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GLOBAL SOLUTIONS OF ANOMALOUS DIFFUSION SYSTEMS 3×3

ABDELATIF TOUALBIA AND NABILA BARROUK ∗

(Communicated by B. Torebek)

Abstract. In this article, we establish a global existence result for a nonlinear reaction-diffusion
system in the case of 3 components with fractional Laplacians. Our proof method is based on
the well-known regularizing effect.

1. Introduction

In this article, we consider the fractional reaction system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut +d1(−)u = f1(u,,w), t > 0, x ∈,

t +d2(−) = f2(u,,w), t > 0, x ∈,

wt +d3(−)w = f3(u,,w), t > 0, x ∈,

(1)

subject to the boundary and initial conditions

u(t,x) =  (t,x) = w(t,x) = 0 on × (0,T), (2)

u(0,x) = u0(x) � 0,  (0,x) = 0(x) � 0, w(0,x) = w0(x) � 0, x ∈, (3)

where ⊂ R
n is a bounded domain with smooth boundary  , initials values u0(x),

0(x), w0(x) are given nonnegative bounded functions, and the constants d1, d2, and
d3 are positive.

Here, the functions u,, and w represent densities of susceptible, infected, and
removed individuals; concentrations of some chemical species; electrical charges, . . . ;
the anomalous diffusion is explained by the nonlocal operators (−)s (0 < s < 1,
s = , ,) ([12, 13]), this means that the sub-populations or concentrations face some
obstacles that slow their movement.

The reaction terms f1(u,,w), f2(u,,w), f3(u,,w) are locally Lipschitzian
satisfy the so-called “quasi-postivity” property, namely:

f1(0,,w) � 0, f2(u,0,w) � 0 and f3(u,,0) � 0, ∀u,,w � 0, (4)
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which implies, that the solution is positive on its interval of existence via the maximum
principle (see Smoller [16]). Moreover, we assume that the functions f1, f2, f3 are of
polynomial growth , i.e for all r1,r2,r3 ∈ [0,[ and a real m > 1, we have

| f1(r1,r2,r3)| , | f2(r1,r2,r3)| , | f3(r1,r2,r3)| � C1(r1,r2,r3)(1+
3


i=1

ri)m on (0,)3,

(5)
and satisfy

A f1(u,,w)+B f2(u,,w)+ f3(u,,w) � C2(r1,r2,r3)(u++w+1), (6)(
1
A

(B f2 + f3)
)

� 0,

(
1
B

(A f1 + f3)
)

� 0, (A f1 +B f2) � 0, (7)

where C1,C2 are positive and uniformly bounded functions defined on (0,)3 and A,B
are positive constants.

The above nonlinearities can be found in the model of a classical irreversible au-
tocatalytic reaction involving chemical species U,V and W :

lU +qV � rW ;

in this case, if u = [U ] ,  = [V ] , w = [W ] , then

f1(u,,w) = f2(u,,w) = −hulq + kwr and f3(u,,w) = hulq− kwr,

where [·] means the concentration of chemical species.
The reader is referred to ([1, 2, 3, 7, 11, 14, 15, 17]) for results on global existence,

asymptotic behaviour and blow-up in classical reaction system (i.e.  =  =  = 1)
or fractional reaction system (i.e. 0 < , , < 1) . Daoud et al. ([7], Theorem 4.1)
studied problem (1)–(2)–(3) under assumptions (4), (6),  =  =  = s , and

f1 = 1g, f2 = 2g, f3 = −3g, (8)

with
g(u1,u2,u3) = u3

3 −u1
1 u2

2 , (9)

and derived conditions on the data 1,2 and 3, which imply the global existence
of solutions. Here we obtain the global existence of solution for (1)–(2)–(3) in general
source terms f1, f2, f3 and the fractions , , are different from each other.

2. Preliminaries

Let us recall a few preliminaries about the nonlocal operators (−)s . The nonlocal
operators (−)s (0 < s < 1, s =  or  or ) stands for anomalous diffusion and is
defined by its Riesz representation

(−)su(x) = CNP.V.

∫
Rn

u(x)−u(y)

|x− y|N+2s dy, (10)
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where P.V. stands for the Cauchy principal value and CN is a normalizing constant. If
we consider the case s ∈ ( 1

2 ,1) fractional Laplacian has close properties to classical
Laplacian, or

(−)s = − as s → 1− and (−)s = Id as s → 0+, (11)

where Id is an identity operator. Readers unfamiliar with fractional laplacians are
referred to ([6, 8, 9]) and the associated references.

The following important Stroock and Varopoulos inequalities will be utilized (see,
for instance, ([4], Formula (B7)), Theorem 1)∫


u(x)(−)su(x)dx � 0, (12)

∫


up−1(−)sudx � 4(p−1)
p2

∫


∣∣∣(−)
s
2 u

p
2

∣∣∣2 dx � 0, p > 1. (13)

NOTATION 1. For p ∈ (1,) , we denote by A1,A2,A3 the realization of (−) ,

(−) , (−) respectively with homogeneousDirichlet boundary condition in Lp().

It is well known that −A1,−A2,−A3 are a sectorial operator (see [10]); so that
−Ai generates an analytic semigroups SAi(t) =

{
e−tAi

}
t�0 , i = 1,2,3.

The lemma on local existence is classical. Let us recall its statement here. Since
the proof is simple, we omit it.

LEMMA 1. Let (u0,v0,w0) ∈ (L())3 . Assume that the fi ’s (i = 1,2,3) are
locally Lipschitz continuous. Then, problem (1)–(2)–(3) has a unique local solution
(u,v,w) on [0,Tmax[×, satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(t) = SA1(t)u0 +

∫ t
0 SA1(t− s) f1(u(s),(s),w(s))ds,

v(t) = SA2(t)v0 +
∫ t
0 SA2(t− s) f2(u(s),(s),w(s))ds,

w(t) = SA3(t)w0 +
∫ t
0 SA3(t − s) f3(u(s),(s),w(s))ds,

Moreover, the following alternatives hold

i) Tmax = + or,

ii) Tmax < + and lim
t→Tmax

(‖u(t, .)‖ +‖v(t, .)‖ +‖w(t, .)‖) = +.

DEFINITION 1. Let u(t, .),v(t, .),w(t, .) be solutions of problem (1). We define
the maximal existence time Tmax of u(t, .),v(t, .),w(t, .) as follows

(i) If u(t, .),v(t, .),w(t, .) exist for 0 � t <  , then Tmax = +,
(ii) If there exist a t0 ∈ (0,) such that u(t, .),v(t, .),w(t, .) exist for 0 � t < t0 ,

but do not exist at t = t0 , then Tmax = t0 .
— If (i) are satisfied, we say that the solutions u(t, .),v(t, .),w(t, .) are global.
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To study the problem (1)–(2)–(3) and to show our main result, we need the follow-
ing inequalities:

LEMMA 2. (Young’s inequality [5]) Let p,q ∈]1,[ , s � 1 such that 1
p + 1

q = 1
s .

Then, for all a,b � 0 ; we have

(ab)s

s
� ap

p
+

bq

q
.

LEMMA 3. (Hölder’s inequality [5]) Let p,q ∈]1,[; such that 1
p + 1

q = 1 . If f ∈
Lp() and g ∈ Lq() , then f g ∈ L1() , with

‖ f g‖1 � ‖ f‖p ‖g‖q .

3. Global existence

According to the regularizing effect method (see Henry [10], pp. 35-62), in order
to prove global existence of solution to (1)–(2)–(3), it is sufficient to derive a uniform
estimate of ‖ f1(u,,w)‖P ,‖ f2(u,,w)‖P and ‖ f3(u,,w)‖P on [0,Tmax[ in the space
LP() for some P > n

2 ,( n = dim) .
We first start with the following Theorem, which we will use in the proof of Corol-

lary 1. This Theorem will play an essential role in proving our main result.

THEOREM 1. Suppose that the conditions on f1(u,,w), f2(u,,w), and
f3(u,,w), given in section 1, hold. Then all solutions of (1)–(2)–(3) with positive
initial data in L() can be estimated in the form

∥∥up+1 + p+1 +wp+1
∥∥

L1() � KL(0)exp(p+1) t, ∀t ∈ [0,T ∗],T ∗ � Tmax, (14)

where  and K are positive constants, p � 1 is a positive integer and the constant

L(0) =
∥∥∥up+1

0 + p+1
0 +wp+1

0

∥∥∥
L1()

.

Proof. Multiplying the first differential equations in (1) by (u(t,x))p , the second
one by ((t,x))p , the third one by (w(t,x))p, integrating the three equations over ,
adding the three results,

∫


(uput + pt +wpwt)dx+d1

∫


up(−)udx+d2

∫


(
 p(−)

)
dx

+d3

∫


(wp(−)w)dx =
∫


(up f1(u,,w)+ p f2(u,,w)+wp f3(u,,w))dx. (15)
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By using the so-called Stroock and Varopoulos inequality (13), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
 up(−)udx � 4p

(p+1)2
∫


∣∣∣(−)

2 u

p+1
2

∣∣∣2 dx � 0,

∫
  p(−) dx � 4p

(p+1)2
∫


∣∣∣(−)

2 

p+1
2

∣∣∣2 dx � 0,

∫
wp(−)wdx � 4p

(p+1)2
∫


∣∣∣(−)

2 w

p+1
2

∣∣∣2 dx � 0.

(16)

By (15) and (16), we see∫


(uput + pt +wpwt)dx �
∫


(up f1(u,,w)+ vp f2(u,,w)+wp f3(u,,w))dx.

(17)
This implies that

1
p+1

d
dt

∫


(
up+1 + p+1 +wp+1)dx � I, (18)

where
I =

∫


(up f1(u,,w)+ p f2(u,,w)+wp f3(u,,w))dx. (19)

We can write formula (19) as follows

I =
∫


(
1
A

up +
1
B
 p +wp

)
(A f1 +B f2 + f3)dx−

∫


up
(

1
A

(B f2 + f3)
)

dx (20)

−
∫

 p

(
1
B

(A f1 + f3)
)

dx−
∫


wp (A f1 +B f2)dx.

From condition (6) on f1 , f2 and f3 , it follows that∫


(
1
A

up +
1
B
 p +wp

)
(A f1 +B f2 + f3)dx �C3

∫


(up + p +wp) (1+u++w)dx,

(21)
where C3 = max( 1

A , 1
B ,1,supC2(u,v)) > 0.

By inserting (21) into (20), we obtain

I � C3

∫


((
up+1 + p+1 +wp+1)+(up + p +wp)

)
dx

+
∫


up
(

C3 ( +w)−
(

1
A

(B f2 + f3)
))

dx

+
∫

 p

(
C3 (u+w)− 1

B
(A f1 + f3)

)
dx+

∫


wp (C3 (u+)− (A f1 +B f2))dx.

Taking into account condition (7) on f1, f2 and f3 , we find

I � C3

∫


(
up+1 + p+1 +wp+1)dx+C3

∫


up (1++w)dx

+C3

∫

 p (1+u+w)dx+C3

∫


wp (1+u+)dx. (22)
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Since  +w, u+w, u+ < u++w, one easily sees that

I � C3

∫


[(
up+1 + vp+1 +wp+1)+(up + vp +wp) (1+u+ v+w)

]
dx

= C3

∫


[(
up+1 + p+1 +wp+1)+Rp+1(u,,w)+ (up + p +wp)

]
dx, (23)

where

Rp+1(u,,w) = up+1 + p+1 +wp+1 +up( +w)+ p(u+w)+wp(u+)

is a homogeneous polynomial of degrees p+1. First, using the fact that

(U +V)p+1 � 2p(U p+1 +V p+1), for all U,V � 0, and p > 0,

we get∫


Rp+1(u,,w)dx �
∫


(u++w)p+1 dx � C4

∫


(
up+1 + p+1 +wp+1)dx, (24)

where C4 = 22p, then applying Hölder’s inequality to the last term of (23), one gets

∫


(up + p +wp)dx � (meas)
1

p+1

[(∫


(up)
p+1
p dx

) p
p+1

+
(∫


( p)

p+1
p dx

) p
p+1

+
(∫


(wp)

p+1
p dx

) p
p+1

]
. (25)

By inserting (24) and (25) into (23), estimate (23) becomes

I � C5

∫


(
up+1 + p+1 +wp+1)dx

+C6

[(∫


up+1dx

) p
p+1

+
(∫


 p+1dx

) p
p+1

+
(∫


wp+1dx

) p
p+1

]
.

Therefore, we arrive at

I � C5

∫


(
up+1 + p+1 +wp+1)dx+C7

[∫


(
up+1 + p+1 +wp+1)dx

] p
p+1

. (26)

If we insert (26) into (18), we then obtain

1
p+1

d
dt

∫


(
up+1 + p+1 +wp+1)dx � C5

∫


(
up+1 + p+1 +wp+1)dx

+C7

[∫


(
up+1 + p+1 +wp+1)dx

] p
p+1

. (27)
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Now, put L(t) =
∫


(
up+1 + p+1 +wp+1

)
dx, one can obtain the differential inequality

L
′ � C5L+C7L

p
p+1 , (28)

which for Z = L
1

1+p can be written as

(1+ p)Z
′ � C5Z +C7. (29)

Integrating (29) from 0 to t, we get

z(t) � C6Z(0)exp t +C8,

then

L(t) � KL(0)exp(p+1) t, t ∈ [0,T ∗],

where K, are positive constants and L(0) =
∥∥∥up+1

0 + p+1
0 +wp+1

0

∥∥∥
L1()

. This com-

pletes the proof. �

COROLLARY 1. Assume that conditions (4), (6), (7) on f1(u,,w), f2(u,,w),
and f3(u,,w) hold. Then all solutions of (1)–(2)–(3) with positive initial data in
L() are in L(0,T ∗;Lp+1()) .

Proof. We want to show that supt∈[0,T ∗] ‖U‖p+1 < for U = u,,w. For this, we

set z = u+ and by using the fact that (z+w)p+1 � 2p(zp+1 +wp+1) for all z,w � 0
and p > 1, we get

∫


(z+w)p+1 dx � 2p
∫


(
zp+1 +wp+1)dx

� 22p
∫


(
up+1 + p+1 +wp+1)dx.

Now, we use theorem 1, we get

∫


(u++w)p+1 dx � 22pL(t) � 22pKL(0)exp p t, on [0,T ∗].

Together with positivity, this implies a uniform L(0,T ∗;Lp+1()) bound on u,,w .
Hence, the proof is completed. �

Now, let us prove the global existence to (1)–(2)–(3).

PROPOSITION 1. Suppose that the conditions on f1 , f2 , and f3 , given in section
1, hold. Furthermore assume that p+1

m > n
2 (n = dim), then all solutions of (1)–(2)–

(3) with positive initial data in L() are global.
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Proof. Our goal is to derive a uniform estimate of ‖ f1(u,,w)‖P ,‖ f2(u,,w)‖P
and ‖ f3(u,,w)‖P on [0,Tmax[ in the space LP() for some P > n

2 (n = dim) which
leads to global existence (see Henry [10], pp. 35–62).

From Corollary 1, there exists a positive constant C9 such that∫


(1+u++w)p+1 dx � C9, on [0,Tmax[, (30)

for all p > 1. Making use (5), we get

| f1(u,,w)| p+1
m , | f2(u,,w)| p+1

m , | f3(u,,w)| p+1
m � C10(1+u++w)p+1. (31)

It follows from (30) and (31) that f1, f2, f3 ∈ L(0,Tmax;LP()) with P = p+1
m .

Consequently, the solution to the problem (1) is global for all P � 1. Hence, the
proof is completed. �

REMARK 1. It is actually the case in the system (1)–(2)–(3 ), when the condition
f1 + f2 + f3 � 0 hold, if d1 = d2 = d3 = d and the fractions , and  are equal
 =  =  = s , then the solutions u,v,w are uniformly bounded on [0,T ) . Thus, a
priori L -bounds imply global existence.

Indeed, in this case

t(u++w)+d (−)s (u++w) � 0.

By maximum principle

∀t ∈ [0,T ),‖(u++w)‖ � ‖(u0 +0 +w0)‖ .

Together with positivity, this implies a uniform L() bound on u,v,w , hence T = .

4. Application

Many chemical reactions, when modelled through the mass action law, lead to
reaction-diffusion. We consider the reversible reaction

lU +qV � rW. (32)

Then, according to the mass action law and with a Fickian diffusion, the evolution of
the concentrations u,v,w of U,V,W respectivly is governed by the following reaction-
diffusion system:

ut +d1(−)u = −ulvq + wr, t > 0, x ∈, (33)

vt +d2(−) v = −ulvq + wr, t > 0, x ∈, (34)

wt +d3(−)w = ulvq− wr, t > 0, x ∈, (35)

with boundary conditions (2), initial conditions (3), and  , , l,q and r are positive
constants, and 0 < , , < 1.
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THEOREM 2. Assume that (u0,v0,w0)∈ (L()+)3 . System (33)–(34)–(35) with
boundary conditions (2) admits a non-negative global solution in the following cases:

1. r � 1 whatever l and q,
2. l +q � 1 whatever r,
3. d1 = d3 or d2 = d3 whatever are l,q and r.

Proof. 1. The case r � 1.
According to (Smoller [16]), the positivity of the solutions is preserved for all time

if and only if f = ( f1, f2, f3) is quasi-positive.
If we denote

f1(u,,w) = f2(u,,w) = − f3(u,v,w) = −ulq + wr,

then for all u,,w � 0,

f1(0,,w) = wr � 0, f2(u,0,w) = wr � 0, f3(u,,0) � ulq � 0,

so u,,w are positive.
In order to prove the global existence, it is sufficient to prove that (6)–(7) are

satisfied. By choosing A+B > 1, we can easily see that

A f1(u,,w)+B f2(u,,w)+ f3(u,,w) � wr < C (1+u++w) .

Moreover, f3 and f1 (resp. f2 ) satisfy (7). In fact, 1
B (A f1 + f3)� 0 and 1

A(B f2 + f3)�
0 by choosing A = B = 1. Also Condition (7) is satisfied for f1 and f2 while choosing
wr � ulq .

So that (6)–(7) holds for the system (33)–(34)–(35) when r < 1. Then corollary
1 implies that all components of the solution are in L(0,T ;Lp+1()) for all p � 1.
Since the reaction terms are of polynomial growth, then Tmax = + .

2. The case l +q � 1.
The conditions (6) is obviously satisfied in the case l + q � 1 for the system in

the order (35)–(34)–(33) by choosing A > B+1 and applying the Young inequality to
the term ulvq . Condition (7) is satisfied while choosing wr � ulq . Then Corollary
1 implies that u,,w ∈ L(0,T ;Lp+1()) for all p � 1, then proposition applied to
(33)–(34)–(35) permits us to give the global existence.

The situation is quite more complicated if l +q > 1 because the condition (6)–(7)
becomes difficult to verify.

3. The case d1 = d3 = d or d2 = d3 = d.
We set Z = u+w, then

Zt −d (−) Z � 0.

The point is that thanks to the nonnegativity of u, , we have

‖Z‖ = ‖u+w‖ � ‖u0 +w0‖ ,
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this implies a uniform L() bound on u,w.
Since u,w are uniform bounded (u � M1 and w � M2) , the conditions (6)–(7) are

obviously satisfied for the system (33)–(34)–(35) by choosing A < B+1 whatever are
l,q and r , which implies that T =  . �

• Another example is an SIR-type epidemiological model:

St +d1(−)S = −SI t > 0,x ∈, (36)

It +d2(−) I = SI− I t > 0,x ∈, (37)

Rt +d3(−)R = I t > 0,x ∈. (38)

The spread of epidemics within a restricted population is described by this system. Den-
sities of susceptible and infected individuals are represented by the functions S (t,x) ,
I (t,x) and R(t,x) . The infection rate and removal rate are denoted by the positive
constants  and  , respectively (see [11]).

System (36)–(37)–(38) with boundary conditions (2) and positive initial data in
L() admits a non negative global solution.

Indeed, the positivity of the solutions is preserved for all time because of

f1(0, I,R), f2(S,0,R), f3(I,S,0) � 0, for all S, I,R � 0.

By using maximum principle to equation (36), one easily sees that

∀t ∈ [0,T ),‖S(t)‖ � ‖S0(t)‖ = M,

this implies a uniform L() bound on S.
The condition (6) is obviously satisfied by choosing B < A and B < 1. The condi-

tion (7) is satisfied for f3 and f1 by choosing A � 
M ; for f3 and f2 by choosing B <

1; for f1 and f2 by choosing (A−B)M � B, where M = ‖S0(t)‖ = sup |S0(t)| .
Then, from Corollary 1, u,,w ∈ L(0,T ;Lp+1()) for all p � 1. Whence, by using
proposition 1, T =  .

The proof of the global existence to the problem (36)–(37)–(38) in the case d1 =
d2 = d3 and  =  =  is an immediate consequence of remark 1.

• Finally we illustrate our results with the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut +d1(−)1u = −u12 −u3w + 1+ 2w t > 0, x ∈,

t +d2(−)2 = −u12 +u3w t > 0, x ∈,

wt +d3(−)3w = u12 +u3w t > 0, x ∈,

(39)

where 1, 2, 3,  , 1 and 2 are positive constants.
If we denote ⎧⎨

⎩
f1(u,v,w) = −u12 −u3w + 1 + 2w,
f2(u,v,w) = −u12 +u3w ,
f3(u,,w) = u12 +u3w ,
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then for all u,v,w � 0,

f1(0,,w) = 1 + 2w � 0, f2(u,0,w) = u3w � 0, f3(u,,0) � u12 � 0.

Again, existence of a global solution to (39) follows from conditions (6) and (7). By
choosing A > 1 and B > 0 we can easily see that

A f1(u,v,w)+B f2(u,v,w)+ f3(u,v,w) � A(1v+ 2w) < C (1+u+ v+w);

moreover, f3 and f1 (resp. f2 ) satisfy (7). In fact, 1
B (A f1 + f3) � 0 by choosing

A > 1 and 1
A (B f2 + f3) � 0 by choosing B = 1. Also (7) is satisfied for f1 and f2

while choosing (A+B)wr < A(1+ 2w) .
So that (6)–(7) holds for the system (39). The result of the Corollary applied to

this system is summarized in the following proposition

PROPOSITION 2. Assume that (u0,0,w0)∈ (L()+)3 . System (39) with bound-
ary conditions (2) admits a non negative global solution for all positive constants 1,
2, 3, ,1 and 2.
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