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Abstract. This paper explores the approximate controllability of a fractional differential con-
trol problem governed by a nonlinear hemivariational inequality in a Hilbert space. Initially, the
existence of a mild solution for a fractional control inclusion problem, equivalent to the hemivari-
ational inequality, is demonstrated using nonsmooth analysis and fixed-point techniques. Sub-
sequently, sufficient conditions for the approximate controllability of the inclusion problem are
established, assuming that the corresponding linear system is approximately controllable. The
existence and controllability results derived for the inclusion problem are applicable to the non-
linear hemivariational problem under consideration. An example is presented to illustrate the
effectiveness of the proposed results.

1. Introduction

Hemivariational inequalities are a generalization of variational inequalities that
arise in the study of nonconvex and nonsmooth energy functions. They have various
applications across different fields due to their ability to model complex phenomena
involving nonconvex and nonsmooth potentials. Panagiotopoulos [25] initially intro-
duced the concept of hemivariational inequality in 1981. He utilized hemivariational in-
equalities to address mechanical problems characterized by nonconvex and nonsmooth
superpotentials, see for example, [23,24]. Over time, an increasing number of scholars
have made significant contributions to the exploration of solution existence in hemi-
variational inequalities and various authors have proven the existence of solutions for
hemivariational inequalities under different assumptions and hypotheses. For detailed
information of existence of solution and its nature we refer [10, 13, 19,22,31] and the
references there in.

The notion of noninteger derivatives and integrals represents an extension of the
conventional calculus based on integer orders. This extension is motivated by the dis-
tinctive memory-like characteristics inherent in fractional derivatives, rendering them
more suitable for describing the properties of diverse real materials compared to their
integer-order counterparts. Over the past two decades, fractional calculus has drawn the
interest of physicists, mathematicians, and engineers, leading to notable contributions in
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both theoretical advancements and practical applications of fractional differential equa-
tions. For more comprehensive insights into fractional calculus and fractional differen-
tial equations, readers are directed to the monograph authored by Kilbas [14]. Hemi-
variational inequalities with fractional derivatives are essential in modeling anomalous
diffusion processes where the standard diffusion equations fail, such as in porous me-
dia or heterogeneous materials. The specifications of initial conditions for Riemann-
Liouville fractional derivatives or integrals are pivotal in addressing certain practical
challenges. Heymans and Podlubny [9,27] have illustrated that it is feasible to assign
a physical significance to initial conditions formulated using Riemann-Liouville frac-
tional derivatives or integrals, particularly in the realm of viscoelasticity. Such initial
conditions are deemed more suitable than those that are physically interpretable.

The nonlocal initial condition proves to be more effective in physics compared to
the classical initial condition u(0) = up. To illustrate, in 1993, Deng [7] utilized the
nonlocal condition to characterize the diffusion phenomenon of a small amount of gas
within a transparent tube. In this context, condition (1.2) facilitates additional mea-
surements at #;, where k = 1,2,...,m, offering greater precision than measurements
solely at + = 0. Furthermore, in 1999, Byszewski [2] highlighted that if ¢; # 0, where
k=1,2,...,m, the outcomes can be employed in kinematics to ascertain the evolu-
tionary path 7 — u(#) of a physical object. This is particularly useful when the posi-
tions u(0),u(t;),...,u(ty) are unknown, but the nonlocal condition (1.2) is confirmed
to hold. Few more articles by Mahmudov [20], Wang [30] and Chen [3, 4] considered
semilinear systems with non-local conditions and proved the exixtence of solution.

The concept of controllability, introduced by Kalman in 1963 [11], laid the foun-
dation for an active research area due to its crucial applications in physics. There are
various works on approximate controllability of systems represented by fractional dif-
ferential equations, integrodifferential equations, differential inclusions, neutral func-
tional differential equations, and impulsive differential equations in Banach spaces;
see [1,18,20] and references therein. In recent years, the exploration of control sys-
tems governed by Caputo fractional evolution equations has seen considerable atten-
tion (see [4,22,28,30,32]). Despite this, the topic of approximate controllability for
fractional evolution differential equations with Riemann-Liouville fractional derivative
with local and nonlocal initial conditions under different hypothesis has been studied
by many authors. For reference see the literature [15,17,18,29]. This gap in knowledge
serves as the motivation for the present work. The objective of this paper is to present
suitable sufficient conditions for the existence and approximate controllability of frac-
tional differential Hemivariational inequalities involving Riemann-Liouville fractional
derivatives.

Let H be a separable Hilbert space and control space U is a Hilbert space, which is
identical to its dual space. In this work, we investigate the existence of a mild solution
and the approximate controllability of the following semilinear fractional differential
hemivariational inequality:

(—RDg x(1) + Ax(t) +Bu(r), )i + FO(1,x(1);v) > 0,
t€J=10,b],¥veH, (1.1)

Iog ~%x(t)]1—0 = Xj— CiXes
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where, (.,.)g denotes the scalar product of the separable Hilbert space H and the norm
in H is denoted by |||, RDg‘t denotes the Riemann-Liouville fractional derivative

of order o € (0,1) with the lower limit zero and Ié ;. % denotes the Riemann-Liouville
fractional integral of order 1 — o with lower limit zero, A : D(A) C H — H is the
infinitesimal generator of a Co-semigroup .7 (¢)( > 0) on H. For o > 1 the control
function u takes value in L?(J,U) of admissible control functions for a hilbert space
U. B:U — H is a bounded linear operator, F O(I, .;.) stands for the generalized Clarke
directional derivative of a locally Lipschitz function F(r,.) :H—-R, 0 <t <15, <

. <tm<b,meN, ¢ arereal constant, ¢; #0, k=1,2,.....m and x; = x(t;) for
k=1,2,.....m

2. Preliminaries

In this section, we recall some fundamental definitions, notations, which will help
us to establish existence and controllability result for the system (1.1).

Let X and Y be two Banach spaces eqippped with the norms | - ||x and || - ||y
respectively. Let C(J,X) denote the Banach space of all X valued continuous func-
tions from J to X with the norm ||x||c = sup,c; ||x(¢)||x. The space of all bounded
linear oerators from X to Y is denoted by L,(X,Y). For the uniformly bounded Cj-
semigroup 7 (t) (t > 0), we set M := sup,~¢||7 (1)|,x) < . Let C1_(J,X) =
{x:1'"%x(r) € C(J,X)} is Banach space with the norm

xlle, o = sup{e'~|lx(e) | 1 € T}
We recall some basic definitions, important concept from the reference [14].

DEFINITION 2.1. The fractional integral of a function z: [a,b] — R, a,b € R
with a < b, of order o > 0 is defined as

Ig,2(t) := F(la) /at a _Z(Ss))la ds, forae. 1 € [a,b],

where z € L!([a,b];R) and T'(t) = ["t% le~"dt is the Euler gamma function.
DEFINITION 2.2. The Riemann-Liouville fractional derivative of a function z :
[a,b] — R of order o > 0 is given as

1 an .
WW/ (r=s)""*"\zls)ds, forae. 1 €lab],
- a

RDZ,z(t) =
withn—1< o <n.

If z is an abstract function with values in X, then the integrals which appear in
2.1 and 2.2 are taken in Bochner’s sense, that is: a measurable function z maps from
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[0,4+0) to X is Bochner integrable if ||z|| is Lebesgue integrable. Furthermore, given
a Banach space X, we will use the following notations.

Perev(X) :={Q C X: Q is nonempty, closed (convex)},

P (w)ep(ev)(X) 1= {Q € X: Q is nonempty, (weakly) compact (convex)}.

Now, we introduce some basic definitions and results from multivalued analysis.
For more details please see the book [6].

(i) For a given Banach space X, a multivalued map F : X — 25\ {0} := 2(X) is
convex (closed) valued, if F(x) is convex (closed) for all x € X.

(ii) F is called upper semicontinuous (u.s.c. for short) on X, if for each x € X,
the set F(x) is a nonempty, closed subset of X, and if for each open set V of X
containing F(x), there exists an open neighborhood N of x such that F(N) C V.

(iii) F is said to be completely continuous if F (V) is relatively compact, for every
bounded subset V C X.

(iv) Let X is the o- algebra of subsets of the set Q, (2,X) be a measurable space

and (X,d) a separable metric space. A multivalued map F : Q — (X)) is said

to be measurable, if for every closed set C C X, we have F~!(C) = {tr € Q:
F(r)NC#0} € X.

Now we recall the few elements of nonsmooth analysis (see [5] for detailed informa-

tion).

DEFINITION 2.3. Let h: X — R be a locally Lipschitz function on a Banach
space X. The generalized directional derivative of & at y € X in the direction z € X is
defined by

The generalized gradient of /& at y € X is the subset of X* which is the dual space
of X, is given by

Oh(y) == {y* € X*: 1i°(y;2) > (y*,2)Vz € X}.

Now we consider the following semilinear inclusion

{RD&tx(t) € Ax(t) +Bu(t)+ dF (1,x(1)), t€J=][0,b], o

Ié7t_ax(t) li=0 = 2111 CkXks
where, JF is the generalized Clarke subdifferential of a locally Lipschitz function
F(t,.)) :H—R. If x € C;_q(J,H) is a solution of (2.1), then there exists f(¢) €
JF (t,x(t)) such that f(¢) € L'(J,H) and

D x(t) = Ax(r) + Bu() + f(), 1 €J=10,b],
I(%,;ax(t)‘t=0 = Y0l CkXks
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which implies

(—RDE (1) + Ax(t) +Bu(t), vy + (f(1),v)u =0, 1€J=[0,b],¥v € H,
1575 (1) 0 = Sy cxxe

Since f € dF (t,x(t)) and (f(¢),v)u < FO(t,x(t);v), we obtain

(—FDx(r) + Ax(r) +Bu(t), v + FO(1,x(1);v) > 0, 1€J=[0,b], v € H,
Ié,?ax(t)|t:0 = 0L kX

Therefore, in order to study the hemivariational inequality (1.1), we only need to deal
with the semilinear inclusion (2.1).
Further, we define the operator

1= a/:ega(e)y(ﬂe)da

1
Eu(0) = 59—1—(1/06)(00‘(9—1/06)7

0(6) = %;(—1)”_16‘”0‘_1Wsin(nn(x), 6 € (0,00).
ASSUMPTION 2.1. Y7 |eptf | < 52
From assumption 2.1, we have
2 it Tote) (2.2)
By inequality (2.2) and operator spectrum theorem, we know that
= (1 2 it (1)), (2.3)

exists and is a bounded operator with D(&) = H. Furthermore, by Neumann expres-
sion, &' can be expressed by

@’:i(chtk " Tet))".

n=0 k=1

Therefore,

n
o

H@’HéZ

)

2 Cklk ﬂa l‘k

1

i fent ™

M 1|'
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By the above discussion, [16] and [17], we know that the mild solution for the fractional
inclusion problem (2.1) can be written as

x(t) = tO‘*lz%,(t)(lo’tl*ax(t)h:o) —|—/Ot(t — )%V Tyt — 5)[Bu(s) + f(s5)]ds.  (2.4)

From (2.4) we have for each #;

x(te) = 0" T (1) (Tos '~ *x(8) =0 +/ t— )"~ Tt — 5)[Bu(s) + f(s)]ds
(2.5)

Using Assumption 2.1 and the estimates (2.3), (2.4) and (2.5), we get
706 m [k o1
Oho= Y 0 [ (1=9)"" Tult—9)Bul9) +£(9)ds.  26)
k=1
By (2.4) and (2.6), we can write
m 11
_ 2 1 Ty / (6 — )% Ty (1 — 5)[Bu(s) + f(5)]ds

+ / )% Tt = ) [Bu(s) + £(s)]ds. 2.7)

For convenience, we introduce the function G(z,s) as follows:

Zx,k Dtr—5)*"10 Tyt —s5)+ 3 (s)(t —5)* LT (t —5), (2.8)
with
€k s € [O,Ik)
2 (5) = {O, s € [tx, D],
1, s€0,2)
2(s) = {07 s € [t,b].

Therefore, by (2.7) and (2.8) we know that the solution of fractional inclusion (2.1) can
also be expressed as

b
0= [ Gle.s)Bu() + f(5)ds
0
Now we may define a mild solution of problem (2.1) as follows:
DEFINITION 2.4. For each u € L*(J,U), a function x € C;_¢(J,H) is called a

mild solution of the control system (1.1) if I'™%x(t)|,—o = Yi cxxx and there exists
f € L' (J,H) such that f(¢) € dF (t,x(t)) a.e. on ¢ € J and

= /Oh G(t,s)[Bu(s)+ f(s)]ds. (2.9)
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LEMMA 2.1. [17] The operator Jy(t) has the following properties:

1. Forany fixed t >0, Jy(t) is linear and bounded operator; that is for any x € H,

M
a0l < =l

2. Tu(t) (t=0) is strongly continuous.

DEFINITION 2.5. Let x be a mild solution of system (2.1) corresponding to the
control u € L?(J,U). Fractional evolution inclusion (2.1) is said to be approximately
controllable on the interval J if the set %;(b) = H, where the set

Zy(b) = {x(b) €H:u e L*(J,U)},

is called the reachable set of (2.1).

3. Existence of mild solution

This section is devoted to prove the existence of mild solution of the considered
system (2.1). Let us first define the following operators:

b
r{;:/ G(b,s)BB*G* (b,s)ds, = <a <1,
0

N =

and
b A
R(a,FO> = <a1+FO> , a>0,

where B*,0* and 9" is the adjoint of B, & and .7, respectively, and G* is the
adjoint of G defines as:

G*(b,s) = 2 Xix (VT ) O (e — )V To* (1 — 5) + ) (5) (£ —5)* LT (t —5).
k=1
We consider the linear fractional differential control system:

{RD&x(t) = Ax(t)+Bu(t), t1€J=10,0], ;<a<l, (3.10)

Ié,?ax(t) li—0 = 2JL | CrXe-

LEMMA 3.1. [21] The linear fractional differential system (3.10) is approxi-
mately controllable on J if and only if aR (a7 Fg) — 0 as a— 0% in the strong operator
topology.
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LEMMA 3.2. [12] Let X be a Banach space. Let F :J x X — Pep v(X) be
an L'-Caratheodory multivalued map with Try) =18 € L'(J,X) : g(t) € F(t,5(1)),
fora.e. t €J} being nonempty and let T' be a linear continuous mapping from L' (J,X)
to C(J,X), then the operator

FOyF IC(J,X) — @CP’C(C(J,X)),

y — (LoZF) () :=T(Fp(y),
is a closed graph operator in C(J,X) x C(J,X).

THEOREM 3.1. [6] Let D be a bounded, convex, and closed subset in the Banach
space X and let V : D — 2X\{0} be a u.s.c. condensing multivalued map. If, for every
x € D,V(x) is a closed and convex set in D, then V has a fixed point.

To prove the existence of mild solution we need the following assumptions:

ASSUMPTION 3.1. (HIL) Z(¢) is compact.
(H2) The function 7 — F(z,x) is measurable for all x € H.
(H3) The function x — F(z,x) is locally Lipschitz continuous for a.e. € J.
(H4) For each fixed x € C;_(J,H) the set
Sorx=1{f €L'(J,H): f(1) € IF (1,x(1))},

is nonempty.

1
(H5) There exist a function P(z) € LY (J,R") with 0 <y < o and a nondecreasing
function ¥ : R — R, such that

|0F (t,x)|lm = sup{||f(t)|lm : f(z) € IF(t,x)} < P)w(llx[lp),
for any ¢ € J for all x € H and for each r > 0, there exists 0 < p < 1, such that

timint YU . = p < 1.
r—oo r

THEOREM 3.2. [fthe assumption 2.1 and all the conditions (HI)—(HS) of assump-
tion 3.1 are satisfied, then the system (2.1) has a mild solution.

Proof. We consider a set
B, ={xe€Ci_q(J,H) : ||x|| < r,r > 0}.

on the space Cj_q(J,H), We easily know that B, is a bounded, closed, and convex
set in Cj_q(J,H). For a > 0, for all x(-) € C;_q(J,H),x; € H, we take the control
function as

ult) = B*G*(b,t)R(a,rg)P(x(-)),
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where

b
) =x1 — /0 G(b,5)f(s)ds, f € Saps-

By this control, we define the operator @, : C1_q(J,H) — Z(Ci_q(J,H)) as follows:

Dy(x) = {7 € Cro(J,H) : /Gts $) +Bu(s)]ds, f € Sy, 1 € (0,]}.

To prove that the operator @, : Ci_y(J,H) — Z(Ci_¢(J,H)) has a fixed point, we
subdivided the proof into following steps:

Step 1: @, is convex for each x € C;_q(J,H).
If 71,7 € ®y(x), then foreach 1 € J, f1, f» € Syp, s.t.

b b
t):/o G(t,s)[f,-(s)+BB*G*(b,t)R<a,F8>{x1—/0 G(b, 1) fi(s)du}]ds
Let 0 <A <1, then for each t € J, we have
AT () + (1= A)na(t)
:/ObG(t,s)[)Lfl(s)+(1—/l)fz(s)}ds
+/OhG(t,s>BB*G*(b,,>R(a,rg) {xl—/OhG(b,u)()Lfl(u)+(1—/l)fz(u))du ds.

Since Syf is convex (as JF has convex values), A fi + (1 —=A4)f2 € Syp, thus A7y (1)
+(1=2A)na(1) € D,y(x).

Step 2: For each a > 0, there is a positive constant ry = r(a), such that ®,(B,,) C
B,,.

If this is not true, there Ja > 0 such that Vr > O there exists an x such that
«(X) € By, that is

19a(x)[| = sup{l|zlic, ,m) : T € Palx) > r}.

Since

/ G(t1,5)[f(s) + Bu(s)]ds,

for some f € SaF _. By using Holder’s inequality and (HS5), we get

|k163) H/Gts s)ds /GtsBu
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Let us consider

1—-y m
My =B, ﬁ:(ﬂbw/m—w) e Tha
@ [

M M
A= —— a=lprA 1 A= | Agp* 1 — ).
' o) (b ot 1), A (°b r<a>+1)

We estimate the following

/O " Glt.5)f(s)d

< gl S w009 Tl 9l s

/tﬁm (=" Zalt =) £

+

M o .
o | =9 Py

M l—y a—y 17}/ B
e vl (5725 ) 6 taina+1)

’1

w(r)|Pl,, BB 'MAg+1),
Y

:m

= y(IIPI,, Ar.
Y

S

We have the norm of G as

1G(t,5)]| = %(b—sm

and of u as
[[u ()H— al'(a )/\2<x1||+llf( )+PL}1/A1)-

This gives

/GtsBu

M32M2A1A2 ( ) ! 202
+ Pl A / £ — $)2%2dg
(@) [ler+{lw (r)] ”L% 1 O( )
B2M2b2a71A1A2
al'(a)* (200 —1)

(w1, o).
Y
Now we have,

1) =1

/0 " G(t.5)[F(s) + Bu(s)]ds

/ObG(t,s)f(s)ds w

<tlfoc l-a

b
/ G(t,s)Bu(s)ds
0
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M

<Y —— P b*'MAy+ 1
e VPl B Mo 1)
MBZMZbZOC—lAlAz

al'(a)*(200—1)

(bl )lPl, A1)
Y
Thus,
rgbl—aﬂw(r)npu B(b* 'MAg+1)
I'(a) 4
Mg>M?b%A Ay
al'(a)* (20— 1)

< {%ﬁ(m\o +5'7%) +

2 (I ||+w<r>||P||L§A1)

MpZM2b2A Ay MB M2b* A Ay
(Pl ey ]
L1

al(a)?(2a—1) al(a)?(2a—1)

Dividing both sides by r and taking the low limit as r — oo, we get
hm inf —= W( ) HP||Ll

which is a contradiction to (H6).

Step 3: @,(x) is closed for each x € C;_y(J,H).
For each given x € Cy_(J,H), let {7, },>0 C ®4(x) suchthat 7, — 7 in Cj_y(J,H).
Then there exists f, € Syr, such thatfor all z € J

b
= [ G.9)(s) + Bun(s))ds,
where
nft) =BG (0,R (a.18) (1~ [ Glo, (i)

From [26], Propositions 3.1, Sy, is weakly compact in L'(J,H) which implies that
fn converges weakly to some f € Syp,, in L'(J,H). Thus, u, — u and

b b
(1) =BG (bR (T8 {1 —/ G(b, 1) f(10)d ).
0
Then for each 7 € J, 1, — ©(t), where 7(¢) is given by
b b b
= [(G5)r6)ds+ [ G.9BB G (@ 9R (a1t — [ Glb ) (w)du}s.
0 0 0

Thus we showed the closedness of ®@,(x) V x € C;_(J,H).

Step 4: To show @, is upper semicontinuous and condensing, we have

D,y (x) ={1€Ci_o(J,H): / G(t,s)[f(s)+Bu(s)lds, f€Sypyt < (0,b]}.
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Now we prove @, (x) is upper semicontinuous and completely continuous. We subdi-
vide the proof into several claims.

Claim 1: There exists a r > 0 such that ®,(B,) C B,. By utilizing the method
employed in step 2, it becomes straightforward to demonstrate the existence of » > 0

such that ®,(B,) C B,.

Claim 2: ®,(B,) is a family of equicontinuous functions. Let 0 < s <1 <1, <b.
For each x € B,, ¢ € ®,(x), 3f € Syp, such that

/ G(t1,5)[f(s) + Bu(s)]ds,

then we have
T —T —/ (t2,8) — G(11,5)][f(s) +Bu(s)]ds
:/ [2 %fkt2ailga(t2)ﬁ(tk—S)ailya(tk—s)
0 Li=1
+ 2y (5) (12 = )" T (1 — S)] [f(s) +Bu(s)]ds
/ |:Zthl1 fa ()0 (tk—s)a_lﬁa(tk_s)
+ 2, () (01 —5)* ' T (11 —S)} [£(s) + Bu(s)]ds.

Now,

|72 — 7|

<[R* ') 6" Tu(n)) /()blixtk(S)@’(tk — )" T (tx — 5)[f (s) + Bu(s)]ds
=1

+ H/Oh Xy (5)[(12 = ) Ty (12— ) — (11 — 5)* T (1 — )] [f(5) + Bu(s)]ds

b 1
| [ s = 200 =90 Tt 10+ B s
g||[tzafl%(tz)—zﬂ*l%(tl)]/ 2;&,( St — )% Tt — 5)[ £ (s) + Bu(s)]ds
“

2 = )% Ty (12 — )£ (5) + Bu(s))ds]|,

[(z2 )" Tty — ) — (11— ) T (11 — s)] [f(s) +Bu(s)}dsH
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[lzafl{ya(tz) — Ta(t1)} + (tzafl —llaflya(tl))]

:/O”

i%fk (tx —8)* " Teu(tr — 5) [ £ (5) + Bu(s)]ds

(12— ) N Ttz — 5) — Tultr — )}

Al

+{l=9)" " = (=9} Tl = 9)| [ (5) + Bu()]ds

’ (zz—s)a*%(zz—s)[f(s)+Bu(s)]dsH

< Ao max {%(tz) %(h)}ba1%[/()tk(fk—S)aIIIBBIIIIM(S)IIdS

t1.2€[0,b
+ [ (rk—s>°”||f<s>ds]

+ max | Tu(i ) - %(tl—s)n/()” (12— )“ Y [f(5) + Bu(s)]||ds

s€(0,1
t1

i [ = =" ) + Bt ds

+r£/ (12— ) V| [£(s) + Bu(s)] | ds

MMy (% _
<o, max {Talin) = Zal)}0" T [ (=) Juls)ds

11,1 €[0,b]

g max (Tulon) ~ T} PR [ ) () s
'y Jo

11,12€[0,D]
1y
+ Mg max [| T4 (2 — ) — Talty —S)II/ (t2 =) H[u(s)||ds
SE[OJl] 0

+ max [ Tulis =)~ Tt =) [ (=555 s

s€[0,11]

MMB/ (=9 = (1= 9" ul)lds

/{2—s (1 — ) Y £(s) ]l ds

MM ~ -
2 [ =9l ds+ £ [ (=) 0 s

n

Sh+bh+hL+L++1+ 17+,

where

I :=Ag max {Ty(tr) — Tu(t1)}b* 1MMB/ “Hlu(s)|ds,

11,12€[0,0]
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M 1—
L :=Ag max {%(Iz) 9a(f1)}baflr—\\1’||ﬂlf(r)a

11,12 €[0,b] o v -Y

1y
L= Mp max || Ty (ta —s) — Tt —s)||/0 (12 —s)a_lHu(s)Hds,

SE[OJl]

1—y ey oy
L= My ma |7 (12=9)~ Tl s)||||P;1//(r){ a_y){tz R y}]
1—y a=y a=y a=y
Is = —||P — ) |—(—1)" v -y T
5 raH II;w(r)<a_y>[ (=) +0 17— 17 |
MMg [ .
Iy = B/ (12— )Y Ju(s)|ds,
o 151
M 1—y oy
I .= —||P —_— —
i 2Pl (5= ) -,
MMy ("2 _
Iy = B/ (t2— )% Y[u(s) | ds.
o n

From lemma 2.1 Z(¢) is continuous in the uniform operator topology for # > 0. From
this property of 7, we directly obtain I, I, I3, I tends to 0 independently of x € B,
as r, — 1. Is also tends to O independently of x € B, as t, — #;. Using the absolute
continuity of Lebesgue integral, we have I, I7, Ig tending to O independently of x € B,
as tp — 1.

Therefore, ®,(B,) C Ci_(J,H) is a family of equicontinuous function.

Claim 3: The set I1(t) = {7(¢) : T € ®(B,)} C H is relatively compact for each
te€J. Let 0 <t <b befixed. For x € B, and T € ®,(x), f € Syp, such that for each
tel,

i / et T (10 (1 — 5 Tt — 5) £ (5) + Bu(s)]ds
=1
/ )% ot — ) f(s) + Bus)ds,

where

u(t) = B* ( 2 ()1 T ()0 (1= )™ T (e — ) + 26 (5) 6 — ) * 7 T (o — S))

T+

X R(a,T})

(xl - i /tk it T ()0 (1 — ) Ty (15— 5) f(s)ds
k=170

_ /Ob (b—5)*"' Ty(b— s)f(s)ds) .
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For all € € (0,7) and for all § > 0, define
(1)
191 (1) (6%6) ickﬁ
/ . / 01— )% E0(0)T (15 — 5)%6 — £%8) £ (5)dOds
197 (1) T (e6) ZCkﬁ
/t 8/ 01— )% €0 (0) T (15 — 5)%6 — £ 8)BB* u(1)d0ds
+aT(e9s /Ot 8/5 0(t — )% E4(0) 7 (¢ — 5)%0 — £78) £(5)dOds

+ a7 (e%5) /OH‘ /: 0 — )% £4(6) 7 ((t —5)*0 — £8)BB u(r)d6ds.

By the compactness of .7 (¢%8)(£%8 > 0), we obtain the set T1¢%(r) = {¢%9(r);7 €
®,(B;)} which is relatively compactin H V € € (0,7) and § > 0, moreover we have

l2() = 7|

< a%(:)zaléf(;k /Omck Ot — )L T (1 — 5)%0)Ex (0)0[f(5) + Bu(s)]dOds

+oc/0t /Owe(z—s)“*lga(e)y((z—s)“e))[f(s)+Bu(s)}deds
+a%(z)t°‘ly(sas)]g/o“/;ck Ote— )L T (1 — )20 — £8)E0(6)0
[f(s) + Bu(s)]dods
o A o—1 o o
+ad(e 5)/0 /5 0t —5)* 1&g (0)T (1 —5)0 — £%8)[f(s) + Bu(s)]d0ds

— oy () L'ﬁl/’k/mck Ot — )" T (1 — 5)%0)Ex (0)0[f(s) + Bu(s)]dOds

/tk /ckﬁtk )T (1 — 5)* )éa(Q)G[f(s)+Bu(s)}d9ds}
k 1
+a[/0/0 01 —5)% & (0).T (1 —5)“0)[f (s) + Bul(s)]dOds
_/0’8/:9(:—@“lga(e)y((z—s)ae)[f(s)+Bu(s)]deds]
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Tk

< [ 00697 7 —9"'0)

a U[:/OS 0 — )" E4(0).7 (1 — 5)*0){Bu(s) —|—f(s)}d6ds]

m
a T t* ! [Z
k=1

1—€

x Ea(0){f(s) +Bu(s) }dOds

+

M? 1 1 S
<o b Ay [ (=) u(s) |45 [ 0Z(0)d0
Iy t—€ 0

M2 1 lk 1 6
Fa b NolIPlyw(r) [ = 5)* s [ Eado
o Y t 0

k—E€

t 1)
+ ocMHP||%u/(r)/ (i —s)a_lds/o 0E4(6)d6

t )
+ocMMB/ (t—s)“—lnu(s)ndsfo 0E4(6)do.

t—¢€

In the above inequality, as € approaches zero, the right-hand side of the inequality
approaches zero as well. This implies that there exist relatively compact sets that are
arbitrarily close to the set I(z) for r > 0. Consequently, the set TI(r), r > 0 is also
relatively compact in H. Combining Claims 1 — 3 with the Arzola-Ascoli theorem, we
can deduce that @, is a completely continuous function.

Claim 4: ®, has a closed graph. To prove this let x,, — x*(n — o), 7, € ®,(x,),
T, — T"(n — o). Our aim is to prove 7* € ®,(x*). Since 7, € Py(x,), I fu € Sory,
such that for each r € J we have

b
w) = [ G9h (s
+/ObG(t,s)BB*G*(t,s)R<a7F8> {xl—/ObG(b,u)fn(u)du}ds
- ]ﬁl [ 1 T 0 =) Tl =) )3
+/(: (1 — )% Tt — ) fus)ds
+/ObG(t,s)BB*G*(t,s)R<a7F8> {xl—/ObG(b,s)fn(u)du}ds.
We must prove that 3 f*(s) € Syp+, such that V¢ € J,
b
() = /0 G(1,5)f* (s)ds
+/ObG(t,s)BB*G*(t,s)R(a,FS) {xl—/th(b,s)f*(u)du}ds.
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Since 1, — 7%(n — o), we can obtain
H /b G(t,s)fn(s)ds—f—/b G(z,s)BB*G*(t,s)R<a,F8> {xl - /bG(b,s)fn(u)du}ds
0 0 0
_ /0  Glt.5)* (5)ds

— 0 asn— oo,

+/ObG(t7S)BB*G*(t7S)R(a’Fg) {xl—/()bG(b7S)f*(“)d“}ds

1
Consider the linear continuous operator I': LY (J,H) — C_q(J, H)

(Tf)(t) = /ObG(t,s)f(s)ds— /ObG(t,s)BB*G* (t,5)R (4,5 (/ObG(t,u)f(u)du> ds.

Clearly it follows from lemma 3.2 that T'oSy ¢ is a closed graph operator. Moreover, we
have

b
(1) — / G(t,9)BB" G (1,5)R (4T ) s € T(S57.,).
0

Since x;, — x4, it follows from lemma 3.2 that

b
‘L'*(t)—/ G(t,s)BB*G*(t,s)R(a,FS)xldsEI“(Saﬂx*).
A |

Therefore @, has a closed graph from lemma 3.2. Since ®, is completely continuous
multivalued map with compact value, we have that @, is upper semi continuous.

Thus @, is upper semicontinuous and condensing. Therefore by theorem 3.1, we
conclude that @, has a fixed point x(.) on By, . Thus, the fractional control system(1.1)
has a mild solution. [

4. Approximate controllability results

In this section we obtain sufficient conditions of approximate controllability of the
system (2.1). Motivation is from the case of linear system. Here we additonally assume

ASSUMPTION 4.1.

(H5") There exists a positive constant L such that ||[0F(z,x(¢))|| < L for all (¢,x) €
J x H.

THEOREM 4.1. Assume that assumptions (H1)—(H5) and (H5') are satisfied and
the linear system (3.10) is approximately controllable on J. Then system (2.1) is ap-
proximately controllable on J.
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Proof. Let x? be a fixed point of @, in By, this means that 3 f¢ € Syr,« such
that Vr € J,

/st s) +BB*G*(1,5)R <a ) fx, — /Gbuf( )du}]ds

Now we define a function
P(f*)=x1— /Ob G(b,s)f"(s)ds, for some f* € Syp .
Note that / — }R (a,I}) = aR(a,I}), we get
X(b) =X, — aR(a,rg>P(f“).
By assumption (H5'),

b
[ Ir@lras < b,
0

1
This implies that the sequence {f“}, that converges weakly to say, f in L7 (J,H). Let

us denote
b
h=x —/ G(b,s)f(s)ds
0
we see that

b b
1P =l =[x = [ 6.5 (0)ds =i+ [ G(b5)(5)as

< sup 4.11)

teJ

[ 6916 - r)as|.

By (H6’) and Ascoli-Arzela theorem we can show that the linear operator
g— /0 G s)g(s)ds : LT ¢y (4, H),
is compact, consequently the right hand side of (4.11) tends to zero as @ — 0" . Now
I (B) =1 = |[aR (0,76 ) P(r)
< o]+ o a2

< [lar (a.T8) | + 1P — ) — 0,

as a — 0T . This proves the approximate controllability of system (1.1). [J
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5. Application

In this section, we provide a examples to validate the results obtained in the previ-
ous sections.

EXAMPLE 5.1. Let us consider the following heat conduction system:
3 2

d
D¢ x(t,y) — 5,2 y) =bOue) +0(y), O<y<m, 1€J=[0b,

x(1,0) =x(t,m)=0, telJ, (5.1)
m
IOJ(I)IOCX(I)‘I?:O = 2 cx(tr,y),  ye[0,m].
k=1
3
where x(,y) represents the temperature at point y € [0,7] and time 7 € J. ¥D{, is the
R-L fractional derivative of order %. It is supposed that Q = Q1 + Q», where Q> is a
continuous function and Q; is a known function of the temperature of the form

Ql € aF(t’x(t’y)) (t’y) €Jx (0,717),

with a measurable function F' provided F(z,.) is locally Lipschitz on R, so its general-
ized gradient dF is well defined. For k= 1,2,...,m all ¢; € R and satisfy assumption
(2.1).

Let us take H = L?([0,7];R), and the family of operators A as

2

Ax= a—yﬂ(hy),

with the domain D(A) = {x € H;x, xare absolutely continuous,x” € H, x(0) = x(7) =
0}. Then

-y n?(x,ep)en, x€D(A),
n=1

where

2
en(y) =1/ Esinn)@ yelo,z], n=1,2,.....,

is orthogonal set of eigenvectors of A. It is well known that the operator A generates a
strongly continuous semigroup 7 (¢)(¢ > 0) on H, which are compact and is given by

2 xen en, xeH

and

/ 05:(0).7 (17 6)de,

" Z,l/o Gég(e)eXp(— 170)d0(x,e,).
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Where ﬂ% and F(z,y) satisfy (H2)—(HS5). Let B € L(R,H) be defined as,

oo

(Bu)(y) = b(y)u, B'v="3 (ben)(v.en),

n=1

where y € [0,7], u € R and b(y) € L»[0,7].

In order to show that associated linear system is approximate controllable on [0, ],
we need to show that (b —s)* 'B*Fy (b —s)x =0 = x = 0. We observe that for
%<u < 1, we have

(b—s)H'B* Fy(b—s)x=(b—s)*! i <b,en>% /Ooo95%(Q)exp(—nzt%e)de@c,en)

n=1

- (b—s)“_lgrg/om95%(6)exp(—nzt%6)d9<b,en><x,en>
=0.

This gives (x,e,) =0 = x =0 provided that (b,e,) = [, b(0)e,0d0 # 0 for n =
1,2,....

Therefore, the associated linear system is approximate controllable provided that
Jo b(0)en(0)d0 #0 for n=1,2,3,..... Because of the compactness of the semigroup
 generated by A, the associated linear system is not exactly controllable but it is ap-
proximate controllable. Hence from theorem 3.2 there exists a mild solution of problem
(5.1) and by theorem 4.1 the given system (5.1) is approximate controllable.

6. Conclusion

This paper explores the existence of mild solutions and approximate controllability
for Riemann-Liouville fractional differential Hemivariational inequalities within a sep-
arable Hilbert space. Employing nonsmooth analysis and multivalued theory, we utilize
fixed-point techniques and ideas from semigroup theory to derive our results. Addition-
ally, we provide an illustrative example to demonstrate the efficacy of our findings. Our
future aims include delving into the existence and controllability of Hemivariational In-
equality problems within separable reflexive Banach spaces, while also addressing the
impulse effect within this framework.
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