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EXISTENCE RESULTS FOR PANTOGRAPH DIFFERENTIAL EQUATIONS

WITH HADAMARD FUNCTIONAL FRACTIONAL DERIVATIVE

D. PRABU, N. ANNAPOORANI ∗ AND K. BALACHANDRAN

(Communicated by N. Nymoradi)

Abstract. This study examines the existence of solutions for various types of fractional panto-
graph differential equations by employing the Hadamard functional fractional derivative. The
results are derived by means of the Banach and Krasnoselskii fixed point theorems. Theoretical
results are validated through illustrative examples.

1. Introduction

In recent years, there has been a considerable rise in enthusiasm concerning the
application of fractional calculus to describe, and manage various engineering frame-
works [13, 17, 26, 27]. The effectiveness of fractional calculus has been demonstrated
in the examination of multiple diffusion phenomena, such as heat transmission [25],
gas exchange and water movement through porous structures [25, 31]. Bagley and
Torvik [6, 7] initially introduced fractional calculus as an essential tool for modeling
tissue viscoelasticity. Several researchers have established the existence and unique-
ness of solutions for different fractional differential equations incorporating diverse
fractional derivatives [2, 8, 9, 12, 22, 35].

Pantograph differential equations find applications in multiple disciplines, includ-
ing physics, engineering, biology and economics. They are particularly valuable for
modeling systems with distributed delays or long-term memory effects. Through the
study of these equations, researchers have gained important insights into the dynamic
behaviors of complex systems with delayed interactions [18, 19, 21, 30]. Balachandran
et al. [10] investigated the existence of solutions for nonlinear fractional pantograph
differential equations. Rafeeq et al. [34] discussed the Caputo-Hadamard fractional
pantograph equation of two distinct orders with Dirichlet boundary conditions. Tha-
bet et al. [43] examined the analytical investigation of the ABC-fractional pantograph
implicit differential equation concerning another function. In [42], the authors made
an analytical study of the multi-order  -Hilfer fractional pantograph implicit differ-
ential equation on unbounded domains. Abdelnebi et al. [3] explored the existence,
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uniqueness and stability of solutions for a pantograph problem involving three suc-
cessive derivatives of Caputo-Hadamard-type. Several researchers have explored the
existence and uniqueness of solutions for such equations involving various fractional
derivatives [15, 18, 20, 21].

Moreover, the implementation of the  -derivative (functional derivative) provides
a framework for formulating and analyzing fractional differential equations, enabling
extensive possibilities for constructing mathematical models and numerical method-
ologies. This flexibility renders it particularly useful in places where standard deriva-
tives fail to accurately represent the complex dynamics of a system. Balachandran
et al. [11] introduced Hadamard fractional integrals and derivatives. Nyamoradi et
al. [28] analyzed a Hadamard-type fractional differential equation by incorporating a
logarithmic-type integro-initial conditions. Further, using standard fixed point theo-
rems, they investigated the existence and uniqueness of solutions for a new class of
Hadamard fractional differential equations on a half-line with logarithmic-type initial
conditions [29]. Krushna et al. [23] examined the Hadamard fractional boundary value
problems with the help of fixed point method. Employing the  -Caputo fractional
derivative many researchers have utilized the fixed point principles to investigate the
existence and uniqueness problems for nonlinear differential equations of fractional or-
der. Further details on these derivatives can be found in [4, 5, 33].

To the best of our knowledge, no studies have been made on fractional panto-
graph differential equations with Hadamard functional fractional derivative. Motivated
by this, we aim to examine the existence and uniqueness of solutions for fractional
pantograph differential equations of the form

HD ,
0+ u(t) = f

(
t,u(t),u( t)

)
, t ∈ J = [0,b], 0 <  < 1 (1)

u(0) = u0, (2)

where HD ,
0+ is the Hadamard functional fractional derivative of order 0 <  < 1 in a

Banach space X and f : J×X ×X → X is a continuous function.
This paper is organized as follows: Section 2 introduces the notations, funda-

mental concepts, and preliminary results required for the study. Section 3 employs
classical fixed point theorems to establish the existence and uniqueness of solutions
for the fractional pantograph differential equations with nonlocal conditions, bound-
ary value problem of fractional pantograph differential equations and neutral fractional
pantograph differential equations. Finally, Section 4 presents illustrative examples to
validate the theoretical findings.

2. Preliminaries

In this section, we provide notations, definitions, and introductory information
that will be used in this work. Let (X , | · |) be a Banach space and C (J,X) = E be the
Banach space of all continuous functions from J into X with norm

‖u‖ = sup{|u(t)| : t ∈ J}.
Furthermore, Br(u0,X) denotes the closed ball with center at u0 and radius r in X .
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DEFINITION 1. [11] (Hadamard functional fractional integrals) Let [a,b] be an
interval, f be an integrable function defined on [a,b] and  ∈C1[a,b] be an increasing
function with  ′(x) �= 0, for all x ∈ [a,b] . Then the left-sided Hadamard functional
fractional integral of order  > 0 is defined by

HI ,
a+ f (x) =

1
()

∫ x

a

 ′(t)
(t)

(ln(x)− ln(t))−1 f (t)dt, (3)

and the right-sided Hadamard functional fractional integral of order  is defined by

HI ,
b− f (x) =

1
()

∫ b

x

 ′(t)
(t)

(ln(t)− ln(x))−1 f (t)dt.

DEFINITION 2. [11] (Hadamard functional fractional derivatives) Let n− 1 <
 < n with n ∈ N , [a,b] be an interval, f be an integrable function defined on [a,b]
and  ∈ C1[a,b] be an increasing function with  ′(x) �= 0, for all x ∈ [a,b] . The
left-sided Hadamard functional fractional derivative of f of order  is defined by

HD ,
a+ f (x) =

(
(x)
 ′(x)

d
dx

)n

HIn− ,
a+ f (x)

=
1

(n−)

(
(x)
 ′(x)

d
dx

)n ∫ x

a

 ′(t)
(t)

(ln(x)− ln(t))n−−1 f (t)dt (4)

and the right-sided Hadamard functional fractional derivative of f of order  is defined
by

HD ,
b− f (x) =

1
(n−)

(
− (x)
 ′(x)

d
dx

)n ∫ b

x

 ′(t)
(t)

(ln(t)− ln(x))n−−1 f (t)dt.

THEOREM 1. [41] (Banach fixed point theorem) If X is a Banach space and
F : X → X is a contraction mapping, then F has a unique fixed point.

THEOREM 2. [41] (Krasnoselskii fixed point theorem) Let K be a nonempty
closed convex subset of a Banach space X . If A and B are two operators such that

i) Ax+By∈ K , for any x,y ∈ K ,

ii) A is compact and continuous,

iii) B is contraction mapping,

then there exists z ∈ K such that z = Az+Bz.

Equation (1)–(2) is observed to be equal to the following integral equation

u(t) = u0 +
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.
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3. Existence results

We introduce the following conditions to demonstrate our findings.

(H1) The function f is continuous and there exists a constant L1 > 0 such that

|f(t,u1,v1)− f(t,u2,v2)| � L1 (|u1−u2|+ |v1−v2|) ,
for each t ∈ J = [0,b] and u1,v1,u2,v2 ∈ X .

For brevity, let us assume M = max
t∈J |f(t,0,0)| .

Our first result is based on the Banach fixed point theorem.

THEOREM 3. Suppose (H1) holds. If

2

(
2L1 (ln(b)− ln(0))

( +1)

)
< 1,

then there exists a unique solution to the problem (1)–(2).

Proof. Define an operator F : E → E by

Fu(t) = u0 +
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

Choose r � 2

(
|u0|+ M (ln(b)− ln(0))

( +1)

)
. Then we may demonstrate that FBr ⊂

Br , where Br = {u ∈ E : ‖u‖ � r}. Using the assumptions, we obtain

|Fu(t)| � |u0|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1|f(,u(),u())− f(,0,0)|d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1|f(,0,0)|d

� |u0|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1L1(|u()|+ |u()|)d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1Md

‖Fu‖ � |u0|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−12L1‖u‖d

+
M

()

∫ t

0

 ′()
()

(ln(t)− ln())−1d

� |u0|+ 2L1‖u‖
()

∫ t

0

 ′()
()

(ln(t)− ln())−1d

+
M

()

∫ t

0

 ′()
()

(ln(t)− ln())−1d
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� |u0|+ 2L1r

( +1)
(ln(b)− ln(0)) +

M
( +1)

(ln(b)− ln(0))

� r

2
+

r

2
= r.

Therefore, F maps Br into itself. Let us consider u,v ∈ E , then for any t ∈ J , we
obtain

|Fu(t)−Fv(t)| � 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1

|f(,u(),u())− f(,v(),v())|d

� 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1

L1 (|u()−v()|+ |u()−v()|)d

‖Fu−Fv‖ � 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1L1(2‖u−v‖)d

�
(

2L1 (ln(b)− ln(0))

( +1)

)
‖u−v‖.

Hence, F is contraction and has a unique fixed point as a result of the Banach fixed
point theorem, which is the unique solution to the problem (1)–(2). �

3.1. Fractional pantograph differential equations with nonlocal conditions

The study of the nonlocal Cauchy problem was first introduced by Byszewski [14].
Since then, numerous researchers have explored various types of equations, includ-
ing nonlinear differential equations, integrodifferential equations, functional differen-
tial equations, and fractional differential equations [1, 12].

Consider the equation (1) with nonlocal conditions of the form

u(0)+g(u) = u0, (5)

where g : E → X is a continuous function that satisfies the following assumption:

(H2) g is continuous and there exists a constant L2 > 0 such that

|g(u)−g(v)| � L2‖u−v‖, for u,v ∈ E .

The following integral equation can be seen to be equivalent to the equations (1) and
(5)

u(t) = u0 −g(u)+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

THEOREM 4. Suppose (H1)–(H2) hold. If

2

(
L2 +

2L1 (ln(b)− ln(0))

( +1)

)
< 1,

then there exists a unique solution to the problem (1) and (5).
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Proof. Define an operator P : E → E by

Pu(t) = u0−g(u)+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

Choose r � 2

(
|u0|+ |g(0)|+ M (ln(b)− ln(0))

( +1)

)
. Thus, we may demonstrate

that PBr ⊂ Br. Based on our assumptions, we have

|Pu(t)| � |u0|+ |g(u)−g(0)|+ |g(0)|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1

|f(,u(),u())− f(,0,0)|d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1|f(,0,0)|d

� |u0|+L2‖u‖+ |g(0)|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1

L1(|u()|+ |u()|)d +
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1Md

‖Pu‖ � |u0|+L2‖u‖+ |g(0)|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−12L1‖u‖d

+
M

()

∫ t

0

 ′()
()

(ln(t)− ln())−1d

� |u0|+L2‖u‖+ |g(0)|+ 2L1‖u‖
()

∫ t

0

 ′()
()

(ln(t)− ln())−1d

+
M

()

∫ t

0

 ′()
()

(ln(t)− ln())−1d

� |u0|+ |g(0)|+L2r+
2L1r

( +1)
(ln(b)− ln(0))

+
M

( +1)
(ln(b)− ln(0))

� r

2
+

r

2
= r.

Therefore, F maps Br into itself. Let us consider u,v ∈ E , then for any t ∈ J , we
obtain

|Pu(t)−Pv(t)|� |g(u)−g(v)|+ 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1

|f(,u(),u())− f(,v(),v())|d

� L2‖u−v‖+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1

L1 (|u()−v()|+ |u()−v()|)d
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‖Pu−Pv‖ � L2‖u−v‖+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1L1(2‖u−v‖)d

�
(

L2 +
2L1 (ln(b)− ln(0))

( +1)

)
‖u−v‖.

Thus, P is a contraction mapping. Due to the Banach fixed point theorem, P has a
unique fixed point, which is the unique solution to the problem (1)–(5). �

3.2. Boundary value problem for fractional pantograph differential equations

In recent years, many researchers have investigated boundary value problems for
fractional differential equations under various boundary conditions [23, 35–40]. Here
we explore the fractional pantograph differential equations (1) along with boundary
condition

cu(0)+du(b) = e, (6)

where c,d and e are real constants with c+ d �= 0. The integral equation that corre-
sponds to (1) and (6) is represented by

u(t) =
e

c+d
− d

c+d
1

()

∫ b

0

 ′()
()

(ln(b)− ln())−1f(,u(),u())d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

THEOREM 5. Assume that (H1) holds. If

2

((
1+

|d|
|c+d|

)
2L1(ln(b)− ln(0))

( +1)

)
< 1,

then (1) and (6) has a unique solution.

Proof. Define the operator Q : E → E by

Qu(t) =
e

c+d
− d

c+d
1

()

∫ b

0

 ′()
()

(ln(b)− ln())−1f(,u(),u())d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

Choose r � 2

( |e|
|c+d| +

(
1+

|d|
|c+d|

)
(ln(b)− ln(0))

)
. �
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Thus, we may demonstrate that QBr ⊂ Br . Based on our assumptions, we obtain

|Qu(t)| � |e|
|c+d| +

|d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−1

|f(,u(),u())− f(,0,0)|d

+
|d|

|c+d|()

∫ b

0

 ′()
()

(ln(b)− ln())−1

|f(,0,0)|d +
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1|

f(,u(),u())− f(,0,0)|d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1|f(,0,0)|d

� |e|
|c+d| +

|d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−1L1(|u()|+ |u()|)d

+
|d|

|c+d|
1

()

∫ b

0

 ′()
()

(ln(b)− ln())−1Md

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1L1(|u()|+ |u()|)d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1Md

‖Qu‖ � |e|
|c+d| +

|d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−12L1(‖u‖)d

+
|d|

|c+d|
1

()

∫ b

0

 ′()
()

(ln(b)− ln())−1Md

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−12L1(‖u‖)d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1Md

� |e|
|c+d| +

|d|
|c+d|

2L1‖u‖
( +1)

(ln(b)− ln(0))

+
|d|

|c+d|
M

( +1)
(ln(b)− ln(0))

+
2L1‖u‖
( +1)

(ln(b)− ln(0)) +
M

( +1)
(ln(b)− ln(0))

� |e|
|c+d| +

( |d|
|c+d| +1

)
2L1r

( +1)
(ln(b)− ln(0))

+
( |d|
|c+d| +1

)
M

( +1)
(ln(b)− ln(0)) � r

2
+

r

2

� r.
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Thus, QBr ⊂ Br . Let u,v ∈ E . Then

|Qu(t)−Qv(t)| � |d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−1

|f(,u(),u())− f(,v(),v())|d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1

|f(,u(),u())− f(,v(),v())|d

� |d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−1

L1 (|u()−v()|+ |u()−v()|)d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1

L1 (|u()−v()|+ |u()−v()|)d

‖Qu−Qv‖ � |d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−1L1 (‖u−v‖+‖u−v‖)d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1L1 (‖u−v‖+‖u−v‖)d

� |d|
|c+d|

1
()

∫ b

0

 ′()
()

(ln(b)− ln())−1L1(2‖u−v‖)d

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1L1(2‖u−v‖)d

�
((

1+
|d|

|c+d|
)

2L1(ln(b)− ln(0))

( +1)

)
‖u−v‖.

Thus the operator Q is contraction and due to the Banach fixed point theorem, Q has a
unique fixed point, which is the unique solution to the problem (1)–(6).

3.3. Neutral fractional pantograph differential equations

Neutral differential equations appear in various fields of applied mathematics and
have recently garnered significant interest, as noted in [16, 24]. In recent years, nu-
merous studies have examined neutral fractional differential equations under diverse
conditions [18, 32].

Consider the neutral fractional pantograph differential equation of the form:

HD ,
0+ (u(t)−h(t,u( t))) = f

(
t,u(t),u( t)

)
, t ∈ J = [0,b], (7)

u(0) = u0, (8)

where h : J×X → X is a continuous function and the equations (7)–(8) is equivalent
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to the integral equation

u(t) = u0 +h(t,u0)−h(t,u( t))

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

We need the following hypotheses:

(H3) The function f is completely continuous and there exists a constant L3 > 0 such
that

|f(t,u,v)| � L3, for each t ∈ J and u,v ∈ X .

(H4) The function h is continuous and there exists a constant L4 such that 0 < L4 < 1
and

|h(t,u1)−h(t,u2)| � L4 (|u1−u2|) ,
for each t ∈ J and u1,u2 ∈ X .

Take H = max
t∈J |h(t,0)|.

THEOREM 6. Assume that (H3) and (H4) hold. Then the problem (7)–(8) has at
least one solution on J .

Proof. Choose r �
|u0|+ |h(t,u0)|+H + L3

(+1) (ln(b)− ln(0))

1−L4
.

Define the operators A1,A2 : C (J,Br) → C (J,Br) by

A1u(t) = u0 +h(t,u0)−h(t,u( t))

A2u(t) =
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

For any u,v ∈ Br , we obtain

|A1u(t)+A2v(t)| � |u0|+ |h(t,u0)|+ |h(t,u( t))−h(t,0)|+ |h(t,0)|

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1|f(,v(),v())|d

� |u0|+ |h(t,u0)|+L4|u( t)|+ |h(t,0)|

+
1

()

∫ t

0

 ′()
()

(ln(t)− ln())−1L3d

‖A1u+A2v‖ � |u0|+ |h(t,u0)|+L4‖u‖+H +
L3

( +1)
(ln(b)− ln(0))

� |u0|+ |h(t,u0)|+L4r+H +
L3

( +1)
(ln(b)− ln(0))

� (1−L4)r+L4r = r.
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Therefore, we can conclude that A1u+A2v ∈ Br . Next, we show that the operator A1

is a contraction. For any t ∈ J and u,v ∈ Br , we get

|A1u(t)−A1v(t)| � |h(t,u( t))−h(t,v( t))|
� L4|u( t)−v( t)|‖A1u−A1v‖
� L4‖u−v‖,

and as L4 < 1, thus A1 is a contraction mapping. Next, we demonstrate that A2 is
uniformly bounded. We observe that

|A2u(t)| � 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1|f(,u(),u())|d

� 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1L3d

� L3

( +1)
(ln(b)− ln(0)) .

Therefore, A2 is uniformly bounded. Let {un} be any sequence in Br such that un →
u . Then

f(,un(),un()) → f(,u(),u()) as n → ,

since f is continuous. Now, for every t ∈ J , we get

|A2un(t)−A2u(t)| � 1
()

∫ t

0

 ′()
()

(ln(t)− ln())−1

|f(,un(),un())− f(,u(),u()) |d → 0 as n → .

Thus we see that, A2 is continuous. Next we demonstrate that the set {A2u(t) : u∈ Br}
is relatively compact in X , for all t ∈ J . Clearly {A2u(0) : u ∈ Br} is compact. Fix
t > 0 and for each  ∈ (0,t) and u ∈ Br , define the operator A

2 by

A
2u(t) =

1
()

∫ t−

0

 ′()
()

(ln(t)− ln())−1f(,u(),u())d.

Since f is completely continuous, clearly the set {A
2u(t) : u ∈ Br} is precompact in

X for each  , we have relative compactness in X for all t ∈ J since it is compact for
t = 0 and 0 <  < t . In addition, for each u ∈ Br , we get

|A2u(t)−A
2u(t)| � 1

()

∫ t

t−
 ′()
()

(ln(t)− ln())−1|f(,u(),u())|d

� 1
()

∫ t

t−
 ′()
()

(ln(t)− ln())−1L3d

� L3

( +1)
((b)−(b− )),
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which tends to zero as  → 0. Therefore, the set {A2(u(t)) : u ∈ Br} is precompact in
X . Let us demonstrate that the operator A2 is equicontinuous. For any t1,t2 ∈ J with
t1 < t2 , we obtain

|A2(u(t2))−A2(u(t1))|

� 1
()

∫ t2

0

 ′()
()

(ln(t2)− ln())−1|f(,u(),u())|d

− 1
()

∫ t1

0

 ′()
()

(ln(t1)− ln())−1|f(,u(),u())|d

� 1
()

∫ t1

0

 ′()
()

((ln(t2)− ln())−1 − (ln(t1)− ln())−1)

|f(,u(),u())|d +
1

()

∫ t2

t1

 ′()
()

(ln(t2)− ln())−1

|f(,u(),u())|d

� L3

()

∫ t1

0

 ′()
()

((ln(t2)− ln())−1 − (ln(t1)− ln())−1)d

+
L3

()

∫ t2

t1

 ′()
()

(ln(t2)− ln())−1d,

as t2 → t1 , the right hand side of the above inequality tends to zero. Thus, we have
demonstrated that A2(Br) is relatively compact. Now we can conclude that A2 is
compact using the Arzela-Ascoli theorem. According to the Krasnoselskii fixed point
theorem, there is a fixed point u ∈ Br such that A1u+A2u = u , which is a solution of
the problem (7)–(8). �

4. Examples

EXAMPLE 1. Consider the following fractional pantograph differential equations

HD ,
0+ u(t) =

1
10

+
1
8
u(t)+

1
8

cosu
( t

2

)
, t ∈ J = [0,1], (9)

u(0) = 0. (10)

Here we take X = R ,  = 1
4 , (t) = 2t ,  = 1

2 and

f(t,u,v) =
1
10

+
1
8
u(t)+

1
8

cosv
( t

2

)
, u,v ∈ R, t ∈ J.

Let ui,vi ∈ R, i = 1,2 and t ∈ J . Then we have

|f(t,u1,v1)− f(t,u2,v2)| � 1
8

(|u1(t)−u2(t)|+ |v1(t)−v2(t)|) .

Thus, the condition (H1) is satisfied with L1 = 1
8 . By simple calculation, we obtain

2

(
2L1 (ln(b)− ln(0))

( +1)

)
= 2

(
1
4 (ln2− ln1)

( 1
4 +1)

)
= 2(0.1912) = 0.3824 < 1.
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Figure 1: Graph of u for different values of  = 0.1,0.2,0.3,0.4

Therefore, by Theorem 3, the problem (9)–(10) has a unique solution on J .

EXAMPLE 2. Consider the following fractional pantograph differential equations
with nonlocal conditions

HD ,
0+ u(t) =

1
5

+
e−t

30
u(t)+

1
30

u
( t

2

)
, t ∈ J = [0,1], (11)

u(0)+
n


k=0

aiu(ti) = 0, 0 < t1 < · · · < tn < 1. (12)

Here we take X = R ,  = 1
3 , (t) = 2t , ai > 0, i = 0,1, · · · ,n ,  = 1

2 and

f(t,u,v) =
1
5

+
e−t

30
u(t)+

1
30

v
( t

2

)
, u,v ∈ R

g(u) =
n


k=0

aiu(ti), u,v ∈ E = C(J,R), t ∈ J.

Let ui,vi ∈ R, i = 1,2, u,v ∈ E and t ∈ J . Then we obtain

|f(t,u1,v1)− f(t,u2,v2)| � 1
30

(|u1(t)−u2(t)|+ |v1(t)−v2(t)|)

|g(u)−g(v)|�
n


k=0

ai|u(ti)−v(ti)|.

Thus, the conditions (H1) and (H2) are satisfied with L1 = 1
8 and L2 = 1

10 . By simple
calculation, we obtain

2

(
L2 +

2L1 (ln(b)− ln(0))

( +1)

)
= 2

(
1
10

+
1
15 (ln2− ln1)

1
3

( 1
3 +1)

)
= 2(0.1613)

= 0.3226 < 1.
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Therefore, by Theorem 4, the problem (11)–(12) has a unique solution on J .

5. Conclusion

This study has contributed to the advancement of modeling dynamical systems
with memory effects through the exploration of fractional pantograph differential equa-
tions using the Hadamard functional fractional derivative. The establishment of exis-
tence and uniqueness results, via the Banach and Krasnoselskii fixed point theorems,
has provided a solid foundation for further research in this area. The validation of theo-
retical findings through illustrative examples underscores the accuracy and efficiency of
the proposed methodology. Building on the study’s findings, future research directions
can focus on many critical areas to enhance our understanding and practical applica-
tions:

• Numerical Methods: Further investigation into numerical techniques for solving
fractional pantograph differential equations with Hadamard functional fractional
derivative can improve computational efficiency and accuracy for tackling real-
world problems.

• Stability Analysis: A comprehensive stability analysis of solution under vari-
ous perturbations and dynamic conditions will provide deeper insights into the
robustness of the proposed model.
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