ractional
ifferential
alculus
Volume 15, Number 2 (2025), 177-203 doi:10.7153/fdc-2025-15-11

(w,c)-ASYMPTOTICALLY PERIODIC MILD SOLUTIONS TO
SOME y-HILFER FRACTIONAL EVOLUTION EQUATIONS

PIHIRE VINCENT OUENA, MOUMINI KERE
AND GASTON MANDATA N’GUEREKATA *

(Communicated by B. Ahmad)

Abstract. In this paper, we consider the following abstract y -Hilfer fractional differential equa-
tion

ngrﬁ;wu(t) =Au(t)+ f(t,u(t)), 0<a<l, 0<B<l; t>0 1)
where A is the infinitesimal generator of a strongly continuous semigroup {7'(8)}y._, on a
Banach space X such that there exist positive constants M,A > 0 with

HT(Q)ngMeile, 0>0. 2)

We use the Banach fixed point principle to prove the existence and uniqueness of (®,c)-
asymptotically periodic mild solutions to equation (1). Further, Ulam-Hyers stability results are
established.

1. Introduction

Fractional differential equations have attracted a growing interest, particularly
in modeling complex physical phenomena with memory effects. The existence and
uniqueness of periodic solutions for certain fractional differential equations have at-
tracted several researchers. In 2020, G. Mophou and G. M. N’ Guérékata [30] studied an
existence result of (®,c)-periodic mild solutions to some fractional differential equa-
tions. In 2021 M. Kéré , G. M. N’Guérékata and E. R. Oueama studied an existence
result of (w,c)-almost periodic mild solutions to some fractional differential equations.
For more results of periodic functions, (see [1, 4, 5, 6, 8, 10, 16, 21, 23, 26, 27, 32, 34,
35D).

It was in 2018 that E. Alvaraz e al. [6] have introduced the concept of (®,c¢)-
periodic functions which includes the class of periodic, antiperiodic and Bloch periodic
functions. The following year, i.e. in 2019, E. Alvarez, M. Pinto and S. Castillo [7]
extended the concept of (w, ¢)-periodic functions to a new class of functions so-called
(w,c)-asymptotically periodic functions. A continuous function f is said to be (w,c)-
asymptotically periodic if it can be written as f = f1 + f> where f] isa (o, ¢)-periodic
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function and f, is c-asymptotic function. Following this, several authors became in-
terested in this class of functions.

J. Larrouy and G. M. N’Guérékata [20] studied the existence and uniqueness
of (w,c)-periodic and asymptotically (®,c)-periodic mild solutions to the following
semilinear fractional differential equations:

Du(t) = Au(t) + °D* 1 f (t,ut)), 1<a<2, tcR
1(0) =0

and

Du(t) = Au(t) + °D* ' f (t,u(t —h)), 1<a<2, tcRy
u(0)=0

where “D(.) stands for the Caputo derivative and A is a linear densely defined oper-
ator of sectorial type on a complex Banach space X.

In 2023, R. G. Foko Tiomela, G. M. N’Guérékata [18] consider the following
fractional evolution equation:

Dlu(t) = Au(t)+ f(t), t€R

where D%(.) denotes the Caputo fractional derivative of order 0 < @ < 1. They
proved that, mild solution of this equation are (o, ¢)-asymptotically periodic and they
established an existence and uniqueness result for optimal (®,c)-asymptotically peri-
odic mild solution.

Recently, in 2018, J. Vanterler da C. Sousa, E. C. de Oliveira [38], introduced a
new fractional derivative with respect to another function the so-called y -Hilfer frac-
tional derivative. The same year, J. Vanterler da C. Sousa, K. D. Kucche, E. C. de
Oliveira [39] published an article entitled: On the Ulam-Hyers stabilities of the solu-
tions of y -Hilfer fractional differential equation with abstract Volterra operator. In this
paper, they proved the existence, uniqueness and established Ulam-Hyers stability of
the solution.

This new fractional derivative attracted several authors. In 2021, F. Norouzi, G. M.
N’Guérékata [33], in their paper, considered the following y -Hilfer fractional neutral
fractional differential equations with infinite delays:

HDSPVIx(t) = h(t,x)] = Ax(e) + £ (1.x(1) %), 1€[0,b], b>0
x(t)=D(t), 1€ (—,0]

where # Dg;ﬁ Y(.) is the w-Hilfer fractional derivative of order 0 < o < 1, with respect

to function y € £ (]0,b],X) and type 0 < B < 1. They proved the existence and

uniqueness of solution by using the Banach contraction mapping principle and Leray-

Schauder alternative theorem. For more informations refer to [2, 3, 12, 22, 24, 29].
Motivated by all of the above, we consider the following equatlon

ﬁw() Au(t)+ f(t,u(t)), 0<a<l, 0<B<1; t=0
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where Dg;ﬁ ¥(.) denotes the y -Hilfer fractional derivative of order o and type 3.

The main purpose is to study the existence and uniqueness of (@, ¢)-asymptotically
periodic mild solution. For this, we use the well known Banach fixed point principle.
We also establish Ulam-Hyers stability. The rest of our paper is organized as follows: In
Section 2 we present some preliminary results that are useful in this paper to prove the
results. In Section 3, we first obtain the Volterra integral equivalent equation and pro-
pose the mild solution of equation (1). Further, we prove the existence and uniqueness
of solution. Finally , in Section 4, we establish ulam-Hyers stability of the solution.

2. Preliminaries
Throughout this paper, we assume that (X, ]|.||) is a complex Banach space and
we will denote by C(R,X) the collection of all continuous functions from R into X,

and BC(RR,X) the collection of all bounded continuous functions from R into X, and
we set

Co(X) 1= {h €C(R+,X) : lim h(r) = 0}.

In this section, we give some notations, definitions and results on y -Hilfer frac-
tional derivative and (w, c¢)-asymptotically periodic functions.

DEFINITION 1. The Euler’s Gamma function is given by:
(o) = / 1*“Ye7dr for o > 0.
0
Futhermore, I'(1) =1 and I'(oc+ 1) = aI'(a) forany o > 0.

DEFINITION 2. The Laplace transform of a function g is denoted and defined by:
Z{g(n)}( / g(t)e dt for s> 0.

DEFINITION 3. [36] The two-parameter Mittag-Leffler function is defined by the
series expansions:

— Z
Eaﬁ(z)zzm7 for >0, 8 >0, zeC,

where I'(#) is the gamma function.

LEMMA 1. [36,42] Let 0 < ot <2, and B € R be arbitrary. We suppose that |
is such that & < p < min{m,mwoc}. Then there exists a constant C = C(a,,u) >0
such that

Eqp(2)| < , w<arg(z)| <7

1+]z]
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PROPOSITION 1. [18] Lett € R and 0 < o0 < 1. Then the following holds:

Eq1(1) >0, Eqq(t) >0, and Eg (1) > 0. 3)
Moreover,
thmEa 1(2) = oo, tlir_n Eq1(t)=0. ()

LEMMA 2. [37] Given A >0, and 0 < a < 2. Then the following identities hold:
OEq1 (—AtY) = —At" 'Eq o (—A1Y), (5)

and
0 (t* 'Eqq (—A1%)) =t“ 2Eq q_1(—At%), forall t>0. (6)

DEFINITION 4. The left sided fractional integral of a function f of order o with
respect to y is

B0 = g [ WO W =) o

DEFINITION 5. The left sided Hilfer fractional derivative of a function f of order
o and type B is

D ) =1 (1) £ ()

where y=f(1—a)+o.

DEFINITION 6. The left sided with respect to y -Hilfer fractional derivative of a
function f of order o and type B is

D 0 = (g ) () £,

THEOREM 1. [38] If f € C'(R,X), then

I8V DIV f(x) = £ (x) —

and By o
D"V IEY f(x) = f(x).

THEOREM 2. [38] Let f, g€ C' (R,X), o >0 and 0 < B < 1. Then

DEPV f(x) = DIV a(x) = f(x) = g(x) +c(w(x) — w(0))" !, ceR.

In what follows, we will recall some definitions and properties of both of (®,c¢)-
periodic and (w, ¢)-asymptotically periodic functions.
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DEFINITION 7. [6, 30] A function f € C(R,X) is said to be (w,c)-periodic if
there exist ¢ € C\ {0} and w > 0 such that

flt+w)=cf(t), Vt €R.

o is called the c-period of f.

We denote by Py, (X) the collection of all functions f € C(R,X) which are (®,c¢)-
periodic. When ¢ =1 (¢ = —1 resp.) we recover the ® -periodic (resp. w -antiperiodic)
case.

THEOREM 3. [30] (Theorem 2.4) Suppose f € C'(R,X)NPyc(R,X). Then f' €
Py (R, X).

DEFINITION 8. [7] A function & € C(R,X) is called c-asymptoticif ¢"*(—)h(t) €
Co(X), that is,
lim ¢ (—t)h(t) =0

{—o0

where ¢"\(—1) = ¢ ™"/ The collection of those functions will be denoted by Cp . (X).

DEFINITION 9. [7] A function f € C(R,X) is said to be (o, c)-asymptotically
periodic if f =g+ h where g € Py (R,X) and i € Cy (X). The collection of those
functions(with the same c-period @ for the first component) will be denoted by AP, (X).

LEMMA 3. [7] Let oo € C. Then
1. (f+g) € APyc(X) and ah € AP, (X) whenever f,g,h € AP,(X).
2. If T >0 is constant, then fr(t) := f(t +T) € APy (X) whenever f € APy.(X).

3. Let g € Py(X) and h € Co(X) such that g,h € C'(R,X). Then the derivative
of (f =g+h) € APy(X) belongs to AP, (X).

THEOREM 4. [7] Let f(t,x) :=g(t,x)+ h(t,x) where g(t + ,cx) = cg(t,x) and
heCy(X,X).
Let us assume the following conditions:

(1) h(z) =c"(—t)h(c"(t)z) is uniformly continuous for z in any bounded subset of
X uniformly for t > d and hy(z) — 0 as t — e uniformly in z.

(2) There exists v € BC(Ry,Ry) such that
1 (t,u1) = f(tw) | < v(O)llur —wall, Yy, uz € X, 1 € Ry
If u € APyc(X), then f(.,u(.)) € APyc(X).
THEOREM 5. [7] APyc([d,o=) x X,X) is a Banach space with the norm

1 llawe := sup|lle|" ()£ ()]].
t>d
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For the uniqueness result, we will need the following theorem.

THEOREM 6. [12] (Contraction Mapping Principle) Let X be a Banach space,
D C X be a closed and A : D — D a contraction mapping (i.e., ||Ax — Ay|| < k|lx —y||
Sor some k € (0,1)) and for x,y € D. Then, A has a unique fixed point.

In what follows, we will consider 7 € R . Therefore we will use || f||aoc as

1 llawe = sup [[[e]" (1) £ (0)]]-
>0

3. Existence and uniqueness of the mild solution

We suppose that y is an increasing and positive function, having a continuous
derivative ' and such that y (0) = 0, lim _Y(t)=+oo, and y € C' (R, X) NPy (X).

We assume also that there exist posmve constants n,p = 0 such that y(r) < neP.

LEMMA 4. The equation (1) is equivalent to the Volterra integral equation

=1 .
u(t) = (Wr(‘t()}z) IO* u(0)+ %/0 II//(T) (w(t)— l[/(‘L'))O‘fl u(t)dr
+ ﬁ A l[//(T) (w(r)— l[/(r))o‘*l Sf(t,u(t))dr. 7)

Proof. Applying the operator Igi“’ to the both sides of equation (1), we get
15V DSV () = ALY u(e) + 18V f(2,u(1)). 8)

From Theorem 1 the left hand side of (8) becomes

y—1
15DV u(e) = u(r) - %%i Yy (0).

So, it follows that

-1 1
ult) = ("’f(’i) 0 o>+% [ v @ - v@) e
1 / V(2 (W) — w() " flz,u(e))dr.

Conversely, if u satisfies (7) then,

y—1
0) = S (0 = ALY+ ),

we deduce that ‘ ‘ ‘
YDV (1) = ALY u(e) + 15 £ (1,u(2)). 9)
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Applying the operator Dg;ﬁ ¥ to both sides of equation (9) while taking into
account Theorem 1 and Theorem 2, we obtain

DIV u(r) = DEPY (ALY ut) + 1Y £(1,u(2))]
= ADEPY IV u(t) + DEPVISY £ (1, u(r))
=Au(t)+ f(t,u(t)). O
LEMMA 5. Suppose that (7) is fulfilled, then we have the following integral equa-

tion:

o= [V we-ve ([ *‘%((@)“) pu(n)dn ) ndo

+ [ V(@RWE) - v (o) f(o.u0)do

where .
R(z)= [ T () 0% py (07'/%) a0
0

and e
uy = I(()f}l)’wu (0).

Proof. Let us set x = y(¢) and make the change of variable 0 = (7). Then,

do = y/'(t)dt and (7) becomes
—1 X
= T M) < [N o)y oo (10

u(w ) = T tor @) Jo
e o 60 A (@)l ()

If weset uy = g\ V1 (0), 2(x) =u (! (x)) and g (x) = f (! (x) ,u(y ! (x))),

then (10) becomes

X! x !
z( ):—Fy(y)uo+%/() (x—G)ailz(U)dG+ﬁ/o (x—0)*"'g(0)do.
1)

Applying the Laplace transform on the both sides of (11), we have
Z(s)=sTug+s *AZ(s)+s *G(s).

Which implies that

s

(s“I—A) Z(s) = s Mg +5G (s).

Therefore
Z(s) =%V (s T—A) T ug+ (s“I—A) ' G(s) (12)
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where Z(s) =.Z[z(¢)] (s) and G (s) = . [g(¢)] (s) are the Laplace transforms of z and
g respectively. Because of .2 [T (1)] (s) = (s“I —A) ", then it follows from (12) that

Z(s) =s"1L[T (0)](s“)uo +-Z[T (0)](s“) G(s)
:so‘_yuo/()+me_S%T(0)d0+/0+me_5%T(G)dcr/()ere_STg(r)dT. (13)

Considering the following change of variable 0 = §%, equation (13) gives

oo

+ o
Z(s) = s g / e 6O T (59) 5% 148
0

oo Y oo
+ a/ 69T (5% 60“1d6/ e Tg(1)d7
0 0

oo «
— as'Tug / T(8%) (s8)% e 09" g5
0

~+oo ~+oo o
ta / ( / T(8%) 8% e 09" e=7g (1) dr) as
0 0

d -1 o
-« 1—y T(6%) — [ — —(s8) 1S
s uo/o ( )d5 (ase )

~+-oo ~+oo o
+o / ( T (8%)8% e~ 69)" o=57g (1) dr) ds.
0 0

Because of

+o0 o
/0 e Mpg(n)dn=e”’
then

2= =5 [ 70 55 ([ e putman ) as

+ a/0+°° (/0+°°T(5“)5a—1 (/0+°°e—ss"pa (n)dn) e‘”g(r)dt) ds

~+oo ~+oo
= s“yuo/ ( T (8%) e *Mpy (n) ndn) dd
0 0

+ a/om (/OM ( O+°°T (8%)8% e Tg (z) e, (n)dn) dr) as.

(14)

Now, we make the change of variable 6 = N0 = d6 = ndS. Equation (14)
becomes

Z(s) = s' g /O+w (/;wT ((%)a) 004 (n)dn> do
e A e

15)
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With the following change of variable 74 0 =t = d0 = dt, the second term of
right hand side of (15) becomes

[ (L)) e e
= a/()+w (/;w (/Ot T ((tn—ar)“) U _nria_le‘“g(r) Po (n)dr) dn) dt
—/M ( /M (/Ot ((tn_ar)a) (t _nrf_lg(r)pa(n)dr> dn) dt

Z[h(0)] (s)

where

wo=a [ ( [r(&2)e ‘nfia_lgu)pa(n)dr) an.

If we make the change of variable 6 = n~% = dn = ’716 %l’lde, we obtain

h(t):a/+m (/0 T(0(1—1)%) (1 — 1% 0g(7) pa <Ql/a>d1> (éea'lde)
—/+w</ (1—) 07 g (7) pu (0 U“)dr)de

~ o (/0+°° (T(e(t_” ) (=)' 04 g (1) pa <6_1/°‘>d6>>dr

oo _
R r):/O T(07%) 1107 py (07/) do.

In the other hand we have

sl—Vu0/0+w (/()+wT ((%)a> 004 (n)dn) do
:51*7’140/(:&6*“‘9 (/()erT ((%)a) pa(n)dn> do
= (26" () (3 [/;wT ((%)a> uopa(n)dn] (S))

)] (s)Z i (0] (s)
*J(1)](s)
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i(f) =12 and j(t):/()+mT<<%)a>pa(n)dn.

Thus, (15) becomes

where

Z(s) = ZLixjt)uo+R+g ()] (s),

therefore
z2(t)=ixj(t)uo+Rxg(r). (16)

Since z(1) =u (y~'(z)) and g(t) = f (w ' (t),u(y =" (1))), then (16) becomes
w(y=' (@) =ixj(@)uo+Rxf(w ' (1))
- /Ii(t—r)j(r)uodr+/tR(t—r)g(r)dr.
0 0

If we set x =y~ ! (¢), then
w(x) ) v(x)
w) = [T i@ -0 i@ude+ [ R - gD
The change of variable T =y (0) = d7 = ¥/ (0)do allowed us to writte
ul) = [ (w0 = w(0)) j(v(0)wy (0)do

0
+ [[Rw@-v () g (@) (0)do

o= [V @ ww-wio (] wT((@)) pu () ) uodo

+ [ V(©@RWE -v(e)f(ou0)do. O

DEFINITION 10. A function u is said to be a mild solution to the problem (1) if
u verifies

w0 = [ (0) W)~y (@) 0()udo

+ [V @RWO- (o) (@u(0)do, (17)

Q(r>=/0+°°T(($)a> Pa(n)dn, (18)

R(7) = /()+°°aec1>a (0)T (67%) %~ a0, (19)

where
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and L
Py (0) =07 pg (9,1/0,), (20)
with @, is a probability density function, i.e.:
Dy (0) >0 forall 6 >0
0*”% (6)d6 1.

PROPOSITION 2. [18] Let 0 < o < 1. Considering the probability density @y
defined by (20), the following hold:

(i) Jo" @y (0)e 09d0 =Eq,(—z), z€C.

(i) [y~ 00®y(0)e 0d0 =Ey(—z), z€C.
Based on Proposition 2, we obtain the following proposition.
PROPOSITION 3. The following results hold:

(i) 1Q(7) |5 < MEa, (=2 (w()*), T >0,

(i) |R(7)|lx < MT*'Egq(=AT%), 720,

where Q(t) and R(t) are respectively defined by (18) and (19), M,A two positive
constants satisfying (2).

Proof. Let T > 0, we have

ol =17 ((H2)) putmani
< [T ((U2) ) izpatmyan.

Using (2), we obtain

v(r)

lolix<m | +°°e*‘(<T>m>poc<n>dn

oo )y
<M / Pa (N)dn.
Considering the change of variable 6 = n~%, we have 1 = 0~ and dn =
—Lo-a-1q0.
Therefore

S

1o(7) |X<M/ —pa 97l>6*é*16*l(w(7))a9d9

oo o
<M | Dy(0)e W 0gp,
0
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From the equality (i) in Proposition 2, we have:
10(0) 1% < MEq1 (=2 (w(7))%), 7>0.
According to (2) and the equality (i) in Proposition 2, we have:
e -1
IR@Ix =1 [ a0 (0)T (03%)c* a0
o0
< [ a0®a(0)T (67 [xz* a0
0

oo Y
<MT°‘_1/ 00D, (0)e*70d0
0

<Mt 'Eq o (—A7%), 720. O

PROPOSITION 4. Let ¢ € C\ {0} and w > 0. Then the function u define by:
w0 = [ (@) (w0~ w(0) > Q(0udo
belongs to APy (X) if |c| > 1.
Proof. Lett > 0,c € C\ {0}, @ > 0 such that |[c| > 1 and « € X, we have:

M ullz= e’ [ v () (w(0) - v (@) Q(ohudo]x
< [l (@) (v (1)~ w (@) 2 10(0) Izl wlxdo.

From the equality (i) in Proposition 3, we have:

I 00 < Mol [ Il /29 (@) (w 6) ~ v ()" Ear (-2 (w(©))") do
<Mluollx [ el () (1172 Eat (<2 (w(0) ") do
<ol [0V (0) Eus (<2 (w(0))") do.

Take 7=y (0), we have do = ri55d7, since |¢| > 1, then |c[ /¢ < 1.
Therefore, using Lemma 1, we have

w(r)
e (—0)u(t) |5 < M2 g sce”7=? / Eq1(—AT%)dt
0

w(t) 1

< MCNY2 Jug 2 / 4t
Ty A
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Setting v = 1%, we get

MCN2lug||xcpyny (VO v
Me=t)u(t)||x < ———22Pl 2)/ dv.
e (= )u(o)1x a [

Take z = Av, we have

Ay(n)* 51

MCnr?
e (~opute) <« Mol ) [ d:
AT 0 I+z
-2 o L1
< M luollx -2y / e
oA o 1+z
-2
< wtﬁ(%2)3 (l,l _ l)
2
< wtﬁ(%2)r (l) r (1 _ l)
oA« « «

Mcg?y_zﬂuoﬂxtp(y_z).
al@sin(Z)
Asy—2=—(1-o)(1—P)—1<0, then

lim 7= = 0.

{—00
Hence
lim ¢ (—t)u(t) =0,

[—00

therefore u € Cp . (X) C APy (X).
Finally u € APy, (X) if |c| > 1. O

PROPOSITION 5. Let f € Py (X). Then the function u defined by:
1
w)= [ _V(©@RW ) -w(o)/(0)do
belongs to Py, (X).

Proof. Let w >0, we have:

w+0)= [V (@RW(+0)-y(0)f(0)do.

—oo

Making the change of variable & = 0 — w, we obtain

wi+0)= [ ¥ (E+O)RWE+0) -y (E+0) F(E+0)dE
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Since y € C! (X)N P, (X) and using Theorem 3, then

w(+o)=y()

and
v (E+o)=y'(§).

We have also f € P, (X), so

fE+w)=cf(E).
Thus

wiro)=c [ W ERWE -y (E)F(E)d

— culs).
Consequently u € Py, (X). O
PROPOSITION 6. Let f € Cy . (X), and define the function u by:
w)= [ W @R~y (o) f(0)do,
Then u belongs to Cy . (X) if |c| > 1.
Proof. We have:
I 0u) = e [ 9 (@)R(w (@)= v (@) f (0)do]lx
I [ ey @R ()~ w(0)e 0 (0)dolx

SLNICI ooy (o) R (y (1) = w(0)) Ixlle™ 7 (0) |xdo

<< sup {Ilc"/"’f(c)x})
e (~end]

t
< [l ey (o) [R(w (1)~ v (0)) |xdo
Using the equality (ii) in Proposition 3, we obtain

le" (=1)u(e) 1

<M( sup {[le=/“f (o ||x}>
Ge(—oot]

x [wICI_(t_“)/”w’(G)(W(t)—w(G))“_lEa,oc (A (y () —w(0))")do.
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As |¢| =1 and 7 — 6 > 0 implies that |¢|~¢~9)/® < 1.

Thus

M (=u@)lx <M | sup {lle™ 7 (o) [1x}

e (—ooy

[ WO W0y (0) Eaa (A () - v (0))%) do.

Let us consider the integral
J= /I v (0)(w(t)—w(0)* ' Eqa (—A (v (1) —y(0))")do.

Making the change of variable x = v (t) — v (o), we have do = — 4
Further, y is an increasing and positive function, and y(0) =0,then lim (o)
0——o0

=0.
The above integral becomes

0
J:—/ XNy o (—Ax%) dx
w(r)

According to (5), we have

X Eq o (—Ax%) = —/ITGXEM (—Ax%) (21)

and so

1 [0
/= A w(t
= 2 Ear (A0,
= o (Eer (0~ B (-2 (w (@)% ).

: OcEq 1 (—Ax%)dx

Since
lim y (1) =

{—00
we deduce from Proposition 1 that
lim Eq (=2 (w (1)) =0.
Since Eq 1 (0) =1, we finally get

limJ !
imJ=—.
A

t—oo
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Moreover, we know that f € Cp . (X), then

lim sup {[le=7/0f (o) |} =0.

oc | —oot
Since
M (=u()lx <M | sup {Ic/“f(0)[Ix} | xJ,
oc(—oot
therefore

lim ¢ (—#)u(t) =0.

f—o0

Consequently u € Cp . (X).
This ends the proof of the proposition. [

PROPOSITION 7. Let f € APy (X). Then the function u defined by:

w)= [ W (@R -v(0)f(0)do
belongs to APy (X) if |c| > 1.

Proof. Since f € AP, (X), then there exist f] € Py (X) and f» € Cp (X) such

that f = fi+ f>.
It follows that

u(t) =/_;llf’(0)R(w(f)—llf(G))(f1 (0)+f2(0))do

= [ W ©@RWO-v(o)fi(@)do+ [ ¥ (@)RWE)-v(0) f(0)do
=up (t)+uz(2)
with .
w®= [ v RO -v()f(0)do,
and .
w®)= [ v (RO -vy(0)f(0)do.

From Proposition 5 and Proposition 6, we can say that u; € Py (X) and uy €
Coc (X).
Consequently u € APy (X). O

PROPOSITION 8. Let f € AP, (X) and define u by:

w0)= [V (@RW O~y (@) f (0)do.

Then u belongs to APy (X) if |c| > 1.
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Proof. Since f € APy (X), then there exist f] € Py (X) and fo € Cp . (X) such
that f = fi+ /2.

We have
0= [wor (0)) (1 (0)+ f2(0))do
—/w (0) fi(o d6+/u/ R(y (1)~ y(0)) f2(0)do
:/ v ( _w(o)A ada—/_wllf O)R(w (1)~ w(0)) fi (0)do
/u/ (0))2(0)do

|
=/_ww0 (e —uf(cr))fl(0)d0+/0tw’(0)R(uf(t)—w(a))fz(d)dc
=u (1) +ux(r)
where
=] v(©@RWE-v©)h(0)do

and

1
0= [ v (©)RW 1)~ v(0)(0)do.
According to Proposition 5, u; € Py, (X).
Now, let us show that uy € Cp . (X).
Let € >0. As f» € Gy (X), then there exists 7 > 0 such that forall o > T,
e/ fa(0) |1x < . (22)
In order to show that u; € Cy . (X), we consider: 7 > T, hence

/u/ (o) f2(0 d0+/w R(y (1)~ y(0)) f2(0)do,

and
2
e (=0)uz (1) [Ix < Y 1 (1)
i=1
where

=l [ v (0)) 12 (0)dolx:
= Jle*( /w (0)) 2 (0)do]x.
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We have:
D=l [ v () £2(0)do]|x
< /0 e[y (o) [R (v (1) =¥ (0)) ™/ £2(0) [ xdo.

We know that # > T and 0 < 0 < T, therefore — (r — 0) < 0. If |¢| > 1, it implies
that |¢[~(—0)/® < 1.
According to the equality (ii) in Proposition 3, we have also

IRy (1) = w (0)) x <M (w (1) = w(0))" " Equ (—2 (w (1)~ w(0))"). (23)

Hence

noy < s {lcCn©li}) [ v wn-vion™

0<o<T

X Eo,q (_A (w(r)— W(o-))a) do.

Making the change of variable £ = y (1) —

v
11<z><—M( sup {2 (0) )/ U o, (a9

(o) and using (21), we obtain

0<o<T }

M o/w )=w(T) u
S (0§§ET{C f(o x}) Ly e (-AEa
= % —o/ow w(z)—u/(T)
=5 (e, {0} ) [Fan (28]
—]E —c/w
=7 (Osgz{ Ao x})

< (B (2w 7)) = Ear (<2 (w (1)) )

We know that

and
lim Ey, ( A (u/(t))o‘) =0
because
lim Ea,l( ) :O,
then

lim Eq1 (A (w (1) = v (T)*) = Eq1 (=4 (w (1))*) =0.

f—o0

Since f> € Gy (X), therefore

sup {lle=7/f2(0) 1 <

0<o<T
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Consequently
tlim L (t) =0.
We have
B =l [ v -y (0) £ (0)dox

< /T le| "=y (o) IR (v (1) =y (0)) [Ixlle™ "/ f2 (o) [Ixdo.

According to (22) and (23), and consider the change of variable & =y () — y (o),
we obtain

We note that T < o < ¢ implies that — (r — o) < 0. Then, if |¢| > 1, we have
|e|~=0)/e L1,
According to (21), the above inequality becomes:

eM [0
L(t) < — 0:Ep 1 (—AENd
20T [ Gk (AL
sM

[ (28]
U w()—w(T)
EM

= (Eat (0= Eaa (<2 (w ()= (1)) )

As
lim Eq.1 (=4 (w (1) =y (1)) =0
and
Eq 1 (0) =1
then
eM
L(t) < —.
2 (t) A
Hence
lim I, (t) =0.

f—o0

Hence, up € Cy . (X) if |c| > 1. Finally, u € APy (X) if [c| > 1
The proof is complete. [
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In the following result, we need the following assumption:

(H1) hz(z) = c"(=t)h(c"(t)z) is uniformly continuous for z in any bounded subset of
X uniformly for # > d and h;(z) — 0 as t — oo uniformly in z .

(H2) f € APy-(Ry x X,X) and there exists a constant Ly > 0 such that:
||f(t7x) _f(t7y)H < Lfo_y||7 forall 7 € IR+7 X,y € X.

(H3) The inequality (2) hold.

Now, we present our first result for the problem (1) which relies on the Banach
fixed point principle.

THEOREM 7. Under the previous assumptions, if we assume that |c| > 1, (Hy)-
(H3) hold. Then there exists a unique (®,c)-asymptotically periodic mild solution to
equation (1), provided that there is a constant

LM

Q)LZ )

< 1.

Proof. Consider the operator I' : AP, (R4 x X, X) — AP, (R4 x X, X) such that
t
Tu@) = [ v(0) ()~ w(0))* Q(o)udo

+ [V @RWO- (o) (0.u(0)do. 24)

In view of Theorem 4, Proposition 4 and 8, and Lemma 3, I" is well-defined.
Let u,v € AP, (X), then

ITu(r) — Tv(1) || awe

=1 [ @R O~ (@) ( (0.u(0) - £ (0,1(0)) d

=sup{Iiel/* [ v/ (@R (1)~ v () (4 (0,u(0)) — £ (0:+(0)) 0 e}
>0 0

<sup{ [ 1el0W (@) IR (w ()~ v (@) Izl (0:u(0)) ~ £ (7:¥(0))
>0 0

<tysup{ [l /v (@) IR (v ()~ (@) [xllale) - (o) o}

<tysup{ [l 20y (@) [R (v ()~ w(©) [l (u(0) (@) o}

<tpmsup{ [0y (0) (v () - ()"

>0

X Eaa (=2 (w (1) = w(0))*) do f | = llaoc-
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As || =1 and t — o >0, then \c\_(“")/w < 1. In addition, making the change
of variable & = y (1) — w (o), we obtain:

w(r)
HFM(I)_FV(I)HQ(DCgLfMSgg{/O éailEOQOL(_léa)do-}”u—\)”uwc.
1=

Using (21), we have

LM

w() u
IT(e) = Tv(O)awe < == sup{ [ 0cEt (~2E%)do Y= vl
>0 0

A
LM ay1°

< — —_ .
< Zsup[Ear (<Al
LM
< 22 sup{Eu1 (0) = Eat (=2 (w (1)) Hlu—vlaoe
=0
:L—stup{

0

b 1= Eot (<A (W (1)) Hlu=vlaoe

It is clear that
sup{ 1= Eqy (<2 (w(0)*) } =1,
>0
setting Q) = #7 we get
ITu(t) = Tv(t) lawe < L5 [l = vlawe-

When Q, < 1, we deduce by the Banach contraction principle that I" has a unique
fixed point u € AP,.(X), solution of equation (1).
Finally, equation (1) has a unique (w, c)-asymptotically periodic mild solution. [J

4. Ulam-Hyers stability

In what follows, we discuss the Ulam-Hyers stability of the solution to the equation

(D).

DEFINITION 11. The equation (1) is Ulam-Hyers stable if there exists a real num-
ber Cy such that, for each € > 0 and for each solution & € AP, (X) of inequality:

DIPViE(r) — Aae) - f (1,(0)) | <e, (25)

there exists some u € AP,(X) satisfying

{Do"ﬁ;"/ut):Au(t)+f(t7u(l))7 O<oa<l, 0<B<I; t=0 (26)

I5Yu(0)=ug, y=B(1-0a)+a

‘ﬁ(t) - u(t)‘ <Cye, 130.
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DEFINITION 12. The equation (1) is generalized Ulam-Hyers stable if there exists
@ e C(R4,Ry), @(0) =0 such that, for each € > 0 and for each solution % € APy (X)
of inequality:
Dy Vii(e) - Adlr) — f (1,5(0)) | <.

there exists some u € AP,.(X) satisfying

DS‘;B”"ut):Au(t)+f(t,u(t)), O<a<l, 0<B<l; t=0
I u(0) =up, y=B(1-a)+a

THEOREM 8. Assume that the hypotheses (Hp)—(H3) and Theorem T hold. Sup-
pose also that Cy 1= sup{||c”/w (w(1)* HX} < oo, Then the equation (1) is Ulam-
=0

Hyers stable.

Proof. Let € >0 and let i € AP,.(X) be a solution of the inequaty (25). In view
of Theorem 7, let u € APy.(X) be the unique solution of equation (1), we have

ut) = Fut [ W) R (1)~ w(0)) f (0.u(0)) do

with
F,= /0 v () (v (1) — w () > Q(c)updo.

On the one hand, if 151‘%(0) = 151‘%(0), then ugp = uy it follows that F,, = Fj.
Hence

wt) = Fot [ W) RW 0~ w(0)f (0.u(0)) do.

On the other hand, using (25), we have

0+ 0+

JEv (Da;ﬁ:vf,;(,) — Au(r) —f(t,ﬁ(t))> ‘ < sl(f‘i“’(l)~
So

@)~ Fo— [ W (@R ()~ w(©)) f(0.0(0)) do

< i v @ —v(e)  do
€ a

< 2 W)
€
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From the above, we have

=t — | aoc

<sup{| 1 (y (1)) Hx}

€
>0 F(OC+ 1)

+sup{Jle e [w ¥(0))(f (0,(0)) ~ f (0,u(0))) do]|x |
>0
< ﬁfgg{nc 7 ( (1) HX}

wLysup{ [11el /v () IR (v (1) - ¥(0) /(o) ~ u(e)xdo

<ﬁs+Lstup L1ty (o) w(n - v ()"
xEM 2w (1) =y (0))%) =/ (ii(o )—M(U))deﬁ}
Fo ¢ HlMsup {/ —y(o)*!

ana< 2 (v (6) - w(0)")d }Hu e

‘We know that

Lfo‘i‘S{ OI W (0) (W (1) =y () Eva (~A (W (1)~ v (0))%)do |
_ LM sup {1 Es (<2 (v (1)") }
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and, as
sup {1 = Eq.1 (<2 (w(1)*) } =1
>0
then
- C LM
7= ullawe < g e+ = 17 wllaoe
LMY Ca
= _ — Ul|awe S £
( P )”“ lac T(o+1)
- C
= i — | gwe < o « €.
( —-T> T(a+1)
Take

it follows that
i~ ulave < Cye.

Finally, equation (1) solution is Ulam-Hyers stable. [J

THEOREM 9. Let the conditions of Theorem 8 hold. If there exists ¢ € C(R,R),
©(0) = 0, then the equation (1) has generalized Ulam-Hyers stability.

Proof. In asimilar arguments of Theorem 8, with putting ¢ (¢) =Cy€ and ¢(0) =
0, we obtain

i —tt]|awe < @ (€).

Therefore, equation (1) solution is Ulam-Hyers generalized stable. [

Conclusions

In this paper, we proved the existence and uniqueness of (®,c)-asymptotically
periodic mild solutions to some y -Hilfer fractional evolution equations of the form:

DEPYu(t) = Au(t) + f(t,u(r)), O<a<l, 0<B<1; 1>0

using Banach fixed point theorem. Futhermore, we discuss the stability analysis of the
proposed problem.
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