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EMBEDDINGS IN RIEMANN–LIOUVILLE
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(Communicated by H. Lopushanska)

Abstract. In this work, we present results on the embeddings of fractional Riemann-Liouville
Sobolev spaces, using an important relationship between Riemann-Liouville Sobolev spaces and
ordinary Sobolev spaces. This relationship allows us to prove compact embeddings after es-
tablishing continuous embeddings based on the continuity of the Riemann-Liouville fractional
integral operators between Lebesgue spaces under certain conditions. We provide an example
of a boundary problem where existence and uniqueness are addressed using two methods: the
fixed point method and the Faedo-Galerkin method. Both methods require specific fractional
type embeddings.

1. Introduction

In the late 20th century, research on fractional-order differentiation of the Riemann-
Liouville type and other types increased significantly. The research focused on the
properties of this type of differentiation and extended to differential equations and
boundary value problems of the fractional-order type. Initially, the research revolved
around strong solutions and has recently extended to weak solutions as well.

It is known that classical Sobolev spaces provide a suitable framework for weak
solutions of differential equations and partial differential equations (see, for example,
[3]). Therefore, it is appropriate to search for similar spaces that can provide a suitable
framework for this new type of equations related to fractional-order differentiation.
Research began by finding variational formulations related to these problems and then
finding appropriate spaces that include weak solutions.

In [6, 7], the authors used the variational method to prove the existence of solutions
for nonlinear Dirichlet boundary value problems of the Riemann-Liouville type on a
bounded real interval [0,T ] . For this purpose, a new space denoted by E ,p

0 (0 <  <
1, 1 � p <) was introduced, defined as the closure of the space C

c (0,T ) with respect
to the norm

‖.‖ ,p =
(∫ T

0
|u(t)|pdt +

∫ T

0
|0Dtu(t)|pdt

)
,
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which is a norm in a Banach space later identified as a fractional-order Sobolev space
of the Riemann-Liouville type. This space is a reflexive and separable Banach space,
where the subscript 0 indicates the vanishing of the function on the boundary, implying
the Caputo derivative in particular. A Poincaré-type inequality was proven, as well
as a continuous embedding in the space L(0,T ) and a compact embedding in the
space C[0,T ] for  > 1

p . L. Bourdin [2] denoted this space by E ,p and provided an
equivalent definition (see, for example, [8, 10, 13]).

A comprehensive definition of fractional Sobolev spaces of the Riemann-Liouville
type was introduced by Idczak et al. [5] and denoted by W ,p

a+ (0 <  < 1, 1 � p <
) , following the method used to introduce ordinary spaces (see, for example, [1, 3]).
Two equivalent norms were presented, and it was proven that these spaces are Banach,
reflexive, and separable under the same conditions that p satisfies in ordinary spaces.
Several types of embeddings for these spaces were provided, including continuous and
compact embeddings in the spaces Lq , presented briefly based on [15, Lemma 1.1].

The authors of [4] defined a Sobolev space of order 0 <  < 1 on an interval I as
the space of functions f from Lp(I) such that the Riemann-Liouville derivative of order
1− of f belongs to the ordinary Sobolev space W 1,p(I) , which is equivalent to the
definition provided in [5]. The norm presented in [4] is also equivalent to the norms
presented in [5]. The authors also provided some embeddings of fractional Sobolev
spaces in Lr(I) spaces where r is a real number greater than 1 and satisfies specific
conditions.

The authors of [11] also introduced right fractional spaces E
R (a,b) and left frac-

tional spaces E
L (a,b) where a,b ∈ R for p = 2. It should be noted that the space

coincides with the space W ,2
a+ presented in [5], and the norm is equivalent to one of the

norms. The subspace E ,2
0 was introduced under the symbol E

L,0 , and some properties
related to it were proven, whether concerning the traces of functions belonging to this
space on the boundary of (a,b) or concerning continuous and compact embeddings
of these subspaces in Lq(a,b) spaces under specific conditions that the real number
1 � q �  satisfies, as well as Hölder spaces.

In our paper, we established a relationship between ordinary Sobolev spaces
W 1,p(a,b) and fractional Sobolev spaces RLW ,p

a+ (a,b) , thereby proving continuous
and compact embeddings that generalize those found in [3, Theorem 8.8] in detail,
considering the conditions that p and  must satisfy, similar to the conditions of the
Rellich-Kondrachov theorem (see, for example, [3, Theorem 9.16]).

We also proved continuous and compact embeddings for subspaces of fractional
Sobolev spaces, which satisfy specific boundary conditions. These spaces play a sig-
nificant role in certain fractional-order boundary value problems.

Finally, we presented an example of a nonlinear fractional boundary value problem
of the form: {

D
b−(D

a+u)(x) = f (x,u) : in (a,b),

I1−
a+ u(a) = u(b) = 0,

where we proved the existence and uniqueness under certain conditions satisfied by the
function f using two methods: the fixed-point method and the Faedo-Galerkin method.
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We divided this work as follows: In the second section, we presented some basic
principles of fractional-order calculus of the Riemann-Liouville type. The third section
was dedicated to fractional Sobolev spaces. The fourth section dealt with continuous
and compact embeddings of the fractional-order space RLW ,p

a+ (a,b) and the subspace
RL
0 W ,p

a+ (a,b) in the spaces Lp(a,b) as well as the space C([a,b]) . Finally, we studied
the above-mentioned boundary value problem using the fixed-point method and the
Faedo-Galerkin method.

2. Preliminaries

Consider the parameters 1 � p � + , 0 <  < 1, and −< a,b < + . Lp(a,b)
is the usual Lebesgue space with norm ‖.‖Lp . The Euler Gamma function is denoted
by (.) . ACp(a,b) denotes the space og all measurable functions f such there exist

c ∈ R and  ∈ Lp(a,b) satisfying f (x) = c+
∫ x

a
(t)dt , for all x ∈ [a,b] .

We give some definitions and properties related to fractional calculus.

DEFINITION 1. [9, 17] The Riemann-Liouville Fractional integral Ia+ f and Ib− f
of order  and a function f ∈ Lp(a,b) are defined by:

(Ia+ f )(x) =
1

()

∫ x

a
(x− t)−1 f (t)dt (a < x � b),

(Ib− f )(x) =
1

()

∫ b

x
(t− x)−1 f (t)dt (a � x < b).

THEOREM 1. [17, p. 48] The Riemann-Liouville integral Ia+ f and Ib− f are well
defined for all f ∈ Lp(a,b) . Moreover, we have:

‖Ia+ f‖Lp � (b−a)

( +1)
‖ f‖Lp , (1)

‖Ib− f‖Lp � (b−a)

( +1)
‖ f‖Lp . (2)

DEFINITION 2. [9, 17] The Riemann-Liouville Fractional derivatives D
a+ f and

D
b− f of order  of the function f ∈ ACp(a,b) are defined by:

(
D

a+ f
)
(x) =

d
dx

(I1−
a+ f )(x) (a < x � b),

=
1

(1−)
d
dx

∫ x

a
(x− t)− f (t)dt, (3)

(D
b− f )(x) = − d

dx
(I1−

b− f )(x) (a � x < b),

= − 1
(1−)

d
dx

∫ b

x
(t − x)− f (t)dt. (4)
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THEOREM 2. [17, p. 34] Let f ∈ Lp(a,b) and g ∈ Lq(a,b) such that 1
p + 1

q �
1+ . Then, we have:

∫ b

a
f (x)Ib−g(x)dx =

∫ b

a
g(x)Ia+ f (x)dx. (5)

DEFINITION 3. [5] We introduce the following spaces

i) AC ,p
a+ (a,b) , the set of all functions f : [a,b] → R such that:

f (x) =
I1−
a+ u(a)
()

(x−a)−1 + Ia+D
a+ f (x), x ∈ [a,b], (6)

ii) AC ,p
b− (a,b) the set of all functions g : [a,b] → R such that:

g(x) =
I1−
b− u(b)
()

(b− x)−1 + Ib−D
b−g(x), t ∈ [a,b]. (7)

THEOREM 3. [5] Let f ∈ AC ,p
a+ (a,b) , g ∈ AC ,p

b− (a,b) and  ∈C1([a,b]) such
that (a) = (b) = 0 . Then,

∫ b

a
f (x)(D

b−)(x)dx =
∫ b

a
(x)(D

a+ f )(x)dx, (8)

∫ b

a
g(x)(D

a+)(x)dx =
∫ b

a
(x)(D

b−g)(x)dx. (9)

COROLLARY 1. The above results remain true if we replace  ∈ C1([a,b]) ,
(a) = (b) = 0 with  ∈ C

0 (a,b) , the space of infinitely differentiable functions,
with compact support included in (a,b) , which is important in definitions of fractional
Sobolev spaces.

THEOREM 4. Assume that p > 1
 , then for all u ∈ Lp(a,b) we have Ia+u ∈

C0,− 1
p ((a,b]) and Ib−u ∈ C0,− 1

p ([a,b)) . Therefore, Ia+u ∈ C((a,b]) and Ib−u ∈
C([a,b)) .

C0,− 1
p (I) denotes the Hölder’s space of order

(
− 1

p

)
on the interval I .

Proof. We will adapt the proof from [2, Property 4]. Let u ∈ Lp(a,b) , with p >
1
 and a < y < x � b . Putting,

|G(x,y)| = |Ia+u(x)− Ia+u(y)|

=
1

()

∣∣∣∣
∫ x

a
(x− t)−1u(t)dt−

∫ y

a
(y− t)−1u(t)dt

∣∣∣∣ .
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So,

|G(x,y)| � 1
()

∣∣∣∣
∫ y

a
[(x− t)−1− (y− t)−1]u(t)dt

∣∣∣∣
+

1
()

∣∣∣∣
∫ x

y
(x− t)−1u(t)dt

∣∣∣∣
� ‖u‖Lp

()

(∫ y

a
|(x− t)−1− (y− t)−1| p

p−1 dt

) p−1
p

+
‖u‖Lp

()

(∫ x

y
(x− t)

(−1)p
p−1 dt

) p−1
p

� ‖u‖Lp

()

(∫ y

a
[(y− t)

(−1)p
p−1 − (x− t)

(−1)p
p−1 ]dt

) p−1
p

+
‖u‖Lp

()

(∫ x

y
(x− t)

(−1)p
p−1 dt

) p−1
p

� ‖u‖Lp

()

(
p−1
 p−1

) p−1
p (

(y−a)
 p−1
p−1 − (x−a)

 p−1
p−1 +(x− y)

 p−1
p−1

) p−1
p

+
‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)
 p−1

p

� 2p‖u‖Lp

()

(
p−1
 p−1

) p−1
p (

(y−a)
 p−1
p−1 − (x−a)

 p−1
p−1

) p−1
p

+
2p‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)
 p−1

p

+
‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)
 p−1

p

� 2p‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)
 p−1

p

+
1+2p‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)
 p−1

p

=
2p+1‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)
 p−1

p

� 2p+1‖u‖Lp

()

(
p−1
 p−1

) p−1
p

(x− y)−
1
p .

Hence, Ia+u ∈C0,− 1
p ((a,b]) . Therefore Ia+u ∈C((a,b]) .

Using the same reasoning for Ib−u . �
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3. Fractional Sobolev spaces

Let 0 <  < 1, 1 � p �  and a,b ∈ R .

DEFINITION 4. [5] We introduce the spaces

RLW ,p
a+ (a,b) =

⎧⎪⎨
⎪⎩

u ∈ Lp(a,b),∃ga ∈ Lp(a,b),∀ ∈C
c (a,b) :∫ b

a
u(x)D

b−(x)dx =
∫ b

a
ga(x)(x)dx

⎫⎪⎬
⎪⎭ ,

RLW ,p
b− (a,b) =

⎧⎪⎨
⎪⎩

u ∈ Lp(a,b),∃gb ∈ Lp(a,b),∀ ∈C
c (a,b) :∫ b

a
u(x)D

a+(x)dx =
∫ b

a
gb(x)(x)dx

⎫⎪⎬
⎪⎭ .

The function ga,ab given above will be called the weak left and right fractional deriva-
tives of order  of u , let us denote them by D

a+u,D
b−u .

We denote by RLH
a+(a,b) , RLH

b−(a,b) the space RLW ,2
a+ (a,b) , RLW ,2

b− (a,b) .

THEOREM 5. [5] For 1 < p <  we have:

RLW ,p
a+ = AC ,p

a+ (a,b)∩Lp(a,b),
RLW ,p

b− = AC ,p
b− (a,b)∩Lp(a,b).

It follows that

COROLLARY 2. If u ∈ RLW ,p
a+ (a,b) , v ∈ RLW ,p

b− (a,b) then,

u(x) =
I1−
a+ u(a)
()

(x−a)−1 + Ia+D
a+u(x), (10)

v(x) =
I1−
b− u(b)
()

(b− x)−1 + Ib−D
b−v(x). (11)

REMARK 1. It follows from Corollary 2 that

1. If p < 1
1− then, AC ,p

a+ (a,b) , AC ,p
b− (a,b) ⊂ Lp .

So, RLW ,p
a+ (a,b) = AC ,p

a+ (a,b) , RLW ,p
b− (a,b) = AC ,p

b− (a,b).

2. If p � 1
1− then, RLW ,p

a+ (a,b) is the set of all functions belonging to AC ,p
a+ (a,b) ,

satisfy the condition I1−
a+ u(a) = 0.

THEOREM 6. (Poincaré inequality) Let u∈ RLW ,p
a+ (a,b) , v∈ RLW ,p

b− (a,b) . Then,∥∥∥∥∥u− I1−
a+ u(a)
()

(x−a)−1

∥∥∥∥∥
Lp

� (b−a)

( +1)
‖D

a+u‖Lp , (12)
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b− v(a)
()

(b− x)−1

∥∥∥∥∥
Lp

� (b−a)

( +1)
‖D

b−v‖Lp . (13)

In particular, if I1−
a+ u(a) = I1−

b− v(b) = 0 we get

‖u‖Lp � (b−a)

( +1)
‖D

a+u‖Lp , (14)

‖v‖Lp � (b−a)

( +1)
‖D

b−v‖Lp . (15)

Proof. From (6), we have

u(x)− (x−a)−1Ia+u(a)
()

= Ia+D
a+u.

So, from (1) we obtain∥∥∥∥∥u− I1−
a+ u(a)
()

(x−a)−1

∥∥∥∥∥
Lp

= ‖Ia+D
a+u‖

� (b−a)

( +1)
‖D

a+u‖Lp . �

DEFINITION 5. [5] We consider in the space RLW ,p
a+ (a,b) two norms 1‖.‖W,p

a+

and 2‖.‖W,p
a+

given by:

1‖u‖W,p
a+

= (‖u‖p
Lp +‖D

a+u‖p
Lp)

1
p , (16)

2‖u‖W,p
a+

= (|I1−
a+ u(a)|p +‖D

a+u‖p
Lp)

1
p . (17)

In the same way, we define in the space RLW ,p
b− (a,b) two norms 1‖.‖W,p

b−
and 2‖.‖W,p

b−
given by:

1‖u‖W,p
b−

= (‖u‖p
Lp +‖D

b−u‖p
Lp)

1
p , (18)

2‖u‖W,p
b−

= (|I1−
b− u(b)|p +‖D

b−u‖p
Lp)

1
p . (19)

THEOREM 7. [5] The norm 1‖.‖W,p
a+

is equivalent to the norm 2‖u‖W,p
a+

.

Likewise, the norm 1‖.‖W,p
b−

is equivalent to the norm 2‖u‖W,p
b−

THEOREM 8. [5] The spaces RLW ,p
a+ (a,b) and RLW ,p

b− (a,b) are Banach spaces,
reflexives for 1 < p <  and separable for 1 � p <  .
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REMARK 2. The spaces RLH
a+(a,b) , RLH

b−(a,b) are reflexive and separable
Hilbert spaces, with the inner products

〈u,v〉H
a+

=
∫ b

a
u(x)v(x)dx+

∫ b

a
D ,p

a+ u(x).D ,p
a+ v(x)dx u,v ∈RL H

a+(a,b),

〈u,v〉H
b−

=
∫ b

a
u(x)v(x)dx+

∫ b

a
D ,p

b− u(x).D ,p
b− v(x)dx u,v ∈RL H

b−(a,b).

The following theorem gives a version of integration by parts in Riemann-Liouville
fractional Sobolev spaces.

THEOREM 9. [5] Let p,q � 1 such that 1
p + 1

q = 1. Then, for all u∈ RLW ,p
a+ (a,b) ,

v ∈ RLW ,p
b− (a,b) we have

∫ b

a
u(x)

(
D

b−v
)
(x)dx =

(
I1−
a+ u

)
(a)v(a)−u(b)

(
I1−
b− v

)
(b)+

∫ b

a

(
D

a+u
)
(x)v(x)dx.

(20)

Now, we present a relationship between the fractional and classical Sobolev spaces.
For this, we introduce the following operator

T
a : RLW ,p

a+ (a,b) −→ W 1,p(a,b)
u �−→ v = T

a (u) = I1−
a+ u,

where W 1,p(a,b) is the usual Sobolev space on (a,b) .
We have the following theorem.

THEOREM 10. The operator T
a is an isomorphism:

i) from RLW ,p
a+ (a,b) to W 1,p(a,b) if p < 1

1− ,

ii) from RLW ,p
a+ (a,b) to {v ∈W 1,p(a,b) : v(a) = 0} if p � 1

1− .

Proof. The proof is conducted in sequential steps

• The operator T
a is well defined and injective.

Let u ∈ RLW ,p(a,b) , set v(x) = I1−
a+ u(x). Then,

‖v‖Lp(a,b) +‖v′‖Lp(a,b) = ‖I1−
a+ u‖Lp +‖D

a+u‖Lp

� (b−a)1−

(2−)
‖u‖Lp(a,b) +‖D

a+u‖Lp(a,b)

� C.1‖u‖W,p
a+

< .

So, v ∈ RLW 1,p
a+ (a,b).

Moreover, u∈KerT
a if and only if I1−

a+ u = 0, i.e.
∫ x

a
u(t)dt = Ia+0 = 0, which

leads to u = 0.

Then, I1−
a+ is injective.
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• The operator T is surjective:

i) from RLW ,p
a+ (a,b) to W 1,p(a,b) if p < 1

1− ,

ii) from RLW ,p
a+ (a,b) to {v ∈W 1,p(a,b) : v(a) = 0} if p � 1

1− .

Let u ∈ RLW ,p
a+ (a,b) . Then, v = I1−

a+ u if and only if u = d
dx I


a+v = D1−

a+ v .

Note that

Ia+v =
1

()

∫ x

a
(x− t)−1v(t)dt

=
1

()

([−(x− t)


v(t)

]x

a
+

∫ x

a

(x− t)


v′(t)dt

)

=
(x−a)

()
v(a)+

1
()

∫ x

a
(x− t)v′(t)dt.

So,

u(x) =
d
dx

Ia+v

=
(x−a)−1

()
v(a)+

1
()

[
(x− t)v′(t)dt

]
{x=t}

+
1

()

∫ x

a


x

[
(x− t)v′(t)

]
dt

=
(x−a)−1

()
v(a)+

1
()

∫ x

a
(x− t)−1v′(t)dt

=
(x−a)−1

()
v(a)+ Ia+v′(x).

We debusses two cases

1. if p < 1
1− then,

(x−a)−1

()
v(a) ∈ Lp(a,b) and Ia+v′ ∈ Lp(a,b) .

So, u ∈ RLW ,p
a+ (a,b) . Therefore, T

a :RL W ,p
a+ (a,b) −→W 1,p

a+ (a,b) is sur-
jective.

2. if p � 1
1− then, v(a) = I1−

a+ u(a) = 0, u = Ia+v′ ∈ Lp(a,b) and D
a+u =

v′ ∈ Lp(a,b) .

So, T
a : RLW ,p

a+ −→
{

v ∈W 1,p
a+ (a,b) : v(a) = 0

}
is surjective.

• The operator T
a is an isomorphism.

Let u ∈ RLW ,p
a+ (a,b) . From the first step, we have

‖T
a u‖W,p

a+
� C.1‖u‖W,p

a+
.

Then, T
a is continuous.

Now, let v ∈W 1,p(a,b) .
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1. if p < 1
1− then,

‖(T
a )−1v‖W,p

a+
= ‖(T

a )−1v‖Lp +‖D
a+(T

a )−1v‖Lp

=
∥∥∥∥ (x−a)−1

()
v(a)+ Ia+v′(x)

∥∥∥∥
Lp

+‖D
a+D1−

a+ v‖Lp

� 1
()

|v(a)|.‖(x−a)−1‖Lp +‖Ia+v′(x)‖Lp

+‖D
a+D1−

a+ v‖Lp

=
(x−a)(−1)+ 1

p

[(−1)p+1]
1
p()

|v(a)|+‖Ia+v′(x)‖Lp +‖v′‖Lp .

From the continuous embedding of W 1,p(a,b) into L(a,b) , we obtain:

(x−a)(−1)+ 1
p

[(−1)p+1]
1
p()

|v(a)| � (x−a)(−1)+ 1
p

[(−1)p+1]
1
p()

‖v‖L � C1‖v‖W1,p .

So,

‖(T
a )−1v‖W,p

a+
� C1‖v‖W1,p +

(b−a)

(1+)
‖v′‖Lp +‖v′‖Lp

� C2‖v‖W1,p .

2. If p � 1
1− we have v(a) = 0. Then,

‖(T
a )−1v‖W,p

a+
= ‖Ia+v′‖Lp +‖D

a+Ia+v′‖Lp

= ‖Ia+v′‖Lp +‖v′‖Lp

� (b−a)

(1+)
‖v′‖Lp +‖v′‖Lp

� C3‖v‖W1,p .

Therefore, (T
a )−1 is an isomorphism. �

Using similar arguments, we prove the following theorem

THEOREM 11. The operator

T
b : RLW ,p

b− (a,b) −→ W 1,p(a,b)
u �−→ v = T

b (u) = I1−
b− u,

is an isomorphism:

i) from RLW ,p
b− (a,b) to W 1,p(a,b) if p < 1

1− ,

ii) from RLW ,p
b− (a,b) to {v ∈W 1,p(a,b) : v(b) = 0} if p � 1

1− .
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4. Embeddings in Riemann-Liouville fractional Sobolev spaces

Let 0 <  < 1, 1 � p �  and a,b ∈ R .
The following theorem ensure the continuous and compact embeddings of Rie-

mann-Liouville fractional Sobolev spaces into Lq(a,b) and C([a,b]) .
We will only prove the embeddings of RLW ,p

a+ (a,b) . The proofs of the embed-
dings of RLW ,p

b− (a,b) are done in the same way.

Setting p∗ = p
1− p for p < 1

 .

THEOREM 12. Assume that  < 1
2 . Then, we have the following embeddings

1. If 1 � p < 1
1− then, RLW ,p

a+ (a,b) , RLW ,p
b− (a,b) ↪→ Lq(a,b) for all q∈ [1, 1

1− ) .

2. If 1
1− < p < 1

 then, RLW ,p
a+ (a,b) , RLW ,p

b− (a,b) ↪→ Lq(a,b) for all q∈ [1, p∗ ] .

3. If p = 1
 then, RLW ,p

a+ (a,b) , RLW ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [1,+) .

4. If p > 1
 then, RLW ,p

a+ (a,b) , RLW ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [1,+] .

In particular, RLW ,p
a+ (a,b) , RLW ,p

b− (a,b) ↪→C([a,b]) .

Proof. Since  < 1
2 , we deduce that 1

1− < 1
 and 1

1− < p∗ .

Let u ∈RL W ,p
a+ (a,b) . We know according to (6) that

u(x) =
I1−
a+ u(a)
()

(x−a)−1 + Ia+D
a+u(x).

Note that
I1−
a+ u(a)
()

(x−a)−1 ∈ Lp(a,b) if only if p < 1
1− or I1−

a+ u(a) = 0.

So, for q � 1 we have

‖u‖Lq =

∥∥∥∥∥ I1−
a+ u(a)
()

(x−a)−1 + Ia+D
a+u

∥∥∥∥∥
Lq

�
|I1−

a+ u(a)|
()

∥∥(x−a)−1
∥∥

Lq +
∥∥Ia+D

a+u
∥∥

Lq .

1. If 1 � p < 1
1− then 1 � p < 1

 . Since D
a+u∈ Lp(a,b) , from [12, Theorem 0.2]

there exists c > 0 such that
∥∥Ia+D

a+u
∥∥

Lq � c.
∥∥D

a+u
∥∥

Lp , for all q ∈ [1, p∗ ] .

On the other hand, (x−a)−1 ∈ Lq(a,b) if only if q < 1
1− . In this case we get

|I1−
a+ u(a)|
()

∥∥(x−a)−1
∥∥

Lq � (b−a)1−+ 1
q

().[(1−)q+1]
1
q

|I1−
a+ u(a)|.
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Hence, for q ∈ [1, 1
1− )∩ [1, p∗ ] = [1, 1

1− ) there exists M > 0 such that

‖u‖Lq � M
(|I1−

a+ u(a)|p +
∥∥D

a+u
∥∥p

Lp

) 1
p = M ‖u‖2W,p

a+
.

So, RLW ,p
a+ ↪→ Lq(a,b) for all q ∈ [1, 1

1− ).

2. If 1
1− < p < 1

 then, I1−
a+ u(a) = 0. Therefore, from [12, Theorem 0.2] there

exists c > 0 such that for all q ∈ [1, p∗ ] we have

‖u‖Lq =
∥∥Ia+D

a+u
∥∥

Lq

� c
∥∥D

a+u
∥∥

Lp

= c‖u‖W,p
a+

.

Then, RLW ,p
a+ ↪→ Lq(a,b) for all q ∈ [1, p∗ ].

3. If p = 1
 then, I1−

a+ u(a) = 0. So, from [12, Theorem 0.3] there exists c > 0
such that for all q ∈ [1,) we have

‖u‖Lq =
∥∥Ia+D

a+u
∥∥

Lq

� c
∥∥D

a+u
∥∥

Lp

= c‖u‖W,p
a+

.

So, RLW ,p
a+ ↪→ Lq(a,b) for all q ∈ [1,).

4. If p > 1
 then, I1−

a+ u(a) = 0. So, from [12, Theorem 0.4] there exists c > 0
such that for all q ∈ [p,] we have

‖u‖Lq � c‖u‖W,p
a+

.

So, RLW ,p
a+ ↪→ Lq(a,b) for all q ∈ [p,].

In particular, since p > 1
 , using same arguments as in Theorem 4, we deduce

that u ∈C([a,b]) . So,

‖u‖C([a,b]) = ‖u‖L � c1 ‖u‖W,p
a+

.

Hence, RLW ,p
a+ ↪→C([a,b]). �

In the same context, we can prove the following theorems

THEOREM 13. Assume that  > 1
2 . Then, we have the following embeddings.

1. If 1 � p � 1
 then, RLW ,p

a+ (a,b),RLW ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [1, 1

1− ) .

2. If 1
 < p < 1

1− then, RLW ,p
a+ (a,b),RLW ,p

b− (a,b) ↪→ Lq(a,b) for all q∈ [1, 1
1− ) .
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3. If p � 1
1− then, RLW ,p

a+ (a,b),RLW ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [p,+] .

In particular, RLW ,p
a+ (a,b),RLW ,p

b− (a,b) ↪→C([a,b]) .

THEOREM 14. Assume that  = 1
2 . Then, we have the following embeddings

1. If 1 � p � 2 then, RLW
1
2 ,p

a+ (a,b),RLW
1
2 ,p

b− (a,b) ↪→ Lq(a,b) for all q ∈ [1,2) .

2. If p = 2 then, RLH
1
2
a+(a,b) , RLH

1
2
b−(a,b) ↪→ Lq(a,b) for all q ∈ [1,+) .

3. If p > 2 then, RLW
1
2 ,p

a+,0(a,b) , RLW
1
2 ,p

b−,0(a,b) ↪→ Lq(a,b) for all q ∈ [p,+] .

In particular, RLW
1
2 ,p

a+,0(a,b) , RLW
1
2 ,p

b−,0(a,b) ↪→C([a,b]) .

Now, we will present the conditions concerning the compactness of the previous
embeddings.

THEOREM 15. If the embeddings RLW ,p
a+ (a,b) , RLW ,p

a+ (a,b) ↪→ Lq(a,b) (q <
+) are satisfied, then they are compacts.

Proof. Let (un) be a bounded sequence in RLW ,p
a+ (a,b) . Then, (vn) = (T

a un) is
bounded in W 1,p(a,b). So, we can extract a subsequence (vn�) weakly convergence to
v = T

a u in W 1,p(a,b) .
From usually Sobolev embeddings, we can extract a subsequence (vnk) conver-

gence to T
a u in Lq(a,b) , i.e, ‖vnk − v‖Lq → 0.

Now, we have

‖unk −u‖Lq = ‖(T
a )−1(vnk − v)‖Lq

=
∥∥∥∥ (x−a)−1

()
(vnk(a)− v(a))+ Ia+(v′nk − v′)

∥∥∥∥
Lq

� |vnk(a)− v(a)|
()

‖(x−a)−1‖Lq +‖Ia+(v′nk − v′)‖Lq .

From (1), we obtain

‖Ia+(v′nk − v′)‖Lq � (b−a)

( +1)
‖v′nk − v′‖Lq

� M‖v′nk − v′‖Lp → 0.

• If I
1−
a+ u(a)= 0, then we obtain directly the convergenceof (unk) to u in Lq(a,b).

• If I
1−
a+ u(a) �= 0 and q < 1

1− then, we have

‖unk −u‖Lq � C1‖vnk − v‖L +C2‖Ia+(v′nk − v′)‖Lq

� C
(‖vnk − v‖W1,p +‖Ia+(v′nk − v′)‖Lq

) → 0.

So, the convergence of (unk) to u in Lq(a,b).
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Thus, the compactness of the embedding. �

THEOREM 16. If max{ 1
 , 1

1− } < p < + then, the embedding RLW ,p
a+ (a,b) ↪→

C([a,b]) is compact.

Proof. Since RLW ,p
a+ (a,b) is reflexive, we only have to prove that for all sequence

(un) ⊂ RLW ,p
a+ (a,b) , weakly converges to u in RLW ,p

a+ (a,b) , we obtain that (un) is
strongly converge to u in C([a,b]) , i.e ‖un−u‖L → 0.

Let (un) ⊂ RLW ,p
a+ (a,b) , be a sequence weakly converge to u in RLW ,p

a+ (a,b) .
Since RLW ,p

a+ (a,b) ↪→ C([a,b]), (un) weakly converges to u in C([a,b]) . Moreover,
(un) is bounded in RLW ,p

a+ (a,b) .
Hence, there exists a constant C > 0 such that ‖D

a+un‖Lp � C .
Since p > 1

1− , we obtain I1−
a+ u(a)= 0. So, u = Ia+D

a+u . Hence, from Theorem
4 we get for all x,y ∈ [a,b] :

|u(x)−u(y)| = |Ia+D
a+u(x)− Ia+D

a+u(y)|

�
2p+1‖D

a+u‖Lp

()

(
p−1
 p−1

) p−1
p

|x− y|− 1
p

� 2p+1C
()

(
p−1
 p−1

) p−1
p

|x− y|− 1
p

= M|x− y|− 1
p .

Hence, is uniformly Lipschitz on [a,b] . From Ascoli’s theorem, (un) is relatively com-
pact in C([a,b]) . Consequently, there exists a subsequence (unk) of (un) converging
strongly in C([a,b]) to u by uniqueness of the weak limit. �

In the following, we give injections of subspaces play an important role in the
study in some boundary problems of fractional order.

DEFINITION 6. The subspaces RL
0 W ,p

a+ (a,b) and RL
0 W ,p

b− (a,b) are the sets de-
fined by

RL
0 W ,p

a+ (a,b) = {u ∈W ,p
a+ (a,b) : I1−

a+ u(a) = u(b) = 0},
RL
0 W ,p

b− (a,b) = {u ∈W ,p
a+ (a,b) : u(a) = I1−

b− u(b) = 0}.
Setting: RL

0 H
a+(a,b) = RL

0 W ,2
a+ (a,b) , RL

0 H
b−(a,b) = RL

0 W ,2
b− (a,b).

REMARK 3. According to Poincaré-inequality, the quantities ‖D
a+u‖Lp and

‖D
b−u‖Lp define norms on RL

0 W ,p
a+ (a,b) and RL

0 W ,p
b− (a,b), equivalent to norms 1‖.‖

and 2‖.‖ . These norms are denoted by ‖.‖
0W

,p
a+

and ‖.‖
0W

,p
b−

.

THEOREM 17. We have the following embeddings.

1. If 1 � p < 1
 then, RL

0 W ,p
a+ (a,b) , RL

0 W ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [1, p∗ ] .
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2. If p = 1
 then, RL

0 W ,p
a+ (a,b) , RL

0 W ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [1,+) .

3. If p > 1
 then, RL

0 W ,p
a+ (a,b) , RL

0 W ,p
b− (a,b) ↪→ Lq(a,b) for all q ∈ [1,+] .

In particular, RL
0 W ,p

a+ (a,b) , RL
0 W ,p

b− (a,b) ↪→C([a,b]) .

Proof. Let u ∈ RL
0 W ,p

a+ (a,b) . According to (6) we have

u(x) = Ia+D
a+u(x).

So, for q � 1 we have
‖u‖Lq =

∥∥Ia+D
a+u

∥∥
Lq .

1. If 1 � p < 1
 , from [12, Theorem 0.2] there exists c > 0 such that for all q ∈

[1, p∗ ] we have

‖u‖Lq =
∥∥Ia+D

a+u
∥∥

Lq � c.‖D
a+u‖Lp = c.‖D

a+u‖
0W

,p
a+

.

So, RL
0 W ,p

a+ ↪→ Lq(a,b) for all q ∈ [1, p∗ ].

2. If p = 1
 then, from [12, Theorem 0.3] there exists c > 0 such that for all q ∈

[1,+) we have

‖u‖Lq =
∥∥Ia+D

a+u
∥∥

Lq

� c
∥∥D

a+u
∥∥

Lp

= c‖u‖
0W

,p
a+

.

So, RL0W
 ,p
a+,0 ↪→ Lq(a,b) for all q ∈ [1,).

3. If p > 1
 then, from [12, Theorem 0.4] there exists c > 0 such that for all q ∈

[p,+] we have

‖u‖Lq � c‖u‖
0W

,p
a+

.

So, RL
0 W ,p

a+ ↪→ Lq(a,b) for all q ∈ [p,].

In particular, since p > 1
 , using same arguments as in Theorem 16, we deduce

that u ∈C([a,b]) . So,

‖u‖C([a,b]) = ‖u‖L � c‖u‖
0W

,p
a+

.

Hence, RL
0 W ,p

a+ ↪→C([a,b]). �

Arguing as in Theorem 15 and Theorem 16, we can prove the following compact
embeddings

THEOREM 18. If the embeddings RL
0 W ,p

a+ (a,b) , RL
0 W ,p

b− (a,b) ↪→ Lq(a,b) (q <
+) are satisfied, then they are compacts.

THEOREM 19. If p > max{ 1
 , 1

1− } then, the embeddings RL
0 W ,p

a+ (a,b) ,
RL
0 W ,p

b− (a,b) ↪→C([a,b]) are compacts.
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5. Application

Assume that 0 <  < 1 and let f : (a,b)×R → R be a Carathéodory function, i.e{
f (.,u) is measurable on (a,b), for all u ∈ R,

f (x, .) is continuous on R,a.e x ∈ (a,b).
(21)

Consider the following problem{
D

b−D
a+u(x) = f (x,u) : in (a,b),

I1−
a+ u(a) = u(b) = 0.

(22)

Taking into consideration that each weak solution of (22) belongs to RL
0 H

a+(a,b) .
To find the variational formulation it is necessary to follow the following steps:

• We multiply the first equation of (22) by a test function v smooth enough, we get

D
b−D

a+u(x)v(x) = f (x,u)v(x).

• We apply the integration by parts (20), we obtain∫ b

a
D

a+u(x)D
a+v(x)dx+ I1−

a+ v(a).D
a+u(a)− v(b)I1−

a+ D
a+u(b) =

∫ b

a
f (x,u)v(x)dx.

• Assume that v ∈ RL
0 H

a+(a,b) , we obtain the variational formulation of (22)

∫ b

a
D

a+u(x)D
a+v(x)dx =

∫ b

a
f (x,u)vdx, ∀v ∈ RL

0 H ,p
a+ (a,b). (23)

We need to make sure that the above formulation (23) is well defined.

THEOREM 20. Assume that there exists  ∈ L2(a,b) ,  ∈ L(a,b) such that

| f (x,u)| � (x)+ (x)|u(x)|, a.e x ∈ (a,b). (24)

Then, the problem (23) is well defined.

Proof. Let u,v ∈ RL
0 H

a+(a,b) . First, we have∣∣∣∣
∫ b

a
D

a+uD
a+vdx

∣∣∣∣ � ‖D
a+u‖L2‖D

a+v‖L2 < .

Then, the left side of (23) is well defined.
Moreover, we have∣∣∣∣

∫ b

a
f (x,u)v(x)dx

∣∣∣∣ � ‖‖L2‖v‖L2 +‖‖L‖u‖L2‖v‖L2 < .

Therefore, the right side of (23) is well defined. �
The following theorem ensure the existence of a solution of the problem (23).
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THEOREM 21. Assume that f is a Carathéodory function, satisfying the condi-
tion (24). If

2( +1)−‖‖L(b−a)2 > 0. (25)

Then, the problem (23) admits at least one solution.

Proof. To prove this theorem, we apply two methods.

Fixed point method

We will demonstrate this through the following steps.

• Linearization of the problem:

Let w ∈ RL
0 H

a+(a,b) . Consider the following linear problem∫ b

a
D

a+uD
a+vdx =

∫ b

a
f (x,w)vdx, ∀v ∈ RL

0 H
a+(a,b). (26)

Putting:

A(u,v) =
∫ b

a
D

a+uD
a+vdx, �(v) =

∫ b

a
f (x,w)vdx.

A is continuous: Let u,v ∈RL
0 H

a+(a,b) . Then,

|A(u,v)| =
∣∣∣∣
∫ b

a
D

a+u(x)D
a+v(x)dx

∣∣∣∣
�

∫ b

a
|D

a+u||D
a+v|dx

�
(∫ b

a
|D

a+u|2dx

) 1
2
(∫ b

a
|D

a+v|2dx

) 1
2

= ‖u‖
0H


a+
‖v‖

0H

a+

.

So, A is continuous.

A is coercive: Let u ∈ RL
0 H

a+ . Then,

A(u,u) =
∫ b

a
|D

a+u(x)|2dx

= ‖u‖2
0H


a+

.

So, A coercive.

� is continuous: Let v ∈ RL
0 H

a+(a,b) . Then, from (24) we get

|�(v)| =
∣∣∣∣
∫ b

a
f (x,w)v(x)dx

∣∣∣∣
� ‖‖L2‖v‖L2 +‖‖L‖u‖L2‖v‖L2

� (b−a)

( +1)
(‖‖L2 +‖‖L‖w‖L2)‖v‖0H


a+

.
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So, � is continuous.

Consequently, from lax-Milgram theorem the linear problem (26) admits a unique
solution in RL

0 H
a+(a,b) .

• Let T the operator given as

T : L2(a,b) −→ RL
0 H

a+(a,b),
w �−→ u,

where u is the unique solution of linear problem (26).

Let K = B(0,R) be a ball from RL
0 H

a+(a,b) . For w ∈ K , we have

‖T (w)‖2
0H


a+

= ‖D
a+T (w)‖2

L2

= ‖D
a+u‖2

L2

=
∫ b

a
f (x,T (w))udx.

Using the inequalities (1) and (24), we obtain

‖T (w)‖2
0H


a+

� ‖‖L2‖T (w)‖L2 +‖‖L‖T (w)‖2
L2

� ‖‖L2(b−a)

( +1)
‖T (w)‖

0H

a+

+
‖‖L(b−a)2

2( +1)
‖T (w)‖2

0H

a+

.

So, (
1− ‖‖L(b−a)2

2( +1)

)
‖T (w)‖2

0H

a+

� ‖‖L2(b−a)

( +1)
‖T (w)‖

0H
a+

which can be written(
2( +1)−‖‖L(b−a)2)‖T (w)‖2

0H

a+

� ‖‖L2(b−a) .(+1)‖T (w)‖
0H

a+
.

Thus, from (1) we obtain

‖T (w)‖
0H

a+
� ‖‖L2(b−a)

( +1)−‖‖L(b−a)2 .

So, for R =
‖‖L2(b−a)

( +1)−‖‖L(b−a)2 , we can write

T : B(0,R) −→ B(0,R),

where B(0,R) =
{

w ∈ RL
0 H

a+(a,b) : ‖w‖
0H


a+

� R
}

.

K is convex (Ball).
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K is closed in L2(a,b):

Let (wn) ⊆ K converge to w in L2(a,b) , we will prove that v ∈ K .

Since (wn) is a bounded sequence then, from the compactness embedding of
RL
0 H

a+(a,b) into L2(a,b) , we can extract a subsequence (wnk) weakly conver-
gence to v . Hence,

‖v‖
0H


a+ (a,b) � liminf

nk→+
‖vnk‖0H


a+

� R.

Therefore, v ∈ K.

• T is continuous:

Consider the sequence (wn) ⊂ K , converge to w in L2(a,b) . We denote un =
T (wn) . So,

‖un‖ = ‖T (wn)‖0H

a+

� R.

Therefore, (un) is bounded in 0H
a+(a,b) , which is reflexive space. Then, we can

extract a subsequence unk ⇀ u . From the compactness embedding of RL
0 H

a+(a,b)
into L2(a,b) , we have unk → u in L2(a,b).

Hence, for all v ∈ RL
0 H

a+(a,b) we have

∫ b

a
D

a+unk(x)D
a+v(x)dx =

∫ b

a
f (x,wn)v(x)dx,

weakly convergence Lebesgue theorem,

↓ ↓∫ b

a
D

a+uD
a+v(x)dx =

∫ b

a
f (x,w)v(x)dx.

Then, u = T (w) , which deduce that T (K) is relative compact.

From the all above, T admits a fixed point, a solution of the problem (23).

Faedo-Galerkin’s method

We will demonstrate Theorem 21 through the following steps.

• Approximation of the space RL
0 H

a+(a,b):

Since RL
0 H

a+(a,b) is a separable Hilbert space, there exists a countable basis

{Vm}m=1 such that Vm = Vect
{
v j

}m
j=1 and RL

0 H
a+(a,b) =

+⋃
m=1

Vm .

Using the dot product

〈vi,v j〉 =
∫ b

a
vi.v j dx, vi,v j ∈Vm ⊆Vm+1.



314 S. ABDERACHID AND B. KENZA

• Approximate problem: For um ∈ Vm , we consider the following approximate
problem ∫ b

a
D

a+umD
a+v dx =

∫ b

a
f (x,um)v dx, ∀v ∈Vm. (27)

Let Pm(um) be the function from Vm to Vm, given by

〈Pm(um),v〉 =
∫ b

a
D

a+umD
a+v dx−

∫ b

a
f (x,um)v dx, ∀v ∈Vm.

So, if um is a solution of (27) then, Pm(um) = 0.

From previous, P is continuous and we have

〈Pm(um),um〉 =
∫ b

a
|D

a+um|2 dx−
∫ b

a
f (x,um)um dx

= ‖D
a+um‖2

L2 −
∫ b

a
f (x,um)um dx

� ‖D
a+um‖2

L2 −‖‖L2‖um‖L2 −‖‖L‖um‖2
L2 .

Using the Poincaré inequality (14), we obtain

〈Pm(um),um〉 � ‖D
a+um‖2

L2 − ‖‖L2(b−a)

( +1)
‖D

a+um‖L2

−‖‖L(b−a)2

2( +1)
‖D

a+um‖2
L2

= M‖D
a+um‖L2

(‖D
a+um‖L2 − r

)
,

where

M =
2( +1)− (b−a)2‖‖L

2( +1)
, r =

( +1)(b−a)‖‖L2

2( +1)− (b−a)‖‖L
.

So, for u belongs to the sphere of radius r , we get 〈Pm(um),um〉 � 0.

From [14, Theorem 2.7], there exists u ∈ RL
0 H

a+ such that ‖um‖0H

a+

� r and

Pm(um) = 0, i.e um is a solution of the problem (27).

• Prior estimate: We have

‖um‖2
0H


a+

= ‖D
a+um‖2

L2

=
∫ b

a
|D

a+um|2 dx

=
∫ b

a
f (x,um)um dx

� ‖‖L2‖um‖L2 +‖‖L‖um‖2
L2

� (b−a)‖‖L2

( +1)
‖D

a+um‖L2 +
(b−a)2‖‖L

2( +1)
‖D

a+um‖L2 .
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So, M‖um‖2
0H


a+

� (b−a)‖‖L2

( +1)
‖um‖0H


a+

.

Hence, ‖um‖0H

a+

� r .

Therefore, (um) is bounded in RL
0 H

a+(a,b) .

• Passage to limit:

Since (um) is bounded in RL
0 H

a+(a,b) , there exists a subsequence (umk) such
that

umk ⇀ u in RL
0 H

a+(a,b), and D
a+umk ⇀ D

a+u in L2(a,b).

Therefore, for m � j we obtain

for all v j :
∫ b

a
D

a+umkD

a+v j dx −→

∫ b

a
D

a+uD
a+v j dx.

Using the fact that RL
0 H

a+(a,b) ↪→ L2(a,b) with compactness, we get

umk −→ u in L2(a,b).

Hence, from [16, Proposition 3], we obtain

f (x,umk) −→ f (x,u) in L2(a,b).

So,
f (x,umk) ⇀ f (x,u) in L2(a,b),

which lead to ∫ b

a
f (umk)v j dx →

∫ b

a
f (x,u)v j dx.

Hence, ∫ b

a
D

a+uD
a+v j dx =

∫ b

a
f (x,u)v j dx, ∀v j.

Setting W =
⋃

m=1

v j , then each w ∈W can be written w =



m=1

 jv j .

Therefore,
∫ b

a
D

a+uD
a+w dx =

∫ b

a
f (x,u)w dx, ∀w ∈

⋃
m=1

v j.

Taking into account that
+⋃
m=1

Vm = RL
0 H

a+(a,b) , we obtain

∫ b

a
D

a+uD
a+v dx =

∫ b

a
f (x,u)v dx, ∀v ∈ RL

0 H
a+(a,b).

So, u is a solution of problem (23). �
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The following theorem give the condition for the uniqueness of solution of prob-
lem (23).

THEOREM 22. Further the assumptions of Theorem 21, if f is nonincreasing
then, the solution to problem (23) is unique.

Proof. Let u1 and u2 be two solutions of (23). Then, for v∈ RL
0 H

a+(a,b) we have

∫ b

a

(
D

a+u1(x)−D
a+u2(x)

) ·D
a+v(x)dx =

∫ b

a
[ f (x,u1)− f (x,u2)]v(x)dx.

Setting v = u1−u2, we get

∫ b

a

(
D

a+u1(x)−D
a+u2(x)

)2 (x)dx =
∫ b

a
[ f (x,u1)− f (x,u2)](u1−u2)(x)dx.

So,

‖u1−u2‖2
0H


a+

=
∫ b

a

(
D

a+u1(x)−D
a+u2(x)

)2 (x)dx

=
∫ b

a
[ f (x,u1)− f (x,u2)](u1 −u2)(x)dx

� 0.

Hence, ‖u1−u2‖2
0H


a+

= 0, which deduce that u1 = u2 . �
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