on both sides of the same system constitute the novelty of our
problem.

The paper is organized as follows: In Section 2, we introduce some notions and
notation that will be used throughout the manuscript. In Section 3, we transform our
problem to a fixed point problem. Section 4 is concerned with the main existence results
for the problem (1.9) and his Ulam Hayers stability. Finally, in the last section, we give
several examples to reinforce the results obtained.
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2. Preliminaries and background material

We need to introduce the Caputo derivatives and some other auxiliary lemmas, we
refer to the reference [14, 17].

DEFINITION 1. Let  > 0 and f : J �−→R be a continuous function. The Riemann-
Liouville integral is defined by:

I f (t) =
1

()

∫ t

0
(t− )−1 f ()d.

DEFINITION 2. For any f ∈ Cn(J,R) and n− 1 <  � n , the Caputo derivative
is defined by:

D f (t) = In− dn

dtn
( f (t)).

To study (1.9) , we need the following two results [14, 17]:

LEMMA 1. Let n∈ N∗ and n−1 <  < n. Then, the set of solutions of Dy(t) =
0 ; t ∈ J is given by the polynomial expression:

y(t) =
n−1


i=0

cit
i,

where, ci ∈ R , i = 0,1,2, . . . ,n−1.

LEMMA 2. In the case of n ∈ N∗ and n−1 <  < n, we have the property

IDy(t) = y(t)+
n−1


i=0

cit
i,

with ci ∈ R , i = 0,1,2, . . . ,n−1.

THEOREM 1. (Schauder Fixed Point Theorem, [10]) If U is a nonempty, closed,
bounded convex subset of a Banach space X and T : U →U is completely continuous,
then T has a fixed point in U .

THEOREM 2. (Arzela Ascoli’s theorem, [22]) Suppose U is a compact space,
C(U) is the supnormed Banach space of all continuous complex functions on U , and
 ⊂C(U) is pointwise bounded and equicontinuous.

Then  is totally bounded in C(U) .

Now, we prove the following equivalence between the above differential problem
and its integral equation:
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LEMMA 3. The differential problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1D2D3D4(t) = H(t),
(0) = 0

D4(0) = 0

D3D4(1) = 0

D2D3D4(1)− g((1)) = 0

0 < i � 1, i = 1,2,3,4,  ∈ R

(2.1)

is equivalent to the integral problem

(t) = I1+2+3+4H(t)+ [g((1))− I1H(1)]
t2+3+4

(2 +3 +4 +1)
(2.2)

+

[
1

(2 +1)
(I1H(1)− g((1)))− I1+2H(1)

]
t3+4

(3 +4 +1)
. (2.3)

Proof. First and thanks to Lemma 2, we have

D2D3D4(t) = I1H(t)+1

D3D4(t) = I1+2H(t)+1
t2

(2 +1)
+2

D4(t) = I1+2+3H(t)+1
t2+3

(2 +3 +1)
+2

t3

(3 +1)
+3

(t) = I1+2+3+4H(t)+1
t2+3+4

(2 +3 +4 +1)
+2

t3+4

(3 +4 +1)

+3
t4

(4 +1)
+4.

(2.4)

We obtain the two first constants as follows:

(0) = 0 ⇒ 4 = 0,

D4(0) = 0 ⇒ 3 = 0.

By considering the remaining conditions, we get

D3D4(1) = 0

and
D2D3D4(1)− g((1)) = 0.

Hence, it yields that
1 = g((1))− I1H(1),
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and

2 =
1

(2 +1)
(I1H(1)− g((1)))− I1+2H(1).

For the second implication, we can see that

(0) = 0

D4(t) = I1+2+3H(t)+ [g((1))− I1H(1)]
t2+3

(2 +3 +1)

+

[
1

(2 +1)
(I1H(1)− g((1)))− I1+2H(1)

]
t3

(3 +1)
,

and
D4(0) = 0,

D3D4(t) = I1+2H(t)+ [g((1))− I1H(1)]
t2

(2 +1)

+

[
1

(2 +1)
(I1H(1)− g((1)))− I1+2H(1)

]
,

and
D3D4(1) = 0,

D2D3D4(t) = I1H(t)+ [g((1))− I1H(1)];

and
D2D3D4(1)− g((1)) = 0.

The proof is thus achieved. �

3. Transformation of the problem

In what follows, we use fixed point theory to study the above problem. Thus, we
can transform our problem into a fixed point problem.

Let introduce the space:

 := { ∈C(J,R),D4 ∈C(J,R),D3D4 ∈C(J,R),D2D3D4 ∈C(J,R)},
we can easily verify that  is a vector space and

‖‖ = ‖‖ +‖D4‖ +‖D3D4‖ +‖D2D3D4‖
such that,

‖‖ = sup
t∈J

|(t)|, ‖D4‖ = sup
t∈J

|D4(t)|,

‖D3D4‖ = sup
t∈J

|D3D4(t)|
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and
‖D2D3D4‖ = sup

t∈J
|D2D3D4(t)|,

is a norm.
Let us verify that  is complete. We take (n) as a Cauchy sequence in  , so

‖n−m‖ −−−−−→
n,m→+

0.

But,

‖n−m‖ = ‖n−m‖ +‖D4n −D4m‖ +‖D3D4n−D3D4m‖
+‖D2D3D4n−D2D3D4m‖,

and

‖n−m‖ � ‖n−m‖,

‖n−m‖ � ‖D4n −D4m‖,

‖n−m‖ � ‖D3D4n −D3D4m‖,

‖n−m‖ � ‖D2D3D4n −D2D3D4m‖,

therefore,

‖n−m‖ −−−−−→
n,m→+

0, ‖D4n−D4m‖ −−−−−→
n,m→+

0,

‖D3D4n−D3D4m‖ −−−−−→
n,m→+

0

and
‖D2D3D4n −D2D3D4m‖ −−−−−→

n,m→+
0.

Then (n) , (D4n) , (D3D4n) and (D2D3D4n) are Cauchy sequences in(
C(J,R),‖.‖

)
, which is complete. Therefore, there exists  in C(J,R) such that

‖n−‖ −−−−→
n→+

0,

and

‖D4n −D4‖ −−−−→
n→+

0, ‖D3D4n −D3D4‖ −−−−→
n→+

0,

‖D2D3D4n −D2D3D4‖ −−−−→
n→+

0,

then,
‖n−‖ −−−−→

n→+
0.

We conclude that (,‖.‖) is a Banach space.
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We take the nonlinear operator B :→ such that for all t ∈ J :

B(t) = I1+2+3+4H∗
 (t)+ [g((1))− I1H∗

 (1)]
t2+3+4

(2 +3 +4 +1)

+

[
1

(2 +1)
(I1H∗

 (1)− g((1)))− I1+2H∗
 (1)

]
t3+4

(3 +4 +1)
,

where,

H∗
 (t) = h1(t,D2D3D4(t))+h2(t,D4(t),D3D4(t))+h3(t,(t)).

4. Main results

We consider the following hypotheses:
(1) : The functions h1 and h3 defined on [0,1]×R are continuous. The function

h2 defined on [0,1]×R2 is continuous. The function g defined on R is continuous.
(2) : Suppose the existence of nonnegative constants rh1, such that for any t ∈ J ,

 ,∗ ∈ R, we have
|h1(t,)−h1(t,∗)| � rh1| −∗|.

Suppose also that there are nonnegative constants r(h2)1 , r(h2)2 , such that for any t ∈ J ,
 ,∗ ∈ R, we have

|h2(t,1,2)−h2(t,1
∗,2

∗)| �
2


i=1

r(h2)i |i −i
∗|,

with;
rh2 = Max(r(h2)1 ,r(h2)2),

and, for any t ∈ J ,  ,∗ ∈ R, we have

|h3(t,)−h3(t,∗)| � rh3| −∗|,
|g()−g(∗)| � rg| −∗|.

The following quantities are to be considered:

1 := R4
1 +(rg +R1

1)
4
2 +(rg2

2 +R1
1

2
2 +R2

1)
4
3,

2 := R3
1 +(rg +R1

1)3
2 +(rg2

2 +R1
12

2 +R2
1)3

3,

3 := R2
1 +(rg +R1

1)
2
2 +(rg2

2 +R1
1

2
2 +R2

1),

4 := 2R1
1 + rg,

where,

n
k :=

1

(
n


i=k

i +1)
, R = rh1 + rh2 + rh3.
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4.1. An existence and uniqueness result

Our first main result is the following theorem in which we establish a unique so-
lution for our problem. The proof is based on the principle of contraction of Banach:

THEOREM 3. Assume that the two hypotheses (1) and (2) are satisfied. Then,

the problem (1.9) has a unique solution, provided that
4


i=1

i < 1 .

Proof. According to Lemma 3, the fixed points of the operator B are solutions of
problem (1.9),

Let ( , ′
) ∈2 . For t ∈ J , we have

|B(t)−B
′
(t)| � I1+2+3+4 |h1(t,D2D3D4(t))−h1(t,D2D3D4

′
(t))|

+I1+2+3+4 |h2(t,D4(t))−h2(t,D4
′
(t))|

+I1+2+3+4 |h3(t,(t))−h3(t,
′
(t))|

+4
2| ||g((1))−g(

′
(1))|+4

2I
1 |H∗

 (1)−H∗
 ′ (1)|

+4
3

2
2I
1 |H∗

 (1)−H∗
 ′ (1)|+4

3
2
2| ||g((1))−g(

′
(1))|

+4
3I
1+2 |H∗

 (1)−H∗
 ′ (1)|,

thus,

‖B −B ′‖ � [R4
1 +(rg +R1

1)
4
2 +(rg2

2 +R1
1

2
2 +R2

1)
4
3]‖ − ′‖.

On the other hand, we have

D4B(t) = I1+2+3H∗
 (t)+ [g((1))− I1H∗

 (1)]
t2+3

(2 +3 +1)

+

[
1

(2 +1)
(I1H∗

 (1)− g((1)))− I1+2H∗
 (1)

]
t3

(3 +1)
,

and

‖D4B −D4B ′ ‖ � [R3
1 +(rg +R1

1)3
2 +(rg2

2 +R1
12

2 +R2
1)3

3]‖ − ′ ‖.

Also, we get

D3D4B(t) = I1+2H∗
 (t)+ [g((1))− I1H∗

 (1)]
t2

(2 +1)

+

[
1

(2 +1)
(I1H∗

 (1)− g((1)))− I1+2H∗
 (1)

]
.

Therefore,

‖D3D4B −D3D4B
′ ‖

� [R2
1 +(rg +R1

1)
2
2 +(rg2

2 +R1
1

2
2 +R2

1)]‖ −
′‖.
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On the other hand, we can write

D2D3D4B(t) = I1H∗
 (t)+ [g((1))− I1H∗

 (1)].

Hence, we get

‖D2D3D4B −D2D3D4B ′ ‖ � [2R1
1 + rg]‖ − ′ ‖.

Consequently,

‖B −B ′‖ � (1 +2 +3 +4)‖ − ′ ‖.

The above condition imposed on 1 +2+3 +4 and by the Banach contraction prin-
ciple, B has a unique fixed point which is a unique solution of the problem (1.9). �

4.2. An example

EXAMPLE 1. We consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.5D0.6D0.7D0.8(t) =
1

200et+2 sin(D0.6D0.7D0.8(t))

+
1

100et+3

(D0.8 +D0.7D0.8(t))2 + |D0.8(t)+D0.7D0.8(t)|
1+ |D0.8(t)+D0.7D0.8(t)|

+
1

503 + t2
cos((t))

(0) = 0

D0.8(0) = 0

D0.7D0.8(1) = 0

D0.6D0.7D0.8(1)− 3
400

cos((1)) = 0,

(4.1)
where,

h1(t,) =
1

200et+2 sin(),

h2(t, ,∗) =
1

100et+3

( +∗)2 + | +∗|
1+ | +∗| ,

h3(t,) =
1

503 + t2
cos(),

g(t) = cos(t),  =
3

400
.

We have:
1 = 0.0131589, 2 = 0.0212733,
3 = 0.0229992, 4 = 0.0106595,
1 +2 +3 +4 = 0.0680909,

The conditions of Theorem 3 hold. Therefore, problem (4.1) has a unique solution
over [0,1] .
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4.3. Stability results

DEFINITION 3. The problem (1.9) has the Ulam Hyers stability if there exists a
real number > 0, such that for each  > 0, t ∈ J and for each  ∈ solution of the
inequality∣∣D1D2D3D4(t)−h1(t,D2D3D4(t))

−h2(t,D4(t),D3D4(t))−h3(t,(t))| �  ,

(0) = 0

D4(0) = 0

D3D4(1) = 0

D2D3D4(1)− g((1)) = 0

(4.2)

there exists ∗ ∈ solution of (1.9) , such that

‖ −∗‖ �  .

DEFINITION 4. The problem (1.9) has the Ulam Hyers stability in the generalized
sense if there exists f ∈C(R+,R+) , f (0) = 0, such that for each  > 0, and for any
 ∈ solution of (4.2), there exists a solution ∗ ∈ of (1.9), such that

‖ −∗‖ < f ().

Now, we are able to prove the second main result.

THEOREM 4. Under the conditions of Theorem 3, problem (1.9) is Ulam Hyers
stable.

Proof. Let  ∈  be a solution of inequality (4.2) and assume (by Theorem 3)
that ∗ ∈ is the unique solution of problem (1.9).

By integration of the inequality (4.2), we obtain∣∣∣∣(t)− I1+2+3+4H∗
 (t)+ [g((1))− I1H∗

 (1)]
t2+3+4

(2 +3 +4 +1)

+

[
1

(2 +1)
(I1H∗

 (1)− g((1)))− I1+2H∗
 (1)

]
t3+4

(3 +4 +1)

∣∣∣∣
� 

(1 +2 +3 +4 +1)
.

(4.3)

By adding and subtracting ∗ , using (4.2) and (4.3), we obtain the following esti-
mate

‖ −∗‖ � 
(1 +2 +3 +4 +1)

+ [R4
1 +(rg +R1

1)
4
2 +(rg2

2 +R1
1

2
2 +R2

1)
4
3]‖ −∗‖,

(4.4)
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which implies that

‖ −∗‖ � 
(1 +2 +3 +4 +1)

+1‖ −∗‖.

Therefore,

‖ −∗‖ � 
(1 +2 +3 +4 +1)(1−1)

�  .

With the same arguments as before, we can write

‖D4( −∗)‖ � 
(1 +2 +3 +4 +1)(1−2)

� ∗,

‖D3D4( −∗)‖ � 
(1 +2 +3 +4 +1)(1−3)

�  ,

and

‖D2D3D4( −∗)‖ � 
(1 +2 +3 +4 +1)(1−4)

� ∗.

Thus,
‖ −∗‖ � 

(
 +∗ ++∗).

And this implies, by definition, that (1.9) has the Ulam Hyers stability. �

REMARK 1. Taking f () := 
(
 + ∗ + +∗) , we obtain the generalised

Ulam Hyers stability of (1.9) .

4.4. Existence of solution

Our second existence result of (1.9) is based on the fixed point theoremof Schauder,
We consider the following hypothesis.

(3) : For any u,v ∈ R and each t ∈ J ,

|h1(t,u)| � rh1|u|+ r∗h1; r∗h1 = sup
t∈J

h1(t,0),

|h2(t,u,v)| � r(h2)1 |u|+ r(h2)2|v|+ r∗h2; r∗h2
= sup

t∈J
h2(t,0,0),

|h3(t,u)| � rh3|u|+ r∗h3; r∗h3 = sup
t∈J

h3(t,0),

|g(t,u)| � rg|u|+ r∗g; r∗g = sup
t∈J

g(t,0).

The following quantities are to be considered.

R∗ = r∗h1 + r∗h2 + r∗h3; 4 = 4
1 +4

2
1
1 +4

3(
2
1 +2

2
1
1);

3 = 3
1 +3

2
1
1 +3

3(
2
1 +2

2
1
1); 2 = 2

1 +2
2,

1 = 4 +3 +22 +41
1; 2 = 4

2 +4
3

2
2 +3

2 +3
3

2
2 +22

2 +2.
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THEOREM 5. Assume that (1),(3) hold. If

1R+2| |rg < 1, (4.5)

then problem (1.9) has at least one solution.

Proof. We’ll take several steps to establish the proof.

Step 1. B is continuous.
Let (n) be a sequence in  such that ‖n −‖ → 0, as n →  . For t ∈ J, we

have

|Bn(t)−B(t)|
� I1+2+3+4

(
|h1(t,D2D3D4n(t))−h1(t,D2D3D4(t))|

+|h2(t,D4n(t),D3D4n(t))−h2(t,D4(t),D3D4(t))|
+|h3(t,n(t))−h3(t,(t))|

)
+4

2| ||g(n(1))−g((1))|

+4
2I
1

[(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)]
+4

3
2
2I
1

[(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)]
+4

3
2
2| ||g(n(1))−g((1))|

+4
3I
1+2

[(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)]
.

Since, ‖n−‖ → 0 and by continuity of hi , i = 1,2,3 and g , we get for t ∈ J ;
|Bn(t)−B(t)| → 0, as n →  , and hence

‖Bn−B‖ → 0 as n → .

Similarly, for t ∈ J we have.

|D4Bn(t)−D4B(t)|
� I1+2+3

(
|h1(t,D2D3D4n(t))−h1(t,D2D3D4(t))|

+|h2(t,D4n(t),D3D4n(t))−h2(t,D4(t),D3D4(t))|
+|h3(t,n(t))−h3(t,(t))|

)
+3

2| ||g(n(1))−g((1))|

+3
2I
1

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|
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+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
+3

3
2
2I
1

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
+3

3
2
2| ||g(n(1))−g((1))|

+3
3I
1+2

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
.

With the same arguments as before, we get

‖D4Bn −D4B‖ → 0, as n → ,

and

|D3D4Bn(t)−D4B(t)|
� I1+2

(
|h1(t,D2D3D4n(t))−h1(t,D2D3D4(t))|

+|h2(t,D4n(t),D3D4n(t))−h2(t,D4(t),D3D4(t))|
+|h3(t,n(t))−h3(t,(t))|

)
+2

2| ||g(n(1))−g((1))|

+2
2I
1

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
+2

2I
1

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
+2

2| ||g(n(1))−g((1))|

+I1+2

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
.

Hence,

‖D3D4Bn −D3D4B‖ → 0 as n → .
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Finaly we have

|D2D3D4Bn(t)−D2D3D4B(t)|
� I1

(
|h1(t,D2D3D4n(t))−h1(t,D2D3D4(t))|

+|h2(t,D4n(t),D3D4n(t))−h2(t,D4(t),D3D4(t))|
+|h3(t,n(t))−h3(t,(t))|

)
+ | ||g(n(1))−g((1))|

+I1

(
|h1(1,D2D3D4n(1))−h1(1,D2D3D4(1))|

+|h2(1,D4n(1),D3D4n(1))−h2(1,D4(1),D3D4(1))|
+|h3(1,n(1))−h3(1,(1))|

)
.

So,
‖D2D3D4Bn −D2D3D4B‖ → 0 as n → .

Then,
‖Bn−B‖ → 0 as n → .

As a result, B is continuous.

Step 2. Let us take  > 0, such that

 �
1R∗ +2| |r∗g

1−
,

with
 = 1R+2| |rg < 1,

and C = { ∈  : ‖‖ � } .
For  ∈ C and for all t ∈ J, using the hypothese (3) we obtain,

|B(t)|
� I1+2+3+4

(
|h1(t,D2D3D4(t))|+|h2(t,D4(t),D3D4(t))|+|h3(t,(t))|

)
+4

2| ||g((1))|
+4

2I
1

(
|h1(1,D2D3D4(1))|+|h2(1,D4(1),D3D4(1))|+|h3(1,(1))|

)
+4

3
2
2I
1

(
|h1(1,D2D3D4(1))|+|h2(1,D4(1),D3D4(1))|+|h3(1,(1))|

)
+4

3
2
2| ||g((1))|

+4
3I
1+2

(
|h1(1,D2D3D4(1))|+|h2(1,D4(1),D3D4(1))|+|h3(1,(1))|

)
� 4

1

(
rh1‖D2D3D4‖+ r∗h1 + r(h2)1‖D4‖+ r(h2)2‖D3D4‖

+r∗h2 + rh3‖‖+ r∗h3

)
+4

2| |
(
rg‖‖+ r∗g

)
+4

2
1
1

(
rh1‖D2D3D4‖ + r∗h1 + r(h2)1‖D4‖
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+r(h2)2‖D3D4‖+ r∗h2 + rh3‖‖+ r∗h3

)
+4

3
2
2

1
1

(
rh1‖D2D3D4‖ + r∗h1 + r(h2)1‖D4‖

+r(h2)2‖D3D4‖+ r∗h2 + rh3‖‖+ r∗h3

)
+4

32
2| |

(
rg‖‖+ r∗g

)
+4

32
1

(
rh1‖D2D3D4‖+ r∗h1 + r(h2)1‖D4‖

+r(h2)2‖D3D4‖+ r∗h2 + rh3‖‖+ r∗h3

)
.

Hence

‖B‖ � 
(
4R+(4

2 +4
3

2
2)| |rg

)
+4R

∗ +(4
2 +4

3
2
2)| |r∗g.

In the same way, we find

‖D4B‖ � 
(
3R+(3

2 +3
3

2
2)| |rg

)
+3R

∗ +(3
2 +3

3
2
2)| |r∗g,

and
‖D3D4B‖ � 2(2R+2

2| |rg)+22R
∗ +22

2| |r∗g.
Finaly, we obtain

‖D2D3D4B‖ � 2(21
1R+ | |rg)+41

1R
∗ +2| |r∗g,

and
‖B‖ �  +1R

∗ +2| |r∗g. (4.6)

This implies that ‖B‖ �  , then B(C ) ⊂ C , hence we get the stability.

Step 3. We prove that B(C) is equicontinuous. Let t1,t2 ∈ J ; t1 < t2 and  ∈C .
Then,

|B(t2)−B(t1)|
� I1+2+3+4

(
|h1(t2,D2D3D4(t2))−h1(t1,D2D3D4(t1))|

+ |h2(t2,D4(t2),D3D4(t2))−h2(t1,D4(t1),D3D4(t1))|
+ |h3(t2,(t2))−h3(t1,(t1))|

)
� 4

1 (t1+2+3+4
2 − t1+2+3+4

1 ).

(4.7)

We have also

|D4B(t2)−D4B(t1)|
� I1+2+3

(
|h1(t2,D2D3D4(t2))−h1(t1,D2D3D4(t1))|

+ |h2(t2,D4(t2),D3D4(t2))−h2(t1,D4(t1),D3D4(t1))|
+ |h3(t2,(t2))−h3(t1,(t1))|

)
� 3

1 (t1+2+3
2 − t1+2+3

1 ),

(4.8)
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and

|D3D4B(t2)−D3D4B(t1)|
� I1+2

(
|h1(t2,D2D3D4(t2))−h1(t1,D2D3D4(t1))|

+ |h2(t2,D4(t2),D3D4(t2))−h2(t1,D4(t1),D3D4(t1))|
+ |h3(t2,(t2))−h3(t1,(t1))|

)
� 2

1 (t1+2
2 − t1+2

1 ).

(4.9)

Finaly, we get

|D2D3D4B(t2)−D2D3D4B(t1)|
� I1

(
|h1(t2,D2D3D4(t2))−h1(t1,D2D3D4(t1))|

+ |h2(t2,D4(t2),D3D4(t2))−h2(t1,D4(t1),D3D4(t1))|
+ |h3(t2,(t2))−h3(t1,(t1))|

)
� 1 (t1

2 − t1
1 ),

(4.10)

The right hand sides of (4.7), (4.8), (4.9) and (4.10) are independent of  and tend
to zero as 2 → 1 .

From Step 1 to Step 3 and the Arzela-Ascoli theorem, we conclued that B is
completely continuous. Then by Schauder theorem, B has a fixed point in  . �

5. Examples

EXAMPLE 2. We consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.55D0.68D0.7D0.75(t) =
1

300et+3 sin
(
D0.68D0.7D0.75

(
t +


4

))

+
et +2t +1
500et+5

1

1+ |D0.75(t)+3|+ | 3
√

D0.7D0.75(t)|
+

1
200et+2

1
95(1+ | |)

(0) = 0

D0.75(0) = 0

D0.7D0.75(1) = 0

D0.68D0.7D0.8(1)− 5
700

cos((1)) = 0,

(5.1)
where,

h1(t,) =
1

300et+3 sin
(
 +


4

)
,

h2(t, ,∗) =
et +2t +1
500et+5

1
1+ | +3|+ | 3

√
∗| ,
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h3(t,) =
1

200et+2

[
1

95(1+ | |)
]
,

g(t) = cos(t),  =
5

700
.

The condition (4.5) is verified,

 = 1R+2| |rg = 0.0703008 < 1

then (5.1) has at least one solution.

EXAMPLE 3. We consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.8D0.5D0.6D0.7(t) =
sin(t)

200et+5

1
1+ |D0.5D0.6D0.7(t)|

+
1

233+33e3−t

[
1+

|D0.7(t)|
1+D0.7(t)| +

|D0.6D0.7(t)|
1+D0.6D0.7(t)|

]

+
et +1

100et+1

1
1+ |(t)|

(0) = 0

D0.7(0) = 0

D0.6D0.7(1) = 0

D0.5D0.6D0.7(1)− 2
233

cos((1)) = 0,

(5.2)
where,

h1(t,) =
sin t

200et+5

1
1+ | | ,

h2(t, ,∗) =
1

33e3−t +233

[
1+

| |
1+ | | +

∗

1+ |∗|
]
,

h3(t,) =
et +1

100et+1

1
1+ | | ,

g(t) = cos(t),  =
2

233
.

The condition (4.5) is verified,

 = 1R+2| |rg = 0.2321664 < 1,

then (5.2) has at least one solution.

6. Conclusion

In conclusion, this study introduced a novel nonlinear differential problem char-
acterized by Caputo derivatives and sequential derivatives, which do not conform to
the semi-group and commutativity properties. Our findings demonstrate that under
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certain conditions, the problem simplified to a fourth-order ordinary differential prob-
lem, effectively modeling the static equilibrium of an elastic beam. By applying the
Banach contraction principle and Schauder’s fixed point theorem, we have proven the
uniqueness of solutions and the existence of at least one solution. The presented exam-
ple substantiated one of these key results, further validating our theoretical approach.
Additionally, the exploration of Ulam-Hyers stability, complemented by limiting-case
examples, added robustness to our analysis.

Future work will focus on extending these results to more complex systems involv-
ing fractional differential equations. Specifically, we aim to explore the applicability
of different types of fractional derivatives, such as Hattaf fractal and Riesz fractional
derivatives [11, 14], to broaden the scope of the problem. Furthermore, investigating
the impact of variable coefficients and non-homogeneous boundary conditions could
provide deeper insights into real-world applications. Finally, numerical simulations
and practical implementations in engineering contexts, such as structural analysis and
materials science, will be pursued to bridge the gap between theoretical findings and
practical applications.
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