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Abstract. In the last few years, there has been significant interest in the literature of fractional
calculus and its applications in nonlinear dynamical systems. This is especially true in fields
such as physics, chemistry, biology, and engineering. This paper presents a fractional-order
two-dimensional rational chaotic map. Using the Caputo-like delta difference operator, the
fractional-order counterpart is constructed. By varying the system parameters and fractional
order, the proposed fractional map can exhibit complex dynamic behavior. The chaotic dynam-
ics are investigated by adopting several classical tools such as phase plots, bifurcation diagrams,
the maximum Lyapunov exponent spectrum, and dynamical maps. In addition, the 0-1 test al-
gorithm is presented to validate the chaotic behavior of the fractional map. In order to evaluate
the complexity level of the fractional map, the C0 algorithm and spectral entropy are employed.
Finally, a nonlinear control law is designed to stabilize the state trajectories of the chaotic map to-
wards zero. Computer simulations are carried out to illustrate and validate the theoretical results
obtained in this paper.

1. Introduction

Fractional calculus plays a critical role in several fields of science. The practical
application of fractional-order systems is now known as an important field in engineer-
ing [21]. Leibniz introduced the first concept of a fractional-order equation in a letter
he wrote in 1695, and research on it is still ongoing. This field of research has long
remained theoretical, without practical application. Deficit computing has captured the
attention of many researchers in recent decades. New studies show that fractional-order
equations may explain many phenomena with more accuracy than integer-order equa-
tions, providing an efficient tool for describing the structures of systems displaying
complex dynamics. Although we view their approximations as integers, many natu-
ral systems adhere to fractional dynamics [19]. Several academic fields have applied
fractional-order systems in the last few years. For instance, fractional-order systems
find application in physics fields such as nonlinear optics and quantum mechanics [25],
in electronics fields such as electromagnetic waves, electrodynamics, and electrical cir-
cuits [23], and in medical and biological sciences fields such as HIV infection modeling,
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muscle blood vessel modeling, and the movement and foraging behavior of microor-
ganisms [11]. Furthermore, the literature has extensively explored the important role of
fractional-order equations in control engineering and renewable energy [17].

Chaotic behavior has been discovered in different scientific fields, including biol-
ogy, epidemiology, mechanics, physics, neural networks, lasers, medicine, finance, and
secure communication [10]. A chaotic system, a nonlinear system, exhibits a sensitive
dependence on initial conditions. A small change in the initial conditions can lead to
completely different outcomes. The Lyapunov exponent can measure the convergence
or divergence of nearby trajectories in a deterministic dynamical system. The existence
of a positive Lyapunov exponent indicates that the system exhibits chaotic behavior [8].
Discrete maps gained considerable interest in the investigation of dynamical systems.
Discrete maps manifest in several fields, including cryptography, signal processing,
neurology, diffusion, and infectious diseases [12]. Recent findings showed that simple
first-order nonlinear maps may produce complex dynamical behavior, including chaos.
Fractional chaotic maps, exhibiting more complex dynamics than their integer-order
counterparts, can enhance security, making them more appropriate for use in various
fields such as electronics, communications, and cryptography. Further, discrete frac-
tional operators introduce a memory effect, which can capture the history of the states
of the system. The fractional chaotic maps often display rich dynamical behaviors,
such as the coexistence of attractors, which can be useful for various applications in
control systems and signal processing. In addition, the fractional chaotic maps offer
flexibility in control and synchronization. These properties motivate the detailed study
of a fractional chaotic map in this paper. Recently, several fractional chaotic maps have
been constructed using discrete fractional operators, such as the fractional logistic map
[26], fractional Hénon map [15], fractional Lozi map [16], and fractional Tinkerbell
map [4]. The stability of fixed points is crucial while examining chaotic maps. The
researchers aimed to determine fixed points and examined the dynamics of orbits near
these fixed points. Recent research has shown that classical chaotic maps often exhibit
unstable fixed points. Due to their efficiency, accuracy, and speed for simulation, using
discrete-time dynamical systems for modeling real-world phenomena is more suitable
than continuous-time systems [18]. The fractional maps are therefore more suitable for
image encryption and secure communication since they incorporate a higher level of
flexibility. Further, using fractional maps for modeling biological phenomena allows
capturing memory effects and hereditary properties [13]. Typically, fractional-order
maps exhibit simpler structures while displaying more complex dynamical features than
their integer-order counterpart.

Researchers have recently investigated several dynamics, including chaos, hyper-
chaos, and coexisting attractors in fractional-order maps. The hyperchaotic dynamics
of the fractional generalized Hénon map have been examined [22]. A new variable-
order fractional chaotic system has been presented in [28], where the logistic, Hénon,
and Chen fractional systems have been studied. In addition, the proposed models have
been applied to block image encryption with different fractional orders. Wu et al. [29]
have investigated the data-driven learning of fractional difference equations, where a
multi-layer neural network has been designed. Further, the proposed method has been
applied to parameter estimation of one- and two-dimensional fractional chaotic sys-
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tems. In [9], the authors described the chaotic behavior of a new fractional-order map
with an infinite line of equilibria. In [7], Feng et al. constructed a new fractional-order
3D Lorenz chaotic system and a robust 2D sinusoidally constrained polynomial hy-
perchaotic map. Further, they developed an efficient multi-image encryption algorithm
based on the new fractional-order maps to ensure a high level of security. Several fields
of study have intensively studied fractional-order iterated maps due to their specific
dynamic properties. Based on these considerations and motivated by the above discus-
sions, we consider in the current paper a 2D fractional map and we focus on the study
of the effect of system parameters and the fractional order on the dynamic behaviors of
this discrete system. The existence of chaotic attractors is confirmed using bifurcation
diagrams, the maximum Lyapunov exponent, and the 0-1 test method. Furthermore,
we rigorously analyze and explore the complexity, which represents the irregularity in
the discrete data, and the entropy, which measures the degree of regularity and unpre-
dictability of data fluctuations.

The key contributions of the study are summarized as follows:

• Constructing a fractional-order map based on the Caputo-like delta operator and
designing a convenable numerical scheme for computer simulations.

• Investigating the dynamical behavior of the proposed map and exploring the ef-
fect of the system parameters and the fractional order on the global dynamics of
this discrete system.

• Designing a very simple nonlinear control law for stabilizing the state trajectories
of the chaotic fractional map.

• Rigorous approach using the stability theory of discrete-time fractional systems.

The remainder of this paper is organized as follows: In Section 2, basic notions of dis-
crete fractional calculus are introduced. Section 3 presents the proposed 2D fractional
map, which is constructed using the Caputo discrete operator. In Section 4, the dynam-
ical behavior of the fractional map is investigated. In Section 5, the 0-1 test technique is
presented to confirm the existence of chaos in the proposed fractional map. In addition,
the complexity of the fractional map is evaluated by adopting the C0 algorithm and
spectral entropy measure. Section 6 deals with the chaos control of the fractional map,
where a simple nonlinear controller is designed to stabilize the state trajectories of the
chaotic discrete system. We draw conclusions in Section 7.

2. Mathematical background

In this section, we will recall some basic notions of discrete fractional calculus
that help us build this manuscript. We shall use the time scale N = N0 + {} =
{ , +1, +2, . . .} where  ∈ R .
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DEFINITION 1. [3] Let  : N → R be a real-valued function. For  > 0, the
th -order fractional sum of  is defined as

−
  (t) =

1
()

t−

s=

(t− s−1)(−1) (s), (1)

where t ∈ N+ . The term t() is the falling factorial function given by

t() =
(t +1)

(t +1−)
= t (t−1) . . . (t−+1) . (2)

DEFINITION 2. [1] The Caputo-like fractional difference operator of a function
 is defined as

C (t) = −(m−)
 m (t) =

1
(m−)

t−(m−)


s=

(t− s−1)(m−−1)m
s  (s), (3)

where  /∈ N , m = []+1, and t ∈ N+m− .

For the integer case, the Caputo delta difference fractional operator simplifies to
the traditional difference operator. Thus, when the fractional order  is an integer, the
Caputo delta difference fractional operator reduces to the standard forward difference
operator, which is defined as

 (t) =  (t +1)−  (t), (4)

and for an integer order n , the Caputo delta difference is given by

n (t) = 
(
n−1 (t)

)
. (5)

This means that the operator is applied repeatedly n times, which corresponds to the
n− th order difference.

In order to obtain the numerical scheme of a fractional-order map, we will use the
following theorem.

THEOREM 1. [6] Given the Caputo’s like discrete initial value problem
{

C (t) = g(t +−1, (t +−1)), t ∈ N+m− ,
k ( ) = k, m = []+1, k = 0,1,2, . . . ,m−1,

(6)

then the unique solution of problem (6) is given by

 (t) = 0(t)+
1

()

t−


s=+m−
(t− s−1)(−1)g(s+−1, (s+−1)), t ∈ N+m,

(7)
where

0(t) =
m−1


k=0

(t− )(k)

(k+1)
k ( ). (8)
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In order to establish the stability conditions of the equilibrium points of a discrete-
time fractional-order system, we will recall the following theorem.

THEOREM 2. [5] The zero equilibrium point of the discrete-time fractional-order
system

CS(t) = MS(t +−1),  ∈ (0,1], (9)

where S(t) = (s1(t),s2(t), . . . ,sn(t))T , M ∈ Rn×n and t ∈ N+1− is asymptotically
stable if

 j ∈
{
 ∈ C : | | <

(
2cos

|arg |−
2−

)
and |arg | > 


2

}
, j = 1,2, . . . ,n

(10)
where  j are the eigenvalues of the matrix M .

3. Mathematical model

In [2], S. Askar et al. proposed the following 2D rational chaotic map
⎧⎨
⎩

x(m+1) = x(n)+ k(x(m))2
(
− − x(m)

x(m)+y(m) − log(x(m)+ y(m))
)

,

y(m+1) = y(n)+ k(y(m))2
(
− − y(m)

x(m)+y(m) − log(x(m)+ y(m))
)

,
(11)

where x and y are the state variables.  ,  ,  , and k are positive constants. For
 = 2,  = 0.5,  = 0.5, k = 0.87, and the initial conditions (x0,y0) = (0.21,0.22) ,
the integer-order 2D rational map (11) behaves chaotically as shown in Fig. 1, where
the time series of x(n) is depicted in Fig. 1(a) and the chaotic attractor is depicted in
Fig. 1(b).
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Figure 1: Chaotic behavior of the integer-order map (11): (a) Time series of x(n) ; (b) Phase
portrait in (x,y) -plane.

In order to examine the impact of the parameter k on the dynamics of integer-
order map (11), we vary k in the range [0.6,0.9] . The results of bifurcation diagram
and maximum Lyapunov exponent (MLE) when k varies are represented in Fig. 2(a)
and 2(b), respectively. From the bifurcation diagram, the map (11) exhibits chaotic
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behavior in the range k ∈ [0.85,0.9] . This finding is validated by the maximum Lya-
punov exponent spectrum. As one can see, the MLE is positive when k ranges between
0.85 � k � 0.9 and then the discrete system (11) has rich dynamic behavior when the
parameter k is varied.
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Figure 2: Dynamics of the integer-order map (11): (a) Bifurcation diagram with respect to k ;
(b) Maximum Lyapunov exponent spectrum with respect to k .

In order to investigate the dynamic behavior of the discrete system (11) more ac-
curately, the first-order difference of the discrete system (11) is given by⎧⎨

⎩
x(m) = k(x(m))2

(
− − x(m)

x(m)+y(m) − log(x(m)+ y(m))
)

,

y(m) = k(y(m))2
(
− − y(m)

x(m)+y(m) − log(x(m)+ y(m))
)

.
(12)

Based on the Caputo-like delta operator, the fractional counterpart of the discrete sys-
tem (11) with order  ∈ (0,1] can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cx(t) = k(x(t −1+))2(− −
x(t−1+)

x(t −1+)+ y(t−1+)
− log(x(t −1+)+ y(t−1+))),

Cy(t) = k(y(t −1+))2(− −
y(t −1+)

x(t −1+)+ y(t−1+)
− log(x(t −1+)+ y(t−1+))),

(13)

where  is the starting point and t ∈ N+1− . Using theorem (1) and assuming that
 = 0, the numerical scheme of the fractional system (13) is obtained as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(m) = x(0)+
1

()

m


j=1

(m− j +)
(m− j +1)

(k(x( j−1))2(− −
x( j−1)

x( j−1)+ y( j−1)

− log(x( j−1)+ y( j−1)))),

y(m) = y(0)+
1

()

m


j=1

(m− j +)
(m− j +1)

(k(y( j−1))2(− −
y( j−1)

x( j−1)+ y( j−1)

− log(x( j−1)+ y( j−1)))),
(14)
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where x(0) and y(0) are the initial conditions. This numerical scheme allows us to
examine the sensitivity of the fractional map (13) in the remainder of this paper.

4. Dynamics of the fractional-order map

In this section, the dynamics of the fractional-ordermap (13) are investigated using
several classical tools, such as bifurcation diagrams, maximum Lyapunov exponent
spectrum, phase plots, and dynamical maps.

In bifurcation diagram, we vary one of the system parameters and fixing the oth-
ers parameters in to explore the chaotic dynamics of the system. Generally, a chaotic
system is sensitive to variation of its parameters and initial conditions. Let the param-
eter k vary from 0.5 to 0.9 and fix  = 2,  = 0.5,  = 0.5, and the fractional order
 = 0.62. The bifurcation diagram of the fractional-order map (13) and the correspod-
ing maximum Lyapunov exponent spectrum with respect to k are depicted in Figs. 3(a)
and 3(b), respectively. It sould be noted that the maximum Lyapunov exponent for a
fractional map can be estimated using the Jacobian matrix algorithm; see [27].
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Figure 3: Dynamics of the fractional-order map (13) as k varies: (a) Bifurcation diagram with
respect to k ; (b) Maximum Lyapunov exponent spectrum with respect to k .

As one can see, the fractional map (13) is periodic when k ∈ [0.6,0.85] which
indicated by the negative values of the maximum Lyapunov exponent, but when k in-
creases, the dynamics of the fractional map (13) becomes very complex or chaotic.
Thus, the impact of the parameter k on the dynamics of the fractional map (13) is
investigated.

Now, we study the effect of the fractional order  on the dynamic behavior of
the fractional map (13). Fix  = 2,  = 0.5,  = 0.5, and k = 0.87 and let  vary
from 0 to 1. Fig. 4 shows the bifurcation diagram and the corresponding maximum
Lyapunov exponent spectrum. By examining the bifurcation diagram and the MLE
spectrum depicted in Fig. 4, it is shown that the fractional map (13) takes two main
scenarios, weak chaos and robust chaos, according to the value of fractional order  .
When  ∈ (0,0.5) , the MLE decreases towards 0, meaning that the fractional map
(13) displays weak chaos. In contrast, when  ∈ [0.5,1] , the MLE increases rapidly
and takes positive values across this parameter  range, then the fractional map (13)
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exhibits chaotic dynamic behavior, excepting a periodic window near  = 0.81 and
 = 0.98. In this study, it is confirmed that the fractional map (13) has rich dynamics.
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Figure 4: Dynamics of the fractional-order map (13) as  varies: (a) Bifurcation diagram with
respect to  ; (b) Maximum Lyapunov exponent spectrum with respect to  .

To provide more clarification, the phase portrait of the fractional map (13) with
different values of fractional order  is plotted in Fig. 5.
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Figure 5: Phase diagram of the fractional map (13) for different values of  : (a) for  = 0.2 ;
(b) for  = 0.5 ; (c) for  = 0.62 ; (d) for  = 0.99 .
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As can be observed, the shape of the phase diagram of the fractional map (13)
is changed according to the value of the fractional order  . In particular, a strange
attractor appears when the fractional map is chaotic. Thus, the fractional map (13) is
sensitive to variation of  , and the effect of the fractional order on the global dynamics
of the fractional system (13) is investigated.

In order to examine how the fractional-order map (13) is influenced by the vari-
ation of the system parameters and fractional order  , we use the chaos diagrams as
shown in Fig. 6. In practical situations, a chaos diagram is useful for determining
the suitable parameter values for real-world applications. Fix  = 2,  = 0.5, and
 = 0.5, and let k vary from 0.6 to 0.9 with a step size of 0.001, and  vary from 0
to 1 with a step size of 0.01. The colors in Fig. 6 represent the values of the maximum
Lyapunov exponent when k and  vary simultaneously. As can be observed, when the
fractional order  increases, the MLE is greater than zero in most of the areas, and the
fractional map (13) exhibits chaotic behavior. In particular, when the fractional order
closes 1, the fractional map (13) has complex dynamics. Thus, the impact of the sys-
tem parameters and fractional order on the dynamical behavior of the fractional map
(13) is investigated. As a result, the fractional discrete system (13) has rich dynamics
when the system parameter k and the fractional order  are varied.
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Figure 6: Chaos diagram of the fractional-order map (13) based on the MLE: (a) in 2 -D pro-
jection; (b) in 3 -D projection.

5. 0-1 test and complexity

5.1. 0-1 test for chaos

The 0-1 test technique is another method for establishing the existence of chaos in
the fractional-order discrete system. The 0-1 test for chaos is a binary test that detects
chaotic behavior in deterministic nonlinear systems, with the input being a time series of
data and the output being 0 or 1, signifying either the dynamics are chaotic or not [20].
We provide a concise overview of the test algorithm’s procedure. For a fractional-order
system, if a set of discrete data (m) (m = 1,2,3, . . .) is a one-dimensional observable
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data set obtained from the iterative, we define the following two real-valued sequences:

p(m) =
m


j=1

( j)cos(( j))

q(m) =
m


j=1

( j)sin(( j)),
(15)

where

( j) = j +
j


i=1

(i), (16)

and  is a random constant selected from the interval [5 , 4
5 ] . Plotting the trajectories

in the (p,q)-plane provides a visual test, where the bounded trajectories of p and q
imply regular dynamics, whereas the Brownian-like behavior (unbounded trajectories)
imply chaotic dynamics. Next, we define the mean square displacement M(m) as

M(m) = lim
N→

1
N

N


j=1

[p( j +m)− p( j)]2 +[q( j +m)−q( j)]2 , (17)

In practice, we compute M (m) only for m � mcut , where mcut = N/10. Next, we
define the asynchronous growth rate K as

K = lim
m→

logM (m)
log(m)

. (18)

Finally, the growth rate K can be determined as

K = median(K). (19)

If K ≈ 0, it means that the dynamics are regular, whereas if K ≈ 1, the dynamics are
chaotic. Table 1 and Fig. 7 show the results of the 0-1 test for different values of
fractional order  . In particular, when  = 0.2, the trajectories in the (p,q)-plane
show bounded behavior, then the system (13) is in a periodic state. In contrast, when
 = 0.5,  = 0.62,  = 0.89, and  = 0.99, the trajectories in the (p,q)-plane show
unbounded behavior, then the system (13) is mainly chaotic.

 0.2 0.5 0.62 0.89 0.99
K 0.0123 0.7007 0.9971 0.9967 0.9948

Table 1: The asynchronous growth rate K of the fractional map (13) for different fractional
order values.
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Figure 7: Plotting of the p− q trajectories of the fractional map (13) with different values of
fractional order  : (a) for  = 0.2 ; (b) for  = 0.5 ; (c) for  = 0.62 ; (d) for  = 0.99 .

5.2. C0 algorithm

C0 algorithm is an efficient algorithm used to measure the complexity level of a de-
terministic dynamical system [24]. Based on discrete data x(m) (m = 0,1,2, . . . ,N−1)
selected from the ietrative, the corresponding discrete Fourier transformation is given
by

XN(k) =
N−1


m=0

x(m)exp[−2 i
km
N

], (20)

where k = 0,1,2, . . . ,N − 1 and i is the imaginary unit. Next, we compute the mean
square of XN as

MN =
1
N

N−1


k=0

|XN(k)|2. (21)

By introducing a control parameter r where

X̃N(k) =
{

X(k) if |XN(k)|2 > rMN ,
0 if |XN(k)|2 � rMN ,

(22)
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the inverse discrete Fourier transformation is given by

x̃(m) =
1
N

N−1


k=0

X̃N(k)exp[2 i
km
N

], (23)

where m = 0,1,2, . . . ,N−1. Finally, the C0 complexity is defined as

C0(x,r,N) =
N−1

m=0 ‖x(m)− x̃(m)‖2

N−1
m=0 ‖x(m)‖2

. (24)

Now, we apply the C0 algorithm to the fractional map (13). Fig. 8 shows the C0

complexity of the fractional system with respect to the fractional order  .
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Figure 8: C0 complexity of the fractional map (13) with respect to  .

As one can see, the complexity of the fractional map (13) changes when the frac-
tional order  varies. In particular, the fractional map (13) has a high complexity level
when  ∈ [0.5,0.8] , which agrees well with the results of the bifurcation diagrams,
maximum Lyapunov exponent spectrum, and 0-1 test. In practice, we must exercise
caution when selecting the fractional order value, particularly if we require a high com-
plexity level.

5.3. Spectral entropy

The spectral entropy (SE) is performed to evaluate the complexity of chaotic se-
quences in deterministic dynamical systems. We review briefly the steps of the this
algorithm [14]. Consider a sequence of discrete data x1,x2, . . . ,xN selected from the
iterative, and we delete the current part as

x(s) = x(s)− N
m=1 x(m)

N
, (25)
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where s = 1,2, . . . ,N . Next, the correponding discrete Fourier transformation is given
by

Xj =
N


s=1

x(s)exp[
−2s ji

N
], (26)

where j = 1,2, . . . ,N and i is the unit imaginary. The probability of the power spectral
density is defined as

p j =
|Xj|2

N/2
j=1 |Xj|2

. (27)

Normalizing of the above quantity, then the spectral entropy is defined as

SE =
N/2

j=1 |p j log(p j)|
log(N/2)

. (28)

Now, we apply the SE algorithm to the fractional map (13) where the parameters are
assigned as  = 2,  = 0.5,  = 0.5, k = 0.87, and let the fractional order  vary
from 0 to 1 with a step size of 0.01. Fig. 9 shows the spectral entropy of the discrete
map (13) with respect to the fractional order  .
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Figure 9: Spectral entropy of the fractional map (13) with respect to fractional order  .

As can be observed, the complexity of the fractional map (13) is varied according
to the fractional order  . The SE complexity has a high level in the range [0.5,1] ,
which agrees well with the result of the C0 algorithm.

In order to examine the effect of the system parameters and fractional order on
the global dynamics of the fractional map (13) more accurately, chaos diagrams based
on the C0 complexity and spectral entropy are depicted in Figs. 10(a) and 10(b), re-
spectively. As we can see, the complexity of the fractional map (13) changes when
the parameter k and the fractional order  are varied. In particular, a high complexity
is obtained when the parameter k approaches 0.85 and the fractional order  ranges
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between 0.5 �  � 1, which validates the results of the bifurcation diagrams, maxi-
mum Lyapunov exponent, and 0-1 test. Therefore, if more complex chaotic behavior
is required in practical applications, the chaos diagrams can assist us in selecting the
appropriate parameters and fractional order of the system.
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Figure 10: Chaos diagram of the fractional map (13) on (k,) -plane: (a) based on C0 com-
plexity; (b) based on SE complexity.

6. Controlling chaos

In this section, an active controller for stabilizing the state trajectories of the frac-
tional map (13) is designed. Our goal is to force all states of the discrete system (13) to
converge towards zero asymptotically.

THEOREM 3. The fractional map (13) can be stabilized under the following two-
dimensional control law⎧⎨

⎩
u1(t) = −x(t)− y(t)− k(x(t))2

(
− − x(t)

x(t)+y(t) − log(x(t)+ y(t))
)

,

u2(t) = −y(t)− k(y(t))2
(
− − y(t)

x(t)+y(t) − log(x(t)+ y(t))
)

.
(29)

where t ∈ N+1 .

Proof. The fractional map (13) with the control law (29) is expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cx(t) = k(x(t −1+))2(− −
x(t−1+)

x(t −1+)+ y(t−1+)
− log(x(t −1+)+ y(t−1+)))+ u1(t−1+),

Cy(t) = k(y(t −1+))2(− −
y(t −1+)

x(t −1+)+ y(t−1+)
− log(x(t −1+)+ y(t−1+)))+ u2(t−1+).

(30)

where t ∈ N+1− . Next, we substitute (29) into (30), we obtain the simplified dynam-
ics {

Cx(t) = −x(t−1+)− y(t−1+),
Cy(t) = −y(t−1+), (31)
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where t ∈ N+1− . We can simplify (31) to the compact form as

C (x(t),y(t))T = M× (x(t−1+),y(t−1+))T , t ∈ N+1− , (32)

where

M =
(−1 −1

0 −1

)
. (33)

The eigenvalues of the matrix M are 1 = 2 = −1, and we have

|i| = 1 <

(
2cos

|argi|−
2−

)
and |argi| =  > 


2

, i = 1,2. (34)

Hence, we can conclude that the zero equilibrium of system (31) is asymptotically
stable. Thus, the state trajectories of the fractional chaotic map (13) are stabilized. �

For numerical simulations, the parameters of the fractional map (13) are selected
as  = 2,  = 0.5,  = 0.5, k = 0.87, and the fractional order as  = 0.62. The initial
conditions are arbitrarily selected as (x0,y0) = (0.21,0.22) . Thus, the fractional map
(13) behaves chaotically. Fig. 11 shows the evolution of the state trajectories and phase
portrait of the controlled fractional map (30). From Fig. 11, it is shown that the states
x(m) and y(m) converge rapidly towards zero asymptotically. As a result, the fractional
map (13) is stabilized under the control law (29).
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Figure 11: State trajectories and phase portrait of the fractional map (13) after control: (a)
Time series of x(m) ; (b) Time series of y(m) ; (c) Phase portrait in (x,y) -plane.
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7. Conclusions and future works

In this paper, a 2-D fractional map is presented. Using the Caputo-like difference
operator, the fractional counterpart is constructed. We have shown that the proposed
fractional map is sensitive to variation in both the bifurcation parameters and the frac-
tional order. The effect of system parameters and fractional order is investigated using
several classical tools, such as bifurcation diagrams, maximum Lyapunov exponent
spectrum, chaos diagrams, and the 0-1 test algorithm. It is shown that the suggested
map can exhibit chaotic behavior and complex dynamics. In addition, using the C0

algorithm and spectral entropy technique, the complexity of the fractional map is quan-
tified with accuracy. A high complexity level indicates that the fractional map has rich
dynamics. Finally, we have designed a nonlinear control law for stabilizing the state
trajectories of the chaotic map, where the controlled states converge towards the origin.
MATLAB simulations were performed to illustrate and validate the theoretical results
obtained in this paper.

In the near future, we will aim to apply the proposed fractional chaotic map in real-
world applications, such as medical image encryption, signal processing, and secure
communication.
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