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Abstract. In this paper, we investigate a Riemann–Liouville fractional hybrid boundary value
problem to delve into the complexities of fractional calculus. We introduce novel Lyapunov-
type inequalities that are specifically adapted to the distinct features of the problem at hand. Our
results enhance the theoretical framework and include a comprehensive example that highlights
the practical significance and implications of our theoretical advancements.

1. Introduction

Fractional calculus (FC), an extension of classical calculus to non-integer orders
of differentiation and integration, plays a pivotal role in the advancement of various
scientific and engineering fields. Its significance lies in its ability to model complex
phenomena that are not adequately described by traditional integer-order calculus. By
incorporating fractional derivatives and integrals, FC provides a more sophisticated un-
derstanding of dynamic systems exhibiting anomalous diffusion, memory effects, and
hereditary properties. This extended framework enables more accurate and flexible
representations of real-world processes, ranging from control structures, chemistry, dy-
namic procedures, mechanics, viscoelastic materials, etc [3, 7, 14, 15, 16, 17, 19, 22,
28, 29, 30, 31, 32].

Lyapunov-type inequalities (LTIs) are crucial for analyzing fractional boundary
value problems (FBVPs), providing essential insights into the existence, uniqueness,
and stability of solutions. These inequalities serve as fundamental tools in evaluating
the boundedness and growth behavior of solutions to fractional differential equations
(FDEqs), thereby shedding light on their qualitative characteristics. In the context of
FBVPs, LTIs are particularly valuable for deriving a priori estimates, which are vital
for demonstrating the existence of solutions and ensuring their stability across differ-
ent scenarios. By utilizing these inequalities, researchers can establish more precise
bounds and enhance their understanding of the dynamics within fractional systems.
This, in turn, improves the robustness and reliability of both theoretical findings and
practical applications. Integral inequalities, notably Lyapunov-type, serve as essential
in exploring the quantitative aspects of solutions to differential and integral equations.
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This highlights their critical importance in the overall study of DEqs [2, 24]. The fa-
mous Lyapunov theorem [21] is as follows:
If the BVP

u′′(z)+ �(z)u(z) = 0, z ∈ (z0,z1),
u(z0) = 0 = u(z1),

}
(1)

has a nontrivial solution, where � ∈ C([z0,z1];R) , then

∫ z1

z0

∣∣�(y)∣∣dy >
4

z1−z0
. (2)

The Lyapunov inequality (LTI) (2) is useful in a variety of DEq-related problems. It has
been generalized in various forms due to its significance. Notably, investigators have
discovered LTIs for various BVPs. In [9], Ferreira studied an LTI for the FBVP

D
z+
0
u(z)+ �(z)u(z) = 0, z ∈ (z0,z1),

u(z0) = 0 = u(z1),

}
(3)

has a nontrivial solution, then

∫ z1

z0

∣∣�(y)∣∣dy > ()
(

4
z1−z0

)−1

,

where � is a real continuous function,  ∈ (1,2] , D
z+
0

is the Riemann-Liouville (RL)

derivative. Further, the paper aims to describe an LTI for a Caputo FBVP in [10].
The author has discussed some fascinating applications for identifying the real zeros of
specific Mittag-Leffler functions in both of his works.

In [18], the authors investigated the existence results for a fractional system subject
to Sturm-Liouville type conditions. The approach used relies on the Guo-Krasnosel’skii
and Wardowski fixed point theorems. In 2018, Ntouyas et al. [24] published survey
results on LTIs for FDEqs with numerous different BCs. For more details, see BVPs for
ODEqs [4, 5, 27], for FDEqs [12, 13, 33]. Nonlinear DEqs with quadratic perturbations
produce hybrid DEqs, which are more significant and exist as exceptional situations of
dynamical systems. One such type of Eqs includes the arbitrary real order derivative
of an unknown function that has been hybridized with nonlinearity. There are some
recent results in the literature on FBVPs for hybrid DEqs, see [1, 6, 11, 23]. In [34], the
authors considered the following RL-type hybrid DEqs

D
[

u(z)


(
z,u(z)

)]
= f

(
z,u(z)

)
, a.e. z ∈ (0,T),

where 0 <  < 1. They used the fixed point theorem in a Banach algebra to obtain
some existence results. For nonlinear fractional hybrid BVP, Lopez et al. [20] derived
an LTI. In [8], Eloe and Krushna established LTIs for a family of two-point (n,p)-type
FBVPs. To illustrate the applicability of their findings, they provided several exam-
ples, including one involving a FDEq with delay. Ntouyas and Ahmad [25] provide
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a comprehensive survey on LTIs for FDEqs and systems of FDEqs, covering a wide
range of fractional BCs. These include sequential, Caputo–Fabrizio, Hadamard, Hil-
fer, Katugampola, hybrid, and nested derivatives. More recently, Ntouyas et al. [26]
presented an extensive review of the latest developments on LTIs for various types of
FBVPs.

Based on the latest developments and insights from preceding research, we now
devote our attention to the study of nonlinear FBVPs. These issues include a com-
plicated interaction between fractional differential operators and nonlinear BCs, which
presents both significant hurdles and great potential for practical applications. The hy-
brid nature of these BVPs, which combine FC and nonlinear dynamics, provides an
ideal platform for the development of novel solution methods. By tackling such a com-
plicated issue, we hope to get a better understanding of FDEqs and their applications,
potentially leading to new techniques and solutions. This paper discusses the nonlinear
fractional hybrid BVP:

RLD
z+
0

[
u(z)


(
z,u(z)

)]
+ �(z)Fu(z) = 0, z ∈ (z0,z1), (4)

u(i)(z0) = 0, i = 0,n−2,

u(z1) = 0,

}
(5)

where z1 > z0 � 0, ∈ (n−1,n), n � 2 and RLD•
z+
0

is the RL derivative.

Three suppositions are taken into account throughout the paper:

(H1)  : [z0,z1]×R → R\ {0} is continuous and bounded function.

(H2) F : C[z0,z1] → C[z0,z1] and there exists  > 0 such that if u(z) ∈ C[z0,z1]
and u(z) � 0 for z0 � z � z1 , then

‖Fu‖ � ‖u‖.

(H3) � ∈ C
(
[z0,z1],R

)
.

This article is structured as follows. Some auxiliary results are included in Sect.
2. Sect. 3 presents the key theorems, and Sect. 4 illustrates how to apply the findings.

2. Preliminary results

Our key findings will be based on a few auxiliary results that we present here.

DEFINITION 1. [14, 28] Let  ∈ L1
(
(z0,z1);R

)
, where

(
z0,z1

) ∈ R
2 , z0 < z1 .

The RL fractional integral of order  > 0 of  is defined by

I
z+
0
(z) =

1
()

∫ z

z0

(z−y)−1(y)dy, a.e. z ∈ [z0,z1].
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DEFINITION 2. [14, 28] The RL derivative of order  of a function  : [z0,z1]→
R is defined by

RLD
z+
0
(z) =

1
(m−)

(
d
dz

)m ∫ z

z0

(z−y)m−−1(y)dy, a.e. z ∈ [z0,z1],

where
(
z0,z1

) ∈ R
2,z0 < z1 ,  > 0 and m = [ ]+1.

LEMMA 1. [14, 28] Assume that  ∈ C(z0,z1)∩L1(z0,z1) . Then

I
z+
0

RLD
z+
0
(z) = (z)+

n


k=1

dk(z−z0)−k, z ∈ [z0,z1],

where dk ∈ R, k = 1,n and n = [ ]+1 .

3. Kernel, bounds of kernel, and Lyapunov-type inequalities

LEMMA 2. Suppose (H1) holds and let h ∈ C
(
[z0,z1],R

)
. Then u(z) ∈

C
(
[z0,z1],R

)
is a solution of the FDEq

RLD
z+
0

[
u(z)


(
z,u(z)

)]
+h(z) = 0, z ∈ (z0,z1), (6)

with (5) if and only if

u(z) = 
(
z,u(z)

)∫ z1

z0

G (z,y)h(y)dy,

where

G (z,y) =

⎧⎪⎪⎨
⎪⎪⎩

(z1−y)−1(z−z0)−1

(z1−z0)−1()
, z0 � z � y � z1,

(z1−y)−1(z−z0)−1

(z1−z0)−1()
− (z−y)−1

()
, z0 � y � z � z1.

(7)

Proof. Let u(z)∈ C[z0,z1] be the solution to the FBVP (6), (5). Then we have by
Lemma 1,

u(z)


(
z,u(z)

) =
n


k=1

dk(z−z0)−k−I
z+
0
h(y)dy,

where dk ∈ R for k = 1,n . So,

u(z) = 
(
z,u(z)

)[ n


k=1

dk(z−z0)−k− 1
()

∫ z

z0

(z−y)−1h(y)dy

]
.
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Using u(i)(z0) = 0, i = 0,n−2, we get dn = dn−1 = · · · = d2 = 0. Therefore

u(z) =
(
z,u(z)

)[
d1

(
z−z0

)−1− 1
()

∫ z

z0

(z−y)−1h(y)dy
]
. (8)

Thus, u(z1) = 0 implies d1 =
∫ z1

z0

[
(z1 −y)−1

()
(
z1−z0

)−1

]
h(y)dy and the unique solu-

tion of FBVP (6), (5):

u(z) = 
(
z,u(z)

)
⎧⎪⎪⎨
⎪⎪⎩

∫ z

z0

(
(z−z0)−1(z1−y)−1

()(z1 −z0)−1 − (z−y)−1

()

)
h(y)dy

+
∫ z1

z

(
(z−z0)−1(z1−y)−1

()(z1 −z0)−1

)
h(y)dy

= 
(
z,u(z)

)∫ z1

z0

G (z,y)h(y)dy,

where G (z,y) is given in (7). The proof is now complete. �
For n= 2 and n� 3 cases, we now present estimates of the Kernel G represented

by (7). Let us begin with the case n = 2.

LEMMA 3. [20] Let n = 2 . The Kernel G (z,y) given by (7) has the properties:

(a) G (z,y) � 0, ∀ z,y ∈ [z0,z1],

(b) max
z∈[z0,z1]

G (z,y) = G (y,y) =
(y−z0)−1(z1−y)−1

()(z1−z0)−1 , ∀ z0 � y � z1,

(c) max
y∈[z0,z1]

G (y,y) =
1

()

(
z1−z0

4

)−1

.

The following lemma provides the estimates of the Kernel G for Case n � 3.

LEMMA 4. If n ∈ N, n � 3 , then the Kernel G (z,y) has the properties:

(a) G (z,y) � 0, ∀ z,y ∈ [z0,z1],

(b) For z ∈ [z0,z1], y ∈ (z0,z1) ,

G (z,y) � G (y∗,y) =
(z1 −y)−1(y−z0)−1

(z1−z0)−1()

[
1−

(
z1−y

z1−z0

) −1
−2

]−2 ,

where y∗ =
y−z0

(
z1−y

z1−z0

) −1
−2

1−
(
z1−y

z1−z0

) −1
−2

.
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Proof. The Kernel G (z,y) provided in (7) is clearly continuous on [z0,z1]×
[z0,z1] . It is evident that G (z,y) � 0, ∀ z,y ∈ [z0,z1] . We establish the inequality
(b) . Let y ∈ (z0,z1) be fixed. For y � z � z1 , we have


z

G (z,y) =
( −1)(z1−y)−1(z−z0)−2

(z1−z0)−1()
− ( −1)(z−y)−2

()

=
[
(z−z0)−2

( −1)

]{(
z1−y

z1−z0

)−1

−
(

1− y−z0

z−z0

)−2
}

.

We notice that

z

G (z,y) = 0 ⇔ z = y∗ . In addition, we also have

y∗ −z0 =
y−z0

1−
(
z1−y

z1−z0

) −1
−2

> 0, y ∈ (z0,z1)

and

z1−y∗ =
z1−y

1−
(
z1−y

z1−z0

) −1
−2

[
1−

(
z1−y

z1−z0

) 1
−2

]
> 0, y ∈ (z0,z1).

As a result, for all y ∈ (z0,z1) , we have y∗ ∈ (z0,z1) . Furthermore, we have G (z,y)
maximizes at y∗ occurs when y � z , for a given value of y ∈ (z0,z1) . This leads to
the conclusion that (b) is true due to the fact that G (z,y) is increasing on y> z . �

REMARK 1. Notice that in the case n = 2, that is,  ∈ (1,2) , we have y∗ < z0 .
It follows that the estimates for G (z,y) for n> 3 presented in Lemma 4 cannot cover
those for n = 2 given in Lemma 3.

REMARK 2. A straightforward calculation yields

lim
y→z+

0

G (y∗,y) = lim
y→z−1

G (y∗,y) = 0.

LEMMA 5. [13] If n ∈ N, n � 3 , then

max
y∈[z0,z1]

G (y∗,y) =
(z1 −z0)−1−1

 (1−)−1

()
(

1−
−1
−2


)−2 ,

where  is the unique zero of 
2−3
−2 −2 +1 = 0 in

(
0,

(2 −4
2 −3

) −2
−1

)
.
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For RL FBVP (4)–(5), we can now construct an LTI. As we are focused on contin-

uous solutions, we consider the Banach space E =
{
u : u ∈ C[z0,z1]

}
with the norm

‖u‖ = max
z∈[z0,z1]

∣∣u(z)∣∣.
We distinguish two cases.

3.1. The case n = 2

In this case, problem (4)–(5) reduces to the nonlinear fractional hybrid BVP

RLD
z+
0

[
u(z)


(
z,u(z)

)]
+ �(z)Fu(z) = 0, z ∈ (z0,z1), (9)

u(z0) = 0, u(z1) = 0, (10)

where z1 > z0 � 0, ∈ (1,2) .

THEOREM 1. Suppose (H1)–(H3) hold. If u is a nontrivial solution of the FBVP
(9)–(10), then ∫ z1

z0

∣∣�(y)∣∣dy� ()


(
4

z1−z0

)−1

. (11)

Proof. Let  = sup
{∣∣(z,u)

∣∣ : z ∈ [z0,z1],u ∈ R

}
. Let u be a nontrivial solu-

tion to the FBVP (9)–(10). By implementing Lemma 2 and z(y) = �(y)Fu(y) , u can
now be expressed as

u(z) = 
(
z,u(z)

)∫ z1

z0

G (z,y)�(y)Fu(y)dy, z ∈ [z0,z1]. (12)

We can see from (H1)–(H3) , for z0 � z � z1 , we obtain∣∣u(z)∣∣ �
∣∣(

z,u(z)
)∣∣∫ z1

z0

∣∣G (z,y)
∣∣ ∣∣�(y)∣∣ ∣∣Fu(y)∣∣dy

� 
∥∥Fu∥∥ ∫ z1

z0

∣∣G (z,y)
∣∣ ∣∣�(y)∣∣dy.

Using Lemma 3 (c) , we obtain

∥∥u∥∥ �  
∥∥u∥∥ ∫ z1

z0

1
()

(
z1−z0

4

)−1∣∣�(y)∣∣dy.
As a result, ∥∥u∥∥ �

∫ z1

z0

∣∣�(y)∣∣dy 1
()

(
z1−z0

4

)−1


∥∥u∥∥.

Since u is a nontrivial solution, we have ‖u‖ > 0. Therefore,∫ z1

z0

∣∣�(y)∣∣dy 1
()

(
z1−z0

4

)−1

 � 1,

which yields the desired inequality (11). �
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3.2. The case n � 3

THEOREM 2. Suppose (H1)–(H3) hold. If u is a nontrivial solution of the FBVP
(4)–(5), then

∫ z1

z0

∣∣�(y)∣∣dy�
()

(
1−

−1
−2


)−2

(z1 −z0)−1−1
 (1− )−1

, (13)

where  is the unique zero of 
2−3
−2 −2 +1 = 0 in

(
0,

(2 −4
2 −3

) −2
−1

)
.

Proof. Let u be a nontrivial solution to the FBVP (9)–(10). Following from
(H1)–(H3) and using (12), we obtain∣∣u(z)∣∣ �

∣∣(
z,u(z)

)∣∣∫ z1

z0

∣∣G (z,y)
∣∣ ∣∣�(y)∣∣ ∣∣Fu(y)∣∣dy

� 
∥∥Fu∥∥ ∫ z1

z0

∣∣G (z,y)
∣∣ ∣∣�(y)∣∣dy.

Using Lemma 5, we obtain

∥∥u∥∥ � 
∥∥u∥∥ ∫ z1

z0

(z1−z0)−1−1
 (1−)−1

()
(

1−
−1
−2


)−2

∣∣�(y)∣∣dy.

As a result,

∥∥u∥∥ �
∫ z1

z0

(z1 −z0)−1−1
 (1−)−1

()
(

1−
−1
−2


)−2

∣∣�(y)∣∣dy ∥∥u∥∥.

Since u is a nontrivial solution, we have ‖u‖ > 0. Therefore,∫ z1

z0

(z1 −z0)−1−1
 (1− )−1

()
(

1−
−1
−2


)−2

∣∣�(y)∣∣dy � 1,

which yields the desired inequality (13). �

COROLLARY 1. Suppose (H1)–(H3) hold. Then the estimate

∫ z1

z0

∣∣�(y)∣∣dy <
()


(
4

z1−z0

)−1

implies that the FDEq

RLD
z+
0
u(z)+ �(z)Fu(z) = 0, z0 < z < z1, (14)

satisfying (5), where z1 > z0 � 0,  ∈ (1,2), has only the trivial solution u(z) ≡ 0 .
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COROLLARY 2. Suppose (H1)–(H3) hold. Then the estimate

∫ z1

z0

∣∣�(y)∣∣dy <

()
(

1−
−1
−2


)−2

(z1 −z0)−1−1
 (1− )−1

implies that the FDEq

RLD
z+
0
u(z)+ �(z)Fu(z) = 0, z0 < z < z1, (15)

satisfying (5), where z1 > z0 � 0,  ∈ (n− 1, n), n � 3,  is the unique zero of


2−3
−2 −2+1 = 0 in

(
0,

(2 −4
2 −3

) −2
−1

)
, has only the trivial solution u(z) ≡ 0 .

COROLLARY 3. Suppose that (H1) and (H3) hold. Then we assert that any
eigenvalue  of the FDEq

RLD
z+
0

[
u(z)


(
z,u(z)

)]
+Fu(z) = 0, z0 < z < z1, (16)

coupled with BCs (5), where z1 > z0 � 0,  ∈ (n−1,n), n� 3,  is the unique zero

of 
2−3
−2 −2 +1 = 0 in

(
0,

(2 −4
2 −3

) −2
−1

)
, satisfies

∣∣ ∣∣ �
()

(
1−

−1
−2


)−2

(z1 −z0)−1
 (1−)−1

.

Proof. If  is an eigenvalue of FBVP (16), (5). Then FBVP (16), (5) admits at
least one nontrivial solution u . As a result of Theorem 2, we have

∫ z1

z0

∣∣ ∣∣dy �
()

(
1−

−1
−2


)−2

(z1−z0)−1−1
 (1−)−1

and it provides us with the desired outcome. �

4. An Example

EXAMPLE 1. Let z1 = 1, z0 = 0,  =
11
3

, (z,u) ≡ 1, �(z) = 53ln(2 + 3z)

and Fu = u on C[0,1] . Consider a nonlinear FBVP:

RLD
11
3

0+

[
u(z)

(z,u)

]
+ �(z)u(z) = 0, 0 < z < 1, (17)
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u(0) = u′(0) = u′′(0) = u(1) = 0. (18)

In view of the data given, we get = 1,  = 1 and by straight forward calculation, we

get  = 0.691912 is the unique zero of 
13
5 −2+1 = 0 in

(
0,0.745461

)
. Then

(i)
∫ z1

z0

∣∣�(y)∣∣dy = 53
∫ 1

0
ln(2+3y)dy=

53
3

[
(2+3y) ln(2+3y)− (2+3y)

]1

0

=
265
3

ln(5)− 106
3

ln(2)−53≈ 64.675815,

(ii)
()

(
1−

−1
−2


)−2

(z1−z0)−1−1
 (1− )−1

=
( 11

3 )
(

1− (0.691912)

11
3 −1
11
3 −2

) 11
3 −2

(0.691912)
11
3 −1

(
1− (0.691912)

)11
3 −1

≈ 61.163746.

From (i) and (ii) , we have
∫ z1

z0

∣∣�(y)∣∣dy �
()

(
1−

−1
−2


)−2

(z1 −z0)−1−1
 (1− )−1

. By

Theorem 2, the FBVP (17)–(18) has a nontrivial solution.

5. Conclusion

In conclusion, this paper effectively addresses the RL fractional hybrid BVP by es-
tablishing sufficient conditions for deriving LTIs. The theoretical results are validated
through an illustrative example, which highlights the practical applicability and effec-
tiveness of the proposed method. These findings enhance our understanding of FDEqs
and their boundary value problems, opening potential avenues for further research into
the analysis and application of fractional systems.
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