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Abstract. This paper investigates the fractional differential equation (FDE) with proportional
delay, a specific form of the fractional order time-dependent delay differential equation (FDDE).
We use the Daftardar-Gejji and Jafari Method (DJM) to solve nonlinear FDEs with proportional
delay involving the Caputo fractional derivative. We prove existence and uniqueness theorems
for these equations and derive convergence results based on the Lipschitz condition. Moreover,
we show that DJM solutions are continuously dependent on both the initial conditions and the
fractional order. Finally, we derive and prove the convergence of power series solutions for the
fractional order pantograph and Ambartsumian equations.

1. Introduction

Differential equations is one of the most fundamental branches of mathematics.
Almost every applied research in mathematics reduces to the differential equations
either ordinary or the partial. As we know differential equations are super use for
modulating and simulating phenomena and describing every mysterious phenomena of
nature. Fractional differential equations (FDE) has its origin in generalization of or-
dinary differential equations to non-integer order. The successive generalization has
stimulated interest of researchers to study the role of FDE and apply to the problems
of science and engineering to understand the complex and mysterious phenomena. In
the present scenario research in FDE is multidisciplinary and is proved to be very use-
ful in wide variety of diverse fields such as control systems, electric drives, continuum
mechanics, heat transfer, quantum mechanics, signal analysis, biomathematics, bio-
engineering and many more. In the past many years FDEs has emerged as a strong and
well organized tool in the study of many fields of science and engineering. Ordinary
differential equations (ODEs) have played a very important role in the history of theo-
retical population dynamics and will no doubt continue to serve as indispensable tools
in future investigation. The solution of any mathematical model of a real dynamical
system obtained by using ODEs is considered to be the best first approximation. How-
ever, more realistic models must include some of the past history of the system. Indeed,
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the solutions of models with the past history are derived by using the delay differen-
tial equations (DDEs). The use of DDEs in modeling of the population dynamics is
currently very active.

DDEs have been shown to be valuable in various fields, including control sys-
tems [13], traffic models [11], population biology [27], chemical kinetics [12] and ery-
thropoiesis [4]. Lakshmikantham [17] developed the foundational theory for fractional
delay differential equations (FDDEs). In studies [2, 5, 30], the existence and unique-
ness of solutions for fractional neutral DDEs have been formulated. The existence of
positive solutions for nonlinear FDDEs involving the Riemann-Liouville derivative has
been discussed in [18,29]. Kexue et al. [15] established the existence and uniqueness of
mild solutions for a class of abstract FDDEs using the solution operator approach. The
existence and uniqueness of solutions for FDDEs under various conditions have been
demonstrated using fixed-point theorems, as seen in references such as [1,14,19,26,28].

In 2006, Daftardar-Gejji and Jafari introduced a new iterative method (DJM) [9]
for solving functional equations. This method is straightforward yet offers greater ac-
curacy compared to other iterative techniques. DJM has been successfully applied to
solve PDEs such as Newell-Whitehead-Segel equation [24], Fisher’s equation [6]. The
DJM has been employed to develop new numerical methods [10,21,22]. The analytical
solutions of the Ambartsumian equation [25], pantograph equation [23], and nonlinear
equations with proportional delays [7], along with their properties are discussed in [8]
using the DJM.

Solving nonlinear FDEs with proportional delay is a significant challenge in math-
ematical analysis and its applications. This challenge motivates our work in finding
solutions for FDEs with proportional delay. In this paper, we establish existence and
uniqueness results for these equations and obtain their solutions using the DJM in the
form of power series.

The structure of the paper is as follows: Section 2 covers the basic definitions and
results, with a detailed discussion of DJM in Section 2.1. Section 3 focuses on the DJM
solution for FDEs, while Section 3.1 presents the existence and uniqueness results.
The series solutions for the pantograph equation and the Ambartsumian equation are
described in Sections 4 and 5, respectively, and the conclusions are summarized in
Section 6.

2. Preliminaries and notations

DEFINITION 2.1. [16] The Riemann-Liouville fractional integral of order  > 0
of f ∈C[0,) is defined as

I f (t) =
1

()

∫ t

0
(t− )−1 f ()d, t > 0. (2.1)

DEFINITION 2.2. [16] The (left sided) Caputo fractional derivative of f , f ∈
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Cm
−1,m ∈ N∪{0} , is defined as:

D f (t) =
dm

dtm
f (t),  = m

= Im− dm

dtm
f (t), m−1 <  < m, m ∈ N. (2.2)

Note that for 0 � m−1 <  � m and  > −1

Ix =
( +1)

( ++1)
x+ ,

(ID f ) (t) = f (t)−
m−1


k=0

f (k)(0)
tk

k!
. (2.3)

DEFINITION 2.3. [16] The Mittag-Leffler function is defined as

E(x) =



n=0

xn

(n+1)
,  > 0. (2.4)

The multi-parameter Mittag-Leffler function E(1,2,···,n), is defined as:

DEFINITION 2.4. [16]

E(1,···,n), (z1,z2, · · · ,zn) =



k=0


l1+···+ln=k

l j�0

(k; l1, · · · , ln)

⎡
⎢⎢⎢⎣

n


j=1

z
l j
j

( +
n


j=1

 jl j)

⎤
⎥⎥⎥⎦ .

where, (k; l1, l2, · · · , ln) is the multinomial coefficient defined as

(k; l1, l2, · · · , ln) =
k!

l1!l2! · · · ln! . (2.5)

2.1. Daftardar-Gejji and Jafari method

The Daftardar-Gejji and Jafari Method (DJM) [9] is employed to solve nonlinear
equations of the form

u = f +L(u)+N(u), (2.6)

where L and N represent linear and nonlinear operators, respectively, with f as a
known function.

The DJM produces a solution expressed as a series

u =



i=0

ui = f +



i=0

L(ui)+



i=0

Gi (2.7)

where G0 = N(u0) and Gi =
{

N
(
i

j=0 u j

)
−N

(
i−1

j=0 u j

)}
, i � 1.

From Eq. (2.7), the DJM produces its series terms as follows:

u0 = f , um+1 = L(um)+Gm, m = 0,1,2, · · · . (2.8)
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3. DJM solution for fractional differential equations

Let us consider the initial value problem (IVP)

Di yi(t) = fi(t, y(t), y(qt)), 0 < i � 1, 0 < q < 1

yi(0) = iy0, 1 � i � n, (3.1)

where Di denotes Caputo fractional derivative, y(t) = (y1(t),y2(t) · · · ,yn(t)) , y(qt) =
(y1(qt),y2(qt) · · · ,yn(qt)) and f = ( f1, f2 · · · , fn) is a continuous function defined on
the (2n+1) dimensional rectangle

R = {|t|� a, |yi(t)−i y0| � bi, |yi(qt)−i y0| � bi,a > 0, bi > 0,1 � i � n}.

The IVP (3.1) can be transformed into the following system of integral equations

yi(t) = yi(0)+
∫ t

0

(t − x)i−1

(i)
fi (x, y(x), y(qx))dx, 1 � i � n. (3.2)

The DJM solution for system (3.2) is

y(t) =



m=0

m(t), (3.3)

where m =
(
1m,2 m, · · · ,n m

)
and

i0(t) = iy0,

i1(t) =
∫ t

0

(t− x)i−1

(i)
fi
(
x, 0(x) 0(qx)

)
dx,

im+1(t) =
∫ t

0

(t− x)i−1

(i)

[
fi

(
x,

m


i=0

 i(x),
m


i=0

 i(qx)

)

− fi

(
x,

m−1


i=0

 i(x),
m−1


i=0

 i(qx)

)]
dx,

i = 1,2, · · · ,n and m = 1,2,3, · · · .

The m-term approximate solution is represented as

um(t) =
m−1


i=0

 i(t), m = 1,2, · · · . (3.4)

3.1. Existence and uniqueness theorems

THEOREM 1. Let f is continuous and || f ||� M on rectangle R. The approximate
solution um(t)=m−1

i=0  i(x) obtained using DJM for the IVP (3.1) exists on the interval
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I = [−,] , where

 = min

{
a,

(
(1 +1)b1

M

) 1
1

, · · · ,
(
(n +1)bn

M

) 1
n

,

(
(1 +1)b1

q1M

) 1
1

, · · · ,
(
(n +1)bn

qnM

) 1
n

}
.

If t is in interval I then (t, um(t), um(qt)) is in rectangle R and

||um(t)− y(0)|| � M
n


i=1

|t|i

(i +1)
, ||um(qt)− y(0)|| � M

n


i=1

|t|i

(i +1)
, ∀m.

Proof. The approximate solution of IVP (3.1) is

um(t) =
m−1


i=0

 i(x), m = 1,2, · · · ., (3.5)

where
i0(t) = iy0,

i1(t) =
∫ t

0

(t − x)i−1

(i)
fi
(
x, 0(x) 0(qx)

)
dx, (3.6)

im+1(t) =
∫ t

0

(t − x)i−1

(i)

[
fi

(
x,

m


i=0

 i(x),
m


i=0

 i(qx)

)

− fi

(
x,

m−1


i=0

 i(x),
m−1


i=0

 i(qx)

)]
dx. (3.7)

We prove the result using mathematical induction on m . We observe that the result
holds true for m = 1.

Now,

u2(t) =  0(t)+1(t)

= y(0)+1(t)

⇒ u2(t)− y(0) =  1(t)
⇒ iu2(t)− iy0 = i1(t)

From Eq. (3.6), we have

iu2(t)− iy0 =
∫ t

0

(t− x)i−1

(i)
fi
(
x,0(x), 0(qx)

)
dx

|iu2(t)− iy0| �
∫ t

0

|(t− x)|i−1

(i)
| fi
(
x, 0(x), 0(qx)

)
|dx

� M
|t|i

(i +1)
� bi, 1 � i � n



164 M. GOPHANE, P. RAJMANE AND J. PATADE

and

iu2(qt)− iy0 � M
|qt|i

(i +1)

� M
qi |t|i

(i +1)

� M
|t|i

(i +1)
(∵ 0 < q < 1)

� bi, 1 � i � n

For any t ∈ I , the point (t,0(t), 0(qt)) ∈ R . Thus

||u2(t)− y(0)|| � M
n


i=1

|t|i

(i +1)
, ||u2(qt)− y(0)|| � M

n


i=1

|t|i

(i +1)
.

Hence result is true for m = 2.
Let’s assume the result holds true for the positive integer m−1.
i. e. For any t ∈ I , the point (t, um−2(t), um−2(qt)) ∈ R and

||um−1(t)− y(0)|| � M
n


i=1

|t|i

(i +1)
, ||um−1(qt)− y(0)|| � M

n


i=1

|t|i

(i +1)
.

To prove result is true for m .
From (3.5), (3.6) and (3.7), we write

ium(t)− iy0 =
∫ t

0

(t − x)i−1

(i)
fi

(
x,

m−2


j=0

 j(x),
m−2


j=0

 j(qx)

)
dx

|ium(t)− iy0| �
∫ t

0

|(t − x)|i−1

(i)
| fi
(

x,
m−2


j=0

 j(x),
m−2


j=0

 j(qx)

)
|dx

=
∫ t

0

|(t − x)|i−1

(i)
| fi (x, um−1(x), um−1(qx)) |dx.

By induction hypothesis the points (t, um−1(t), um−1(qt)) ∈R, ∀t ∈ I . Hence

|ium(t)− iy0| � M
|t|i

(i +1)
� bi, for t ∈ I, 1 � i � n

and

|ium(qt)− iy0| � M
|qt|i

(i +1)

= M
qi |t|i

(i +1)

= M
|t|i

(i +1)
(∵ 0 < q < 1)

� bi, for t ∈ I, 1 � i � n
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i. e. The points (t, um(t), um(qt)) ∈ R,∀m ∈ I+ when t ∈ I and

||um(t)− y(0)|| � M
n


i=1

|t|i

(i +1)
, ||um(qt)− y(0)|| � M

n


i=1

|t|i

(i +1)
, ∀m.

Hence by mathematical induction, the result is true for all positive integers m . �

THEOREM 2. Let f be a continuous function defined on the rectangle R and
|| f || � M on R. Suppose that f satisfies Lipschitz type condition

| fi(t,y1(t),y1(qt))− fi(t,y2(t),y2(qt))| � L1 |y1(t)− y2(t)|+L2 |y1(qt)− y2(qt)| , ∀i,

then the series solution (3.3) converges on the interval I = [−,] to a solution of the
IVP (3.1).

Proof. The equivalent integral equation of IVP (3.1) is

yi(t) = yi(0)+
∫ t

0

(t − x)i−1

(i)
fi (x, y(x), y(qx))dx, 1 � i � n.

Using DJM, we have

||i0(t)|| = y0,

|i1(t)| �
∫ t

0

|t − x|i−1

(i)
| fi
(
x, 0(x), 0(qx)

)
|dx

� M
|t|i

(i +1)

∴ || 1(t)|| � M
n


i=1

|t|i

(i +1)

� M 
r1+r2+···+rn=1

(1;r1,r2, · · · ,rn)
n

i=1 (|t|i)ri

(n
i=1 rii +1)

Since f satisfies Lipschitz conditions in second and third variables, we have

|i2(t)| �
∫ t

0

|t− x|i−1

(i)

∣∣∣ fi(x, 0(x)+1(x), 0(qx)+1(qx)
)

− fi
(
x,0(x), 0(qx)

)∣∣∣dx

�
∫ t

0

|t− x|i−1

(i)

(
L1|| 1(x)||+L2|| 1(qx)||

)
dx

�
n


j=1

M (L1 +q jL2) |t|i+ j

(i + j +1)

� M (L1 +L2)
n


j=1

|t|i+ j

(i + j +1)
(∵ 0 < q < 1)
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Hence

||2(t)|| � M (L1 +L2)
n


i=1

n


j=1

|t|i+ j

(i + j +1)

� M
(L1 +L2)


r1+r2+···+rn=2

(2;r1,r2, · · · ,rn)
n

i=1 (|t|i (L1 +L2))
ri

(n
i=1 rii +1)

. (3.8)

By mathematical induction we prove that

||m(t)|| � M
(L1 +L2)


r1+r2+···+rn=m

(m;r1,r2, · · · ,rn)
n

i=1 (|t|i (L1 +L2))
ri

(n
i=1 rii +1)

. (3.9)

Assume that the inequality (3.9) is true for integer m .
Consider

|im+1(t)| �
∫ t

0

|t− x|i−1

(i)

(
L1||m(x)||+L2||m(qx)||

)
dx

� M (L1 +L2)
(L1 +L2)


r1+r2+···+rn=m

(m;r1,r2, · · · ,rn)

×
∫ t

0

|t − x|i−1

(i)

n
j=1 (|x| j (L1 +L2))

r j


(
n

j=1 r j j +1
) dx

=
M

(L1 +L2)


r1+r2+···+rn=m
(m;r1,r2, · · · ,rn)(L1 +L2)

m+1

× |t|n
j=1, j �=i j r j |t|i(ri+1)


(
n

j=1, j �=i r j j +i(ri +1)+1
).

Hence we get

|im+1(t)| � M
(L1 +L2)


r1+r2+···+rn=m+1

(m;r1,r2, · · · ,ri −1, · · · ,rn)

×n
j=1 (|t| j (L1 +L2))

r j


(
n

j=1 r j j +1
) .

Thus

||m+1(t)|| �
M

(L1 +L2)


r1+r2+···+rn=m+1

(m+1;r1,r2, · · · ,rn)
n

i=1 (|t|i (L1 +L2))
ri

(n
i=1 rii +1)

.

(3.10)
From inequality (3.10), it can be observed that the mth term in Mittag-Leffler function

M
(L1 +L2)

E(1,2,···,n),1 ((L1 +L2) |t|1 ,(L1 +L2) |t|2 , · · · ,(L1 +L2) |t|n)
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is serves as an upper bound for the mth term in DJM solution series (3.3). This es-
tablishes that the DJM solution series (3.3) is converges under the specified condi-
tions. �

THEOREM 3. Let f be a continuous function defined on the strip S : |t|� a, |yi|<
 , a > 0 , 1 � i � n and suppose that f satisfies on S a Lipschitz type condition

| fi(t,y1(t),y1(qt))− fi(t,y2(t),y2(qt))| � L1 |y1(t)− y2(t)|+L2 |y1(qt)− y2(qt)| , ∀i,

Then the series solution (3.3) converges on the interval I = [−,] to a solution of the
IVP (3.1).

THEOREM 4. Let jum = m−1
i=0

ji , and jvm = m−1
i=0

ji be m-term approximate
DJM solutions defined on the interval I of the IVP:

D j y j(x) = f j(t, y(t), y(qt)), 0 < i � 1, 0 < q < 1, 1 � j � n, (3.11)

with initial conditions y(0)= c = (c1, · · · ,cn) and y(0)= d = (d1, · · · ,dn) respectively.
Suppose that f = ( f1, · · · , fn) satisfies Lipschitz condition in second and third variable
with Lipschitz constants L1 and L2 . Then

| jum(t)− jvm(t)| � ||c − d||
m−1


i=0

((L1 +L2) |t| j )i

(i j +1)

and

| jum(qt)− jvm(qt)| � ||c − d||
m−1


i=0

((L1 +L2) |t| j )i

(i j +1)
, 1 � j � n

Also,
| jum(t)− jvm(t)| � ||c − d||E j ((L1 +L2) |t| j)

and
| jum(qt)− jvm(qt)| � ||c − d||E j ((L1 +L2) |t| j ) .

Proof. We prove the result using mathematical induction on m .
If m = 1 then | ju1(t)− jv1(t)| = |c j − d j| � ||c − d|| and | ju1(qt)− jv1(qt)| =

|c j −d j| � ||c − d|| .
If m = 2 then

ju2(t)− jv2(t)
= ( j0 + j1)− ( j0 + j1)

=
(

c j +
∫ t

0

(t − x) j−1

( j)
f j

(
x, 0(x), 0(qx)

)
dx

)

−
(

d j +
∫ t

0

(t− x) j−1

( j)
f j (x,0(x),0(qx))dx

)
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| ju2(t)− jv2(t)|

� |c j −d j|+
∫ t

0

|t− x| j−1

( j)
| f j

(
x, 0(x), 0(qx)

)
− f j (x,0(x),0(qx)) |dx

� ||c − d||+
∫ t

0

|t− x| j−1

( j)

(
L1|0(x)−0(x)|+L2| 0(qx)−0(qx)|

)
dx

� ||c − d||+
∫ t

0

|t− x| j−1

( j)

(
L1||c − d||+L2q||c − d||

)
dx

� ||c − d||+
∫ t

0

|t− x| j−1

( j)
(L1 +L2) ||c − d||dx

| ju2(t)− jv2(t)| � ||c − d||+ ||c− d|| (L1 +L2) |t| j

( j +1)

and

| ju2(qt)− jv2(qt)| � ||c − d||+ ||c− d|| (L1 +L2) |qt| j

( j +1)

� ||c − d||+ ||c− d|| (L1 +L2) |t| j

( j +1)
(∵ 0 < q < 1).

Thus, the result is true for m = 1 and m = 2.
Assume that the result holds true for the positive integer m−1

i.e. | jum−1(t)− jvm−1(t)| � ||c − d||
m−2


i=0

((L1 +L2) |t| j)i

(i j +1)

and

| jum−1(qt)− jvm−1(qt)| � ||c − d||
m−2


i=0

((L1 +L2) |t| j)i

(i j +1)
.

Now, consider

| jum(t)− jvm(t)|

= |
m−1


i=0

( ji − ji
) |

� |c j −d j|+ I j

∣∣∣∣∣
(

f j

(
t,

m−2


i=0

 i(t),
m−2


i=0

 i(qt)

)
− f j

(
t,

m−2


i=0

 i(t),
m−2


i=0

 i(qt)

))∣∣∣∣∣
� |c j −d j|+ I j

(
L1|

m−2


i=0

 i(t)−
m−2


i=0

 i(t)|+L2|
m−2


i=0

 i(qt)−
m−2


i=0

 i(qt)|
)

� |c j −d j|+ I j
(
L1| jum−1(t)− jvm−1(t)|+L2| jum−1(qt)− jvm−1(qt)|

)
� ||c − d||+I j

(
L1‖c−d‖

m−2


i=0

((L1+L2) |t| j)i

(i j+1)
+L2‖c−d‖

m−2


i=0

((L1+L2) |qt| j)i

(i j +1)

)
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� ||c − d||+I j

(
L1‖c−d‖

m−2


i=0

((L1 +L2) |t| j)i

(i j +1)
+L2‖c−d‖

m−2


i=0

((L1+L2) |t| j)i

(i j+1)

)

� ‖c − d‖+((L1 +L2) I j

(
‖c − d‖

m−2


i=0

((L1 +L2) |t| j)i

(i j +1)

)
.

∴ | jum(t)− jvm(t)| � ||c − d||
m−1


i=0

((L1 +L2) |t| j)i

(i j +1)

and

| jum(qt)− jvm(qt)| � ||c − d||
m−1


i=0

((L1 +L2) |qt| j)i

(i j +1)

� ||c − d||
m−1


i=0

((L1 +L2) |t| j )i

(i j +1)
(∵ 0 < q < 1).

As m −→  , we get

| jum(t)− jvm(t)| � ||c − d||



i=0

((L1 +L2) |t| j)i

(i j +1)

= ||c − d||E j ((L1 +L2) |t| j)

and

| jum(qt)− jvm(qt)| � ||c − d||



i=0

((L1 +L2) |t| j )i

(i j +1)

= ||c − d||E j ((L1 +L2) |t| j) .

Consequently, the DJM solution continuously dependent on the initial conditions. The
uniqueness of the IVP solution is directly inferred from Theorem 4. �

THEOREM 5. Let jum = m−1
i=0

ji , and jvm = m−1
i=0

ji be m-term approximate
DJM solutions defined on the interval I of the IVPs:

D j y j(t) = f j(t, y(t), y(qt)), 0 < i � 1, 0 < q < 1, 1 � j � n,

y(0) = c = (c1, · · · ,cn)

and

D j−z j(t) = f j(t, z (t), z(qt)), 0 < i � 1, 0 < q < 1, 1 � j � n,

z(0) = c, 0 <  < min{ j} � 1,

respectively. Suppose that f = ( f1, · · · , fn) satisfies Lipschitz condition in second and
third variable with Lipschitz constants L1 and L2 . Then

| ju(t)− jv(t)| � M
(L1 +L2)

E( j−, j)
(
(L1 +L2)t j− ,t

)
(3.12)
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and

| ju(qt)− jv(qt)| � M
(L1 +L2)

E( j−, j)
(
(L1 +L2)t j− ,t

)
(3.13)

where 1 � j � n, ju(t) = limm−→
jum(t) , jv(t) = limm−→

jvm(t) , ju(qt) =
limm−→

jum(qt) and jv(qt) = limm−→
jvm(qt) .

Proof. We have

| ju1(t)− jv1(t)| = 0 and | ju1(qt)− jv1(qt)| = 0,

| ju2(t)− jv2(t)| = |I j f j

(
t,0(t), 0(qt)

)
− I j− f j (t,0(t),0(qt)) |

� M

( |t| j

( j +1)
+

|t| j−

( j − +1)

)
,

and

| ju2(qt)− jv2(qt)|
� M

( |qt| j

( j +1)
+

|qt| j−

( j − +1)

)
,

� M

( |t| j

( j +1)
+

|t| j−

( j − +1)

)
, (∵ 0 < q < 1)

| ju3(t)− jv3(t)|
=
∣∣∣I j f j

(
t, 0(t)+1(t),0(qt)+1(qt)

)
−I j− f j (t,0(t)+1(t),0(t)+1(t))

∣∣∣
�
∣∣∣I j f j

(
t, 0(t)+1(t),0(qt)+1(qt)

)
−I j f j (t,0(t)+1(t),0(t)+1(t))

∣∣∣
+
∣∣∣I j− f j

(
t, 0(t)+1(t), 0(qt)+1(qt)

)
−I j− f j (t,0(t)+1(t),0(qt)+1(qt))

∣∣∣
+
∣∣∣I j f j (t,0(t)+1(t),0(qt)+1(qt))

−I j− f j

(
t,0(t)+1(t), 0(qt)+1(qt)

)∣∣∣
� M(L1 +L2)

( |t|2 j

(2 j +1)
+2

|t|2 j−

(2 j − +1)
+

|t|2 j−2

(2 j −2+1)

)

+M

( |t| j

( j +1)
+

|t| j−

( j +1)

)
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and

| ju3(qt)− jv3(qt)|

� M(L1 +L2)
( |qt|2 j

(2 j +1)
+2

|qt|2 j−

(2 j − +1)
+

|qt|2 j−2

(2 j −2+1)

)

+M

( |qt| j

( j +1)
+

|qt| j−

( j +1)

)

� M(L1 +L2)
( |t|2 j

(2 j +1)
+2

|t|2 j−

(2 j − +1)
+

|t|2 j−2

(2 j −2+1)

)

+M

( |t| j

( j +1)
+

|t| j−

( j +1)

)
(∵ 0 < q < 1)

and so on. Using induction,

| jun(t)− jvn(t)| � M
(L1 +L2)

n−2


m=0

m+1


i=0

(
m+1

i

)
(t j−(L1 +L2))

m+1 (t)m+1−i

(1+( j − )i+ j(m+1− i))
.

and

| jun(qt)− jvn(qt)|

� M
(L1 +L2)

n−2


m=0

m+1


i=0

(
m+1

i

)
((qt) j−(L1 +L2))

m+1 ((qt))m+1−i

(1+( j − )i+ j(m+1− i))

� M
(L1 +L2)

n−2


m=0

m+1


i=0

(
m+1

i

)
(t j−(L1 +L2))

m+1 (t)m+1−i

(1+( j − )i+ j(m+1− i))
(∵ 0 < q < 1)

As n −→  , we get required inequality (3.12) and (3.13). Consequently, the DJM
solution continuously dependent on the fractional order. �

4. Series solution of pantograph equations: application in electric trains

A pantograph is a mechanism used in electric trains to draw current from overhead
lines. The pantograph equation, developed by Ockendon and Taylor in 1971, has its
roots in electrodynamics [20].

Di yi(t) = aiyi(t)+biyi(qt)), yi(0) = 1, 0 < i � 1, 0 < q < 1, 1 � i � n. (4.1)

The integral equation corresponding to (4.1) is

yi(t) = 1+ Iiaiyi(t)+ Iibiyi(qt). (4.2)
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Using DJM, we get

i0(t) = 1,
i1(t) = aiI

i i0(t)+biI
i i0(qt)

= ai
ti

(i +1)
+bi

ti

(i +1)

= (ai +bi)
ti

(i +1)
i2(t) = aiI

i i1(t)+biI
i i1(qt)

= ai (ai +bi)
t2i

(2i +1)
+bi (ai +bi)qi

t2i

(2i +1)

= (ai +bi)(ai +biq
i)

t2i

(2i +1)

i3(t) = (ai +bi) (ai +biq
i)
(
ai +biq

2i
) t3i

(3i +1)
...

in(t) = (ai +bi) (ai +biq
i)
(
ai +biq

2i
) · · ·(ai +biq

(n−1)i

) tni

(ni +1)

=
n−1


j=0

(ai +biq
ji)

tni

(ni +1)

∴ The DJM solution of eq. (4.1) is

y(t) = i0(t)+i 1(t)+i 2(t)+i 3(t)+ · · · .

y(t) =



n=0

n−1


j=0

(ai +biq
ji)

tni

(ni +1)
, (4.3)

where

n−1


j=0

(ai +biq
ji) = 1 for n = 0.

THEOREM 6. If 0 < q < 1 , then the power series (4.3) converges for all finite
values of t .

5. Series solution of Ambartsumian equations: application in astronomy

Ambartsumian [3] developed a delay differential equation to model the variations
in the surface brightness of the Milky Way. The equation is expressed as:

Di yi(t) = −yi(t)+
1
q
yi

(
t
q

)
, yi(0) = i, q > 1. (5.1)
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The integral equation corresponding to (5.1) is

yi(t) = i− Iiyi(t)+
1
q
Ii yi

(
t
q

)
(5.2)

Applying DJM, We get

i0(t) = i,

i1(t) = −Ii i 0(t)+
1
q
Ii i0

(
t
q

)

= − iti

(i +1)
+

1
q

iti

(i +1)

=
(

1
q
−1

)
iti

(i +1)

i2(t) = −Ii i 1(t)+
1
q
Ii i1

(
t
q

)

=
(

1
q
−1

)(
1

qi+1 −1

)
it2i

(2i +1)

i3(t) = −Ii i 2(t)+
1
q
Ii i2

(
t
q

)

=
(

1
q
−1

)(
1

qi+1 −1

)(
1

q2i+1 −1

)
it3i

(3i +1)
...

in(t) =
n


j=1

(
1

q( j−1)i+1
−1)

itni

(ni +1)

∴ The DJM solution of eq. (4.1) is

y(t) = i0(t)+i 1(t)+i 2(t)+i 3(t)+ · · · .
y(t) =




n=0

n


j=1

(
1

q( j−1)i+1
−1)

itni

(ni +1)
, (5.3)

where
n


j=1

(
1

q( j−1)i+1
−1) = 1 for n = 0.

THEOREM 7. If q > 1 , then the power series (5.3) converges for all finite values
of t .

6. Conclusions

This paper focuses on solving non-linear fractional differential equations with pro-
portional delay through the Daftardar-Gejji and Jafari method (DJM). We established
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the existence and uniqueness theorems for FDEs with proportional delay and used the
Lipschitz condition to derive convergence results. Furthermore, we proved that the DJM
solution exhibits continuous dependence on initial conditions and fractional order, and
applied the method to obtain series solutions for the pantograph and Ambartsumian
equations.
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