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CONTROL OF SYSTEMS OF LINEAR DIFFERENTIAL
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Abstract. In this paper, we prove a bang-bang principle and a maximum principle, analogous
to Pontryagin’s, for systems of linear fractional differential equations in the Riemann-Liouville
sense. We then apply these results to two examples, illustrating how incorporating fractional
dynamics can improve optimal arrival times.

1. Introduction

In what follows, we will study the system of differential equations

(Dg,y)(r) = Ay(t) +Bu(r), >0, (1)
(I *9)(04) =",

where o € (0,1] is the fractional index, A is a matrix in M, ,(R), B is a matrix in
Mpysm(R), y* € R" and u: [0,00) — [—1,1]™ is a measurable function called control.
The operators D, and Ié;o‘ are the left-sided Riemann-Liouville derivative and inte-
gral, respectively. We denote by .7 the set of all controls u. The elements of </ are
referred to as admissible controls.

If the control u is a continuous function, with some degree of singularity at 0, it
is known in the literature (see [8] or [9], for example) that the solution to the equation
(1) is given by

t
y(t) = edy? +/ e Bu(s)ds, forall ¢ >0, ()
0

where ¢/ is the fractional exponential (operator). However, it is well-known that in
applications (see [1], [12] or [19]), useful controls are those applied a countable number
of times. That is, we are interested in the case where the control is of the bang-bang
type. For such controls, we do not know of an explicit reference for the existence of
the solution. Thus, in Section 2, we briefly prove that the formula (2) still holds for
essentially bounded controls, but now the equality holds for almost all 7 > 0.
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We will say that an initial state y° € R" is admissible if the dynamic y(z), the
solution of (1), takes it to the origin, 0, in finite time. Let G be the set of admissible
states. In this paper, we demonstrate (see Lemma 1) that if we start at a point in G, then
there exist optimal time and control, 7* and u*, respectively. Furthermore, we will see
in Theorem 2 that the control u#* is of the bang-bang type. In the context of applications,
an important aspect is a method to find the optimal control. This is a consequence of a
maximum principle that we prove in Theorem 3. As an application of the results, we
study two examples in Section 4 where the advantage of using fractional dynamics is
evident.

In the literature review, we found a wide variety of papers that study the topic from
a theoretical or applied point of view, see for example [2, 10, 14-16] or the references
mentioned in these works. However, we have not found any work that addresses these
principles, bang-bang and maximum, from the perspective presented here. It is also
worth noting that our approach does not entirely follow the classical case, i.e., o0 = 1,
as the operator e’o/? is not invertible for o # 1. This fact, for instance, prevents us from
obtaining Kalman-type controllability criteria, see [5] or [21]. In our case, this leads to
our maximum principle involving the optimal arrival time, 7", see the formula (7), in
contrast to the classical case, see for example [4] or [7].

The paper is organized as follows. In Section 2, we show the existence and unique-
ness of the solution of (1) for essentially bounded controls. In Section 3, we address
the proof of the bang-bang and maximum principles. In Section 4, we present two ap-
plication examples, and finally, in Section 5, we provide some conclusions and present
some problems that may be of interest.

2. Some preliminary results

Let us recall the following concepts. Let o € (0,1) and f: [0,o0) — R be a
function. The Riemann-Liouville fractional integral of order ¢ is defined as

o

O =t

On the other hand, the Riemann-Liouville fractional derivative of order « is given by

1 d [~ f()de
b

l—a)dxJo (x—1)*

(N =

where I denotes the usual gamma function. In particular, formulas (2.1.56) and (2.1.53)
from [8] provide us with the derivative and integral of the fractional exponential func-
tion (operator),

(DG e7) (x) = Aegy', (3)

and
(I, “eld) (x) = Eq[x"A], (4)

where E, is the Mittag-Leffler function (or operator).
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THEOREM 1. Let € (0,1], A € Myxn(R), BEMyxm(R), beR" and u:[0,0) —
[—1,1]™ be a measurable function. Then, equation (1) has a unique solution y(t), and
the equality (2) holds almost everywhere in t > 0.

Proof. The uniqueness of the solution follows immediately from the fractional
Gronwall’s inequality [18]. Let us verify that the expression given in (2) satisfies (1).
The linearity of the fractional derivative gives us

t
(D5,3)(0) = (0.5%) )+ (D5, [ e Butoyas ) (),
Let us calculate each therm in the above expression. From (3) we have for the first
(DE.€y°) (x) = Aegty”.

The second term can be written as

o ! (tf.Y)A . 1 i/x _ _o(/t (tf.Y)A
<D0+/O ey " Bu(s)ds ) (x) = Ti—o)ax Jo (x—1) A ey " Bu(s)dsdt.

First, note that

r

Therefore, we can use the Fubini’s theorem to conclude that

1
(x—t)fa/ egi'Y)ABu(s)ds
0

dr <T(1—a)||B]| [ EallAll(x—5))ds <=

X 1 . X
/ (x—1)"® / A Bu(s)dsdr = T(1 — ) / Eq[(x—s5)%A] Bu(s)ds.  (5)
0 0 0
Using the Lebesgue differentiation theorem, see [6], we can immediately conclude that
d [~ o o * (x—s$)A
7 Eqo[(x—5)%A]Bu(s)ds = | Aeg " Bu(s)ds+u(x), foralmostall x.
x Jo 0
From which the first part of (1) immediately follows.
Next, let us verify that the initial condition is also satisfied. From formula (4), we

obtain
: 1—o tA O . o 0 0
lim (o, “ee'y") () = imEa[x“A]y” ="

Furthermore, proceeding as in (5), we get

' (Iéﬂ A eii‘”ABu(s)ds) @)

Consequently, we can apply the Dominated Convergence Theorem to deduce that

tim (1o [ oA _
im { Iy, Oea Bu(s)ds | (x) =0.

x|0

<I1BI| [ Ealts—)°Allds.

Thus, (Ij;%y)(0+) = b, as required. [
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3. Bang-bang and maximum principles

Next, we introduce some notation. We denote the solution of equation (1) as
y(t; 0, u), or simply y(¢) when there is no confusion. For each ¢ > 0, we define the set

G(t) = {x € R": there exists u € o7, y(t;x,u) = 0}.
Furthermore, for each yo € R", we define
o =inf{r > 0:y° € G(1)}.
Let G := ;> G(t) be the set of admissible initial values.

LEMMA 1. If Y0 € G, then there exists u* € </ such that y(t*;)°,u*) =0, i.e.,
u* is an admissible optimal control.

Proof. Let t; > 0 such that y* € G(r;). Let (z,) be a decreasing sequence such
that y* € G(t,,) for all n € N and lim, ...t, = T*. Then, for each n € N, there exists
u, € & such that

A0 ™ (ty—5)A
ety = —/ ey " Buy(s)ds. (6)
0

By the Banach-Alaoglu theorem (see [3]), there exists u* € L”([0,#]) and a subse-
quence (up,) of (u,) that converges in the weak-* topology to u*.
First, we verify that 7 > 0, if yo # 0. Suppose 7° = 0. Then,

1 o
——" = lim (1,)! %20 = — lim (t,,)lfo‘/ el S)ABun(s)ds =0.
F(a) n—oo n—oo 0
This is absurd since y° # 0.
The continuity of the function 7 — ¢4’ on (0,0) implies (lim,_.t, = T* > 0)

A0 T
nlglgoe&y =e,"y .

Furthermore, applying the Dominated Convergence Theorem and the weak-* conver-
gence of (u,, ) to u*, we obtain

tn, . T

lim [ eg"k ')ABunk (s)ds = / AR (5) ds.
n—=Jo 0

From (6), it immediately follows that y° € G(t*). O

Recall that a control u = (u!,...,u™)T € o is of bang-bang type if, for each

i€{l,...,m}, |u(t)| =1, for almost every ¢ > 0.

THEOREM 2. (Bang-bang principle) If Y € G, then there exists an optimal con-
trol u* of bang-bang type.
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Proof. Consider the set
K={uc o :yp’1",u)=0}.

From Lemma 1, we have K # 0. Moreover, the convexity of the set [—1,1]" implies
that K is also a convex set.

Using the Banach-Alaoglu theorem and the continuity of the function ¢ +— €4
on (0,00), it follows that K is closed in the weak-* topology. By the Krein-Milman
theorem (see [17]), K has at least one extreme point, u*. If we assume u* is not a bang-
bang control, then u* can be expressed as a convex combination of two elements in K.
Therefore, ™ is an optimal bang-bang type control (see, for instance, [20] or [4]). [

Now let us address a maximum principle, analogous to Pontryagin’s maximum
principle in the classical case. Before that, a bit more notation. Let yo cR"and r >0,

F(t)= {y1 € R" : there exist u € &7, y(yo;t,u) :yl}.

As in the classical case, it holds that F(r) C R" is a convex and compact set. Moreover,
if y* € G and 7* is the optimal time, given by Lemma 1, then 0 € dF(1*) (see, for
example, [20]).

THEOREM 3. (Maximum principle) If y* € G, then there exists a vector h € R",
h #£ 0, such that

W elT “ABu*(s) = max {hTeEX )Ba} (7

ac[—1,1]m

for almost every s € [0,77].

Proof. Since F(7*) is a convex set and 0 € F(7*), there exists a hyperplane that
supports F(7*) at 0, see Theorem 2 in Appendix B.3 of [11]. This implies that there
exists a vector i £ 0 such that

h-y! <0, forall y'eF(r"), (8)

where the dot represents the usual inner product in R”.
Furthermore, note that for each u € <7, the vector

1 _eoc y0+/ ea u(s)ds

isin F(7*), see Theorem 1. Moreover, 0 € F(7*) implies

e A O—|—/ ea u*(s)ds.

From these two expressions and (8), we deduce that

T a0 T [T (s T a0 T [T (C-9Ap .
h'el, "y’ +h ey Bu(s)ds < h'e;, "y’ +h ey Bu*(s)ds.
0 0
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Therefore,

/OT* W eT B lu* (s) — u(s)|ds > 0, forall ue o )
If equality (7) does not hold, then there exists an admissible control # such that (see [20]

or [4]) .
/ hTeEXT*_S)AB [u*(s) —da(s)]ds < 0.
0

This contradicts inequality (9). Therefore, equality (7) holds true. [l

4. Examples

In this section, we present two examples to illustrate the results discussed in the
preceding section. These applications underscore key aspects of fractional calculus that
are essential for modeling real-world phenomena.

EXAMPLE 1. Consider the following fractional differential equation, which could
be used to model the walk of a tightrope walker (see [7]),

(D¥0+y)() = y(1) +u(r), >0, (10)
(o "¥)(0+) =",

where o € (0,1], u: [0,00] — [—1,1] is a measurable function, and y° € R. The solu-
tion to the above equation is, see (2),

y(t) =e ' + /(: e u(s)ds.
Note that
F(t) = {y' € R : there exists u € </ such that y(y*;r,u) = y'}.
Since —1 < u < 1, it follows that
F(t) = [ep? — Eq[t*] + 1, €)° + Eq[t%] — 1].

Therefore, the dynamic y(z), starting at y°, can reach the origin 0 at time ¢ if

_ o oy _
1 I::a[t ] gyogEa[tt] 1'
ea el
In this way,
g Eq[t*] =1 Eq[t*]—1
o o
G(r)= [— 7 , 7 ]
o o

This implies, that
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Let y' € G. By Theorem 3, there exists / # 0 such that
u(s) =sign(h), 0<s< 1"

Thus, the optimal control u* is constant. Suppose, for example, that yO >0.Ifu* =1,
the solution to the initial problem (10) is

y(t) = ey + Eq[t?] — 1.

Therefore, y(¢) > 0 for each ¢t > 0, which means 0 is never reached. On the other hand,
if u* = —1, then
y(t) =€y’ — Eq[t] + 1,

and O is reached exactly at time 7% (the optimal time, see (1)). Therefore,
Eyl(t%)*] —1

:
e

Given y° and o, we numerically solve equation (11) to find 7*. The results are pre-
sented in Table 1.

[ yo\e [ 025 ] 05 | 075 | 1 |
0.25 [ 0.137 [ 0.189 [ 0.237 [ 0.287
0.999 [ 0912 | 1.852 | 2.968 | 9.136
0.9999 ]| 0.913 [ 1.856 | 2.980 | 15.299
1 0.914 | 1.857 | 2.981 oo
1.5 | 1.646 | 4813 | 19.414
1.7 || 1.976 | 6.446 | 32.955
1.8 | 2.149 [ 7.355 | 41.783

81818

Table 1: Optimal time T* for different values of the parameters yy and o.

From Table 1, we observe that, given a fixed initial condition, the optimal time
decreases with respect to the fractional index. Furthermore, it is noted that for relatively
small initial values, the classical dynamics have a finite optimal time. However, for
slightly larger initial values, the optimal time tends to infinity. It is worth highlighting
that in these cases, the fractional dynamics always produce a finite optimal time.

EXAMPLE 2. The following example is a simplified model of the problem of park-
ing a car that has two engines, one at the rear and one at the front, and can only move
in a straight line. Let us consider the following variables:

e Let g(r) be the position of the car at time 7 > 0.
e Let D, q(t) be the fractional velocity at time # > 0.

e Let u() be the thrust of the motors, —1 < u(t) < 1, forz > 0.
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The rear engine (left) will be denoted by +1 and the front engine (right) by —1. The
problem is to find the optimal way to turn the 4+1 and —1 engines on or off, not
simultaneously, so that the vehicle parks at O in the shortest possible time, thus saving
fuel. If we assume that the car has a mass of one, then a generalized law of motion will
tell us that

Diq(r) = u(1),

where D§% = D§, D§, is the composition operator. Let us define y(r) := (¢(z),v(1)),
where v(t) := D, q(t). Therefore, we obtain

D, y(t) = Ay(t) + Bu(t),

(). 0-(0)

a0 = (L.

Vo

where

and the initial condition is

Let 7* be the optimal time of arrival at the origin. Since A*K =0 for all k > 2, therefore

(I (g _ gy (1/r0<a> (=~ ;>F°‘(/af><2a>) . (12)

By Theorem 3, there exists a vector & = (hy,hy)T € R*\{(0,0)} such that

u*(s) = sign (hl(lf(*z;;)a + F]fo>) , s€0,7"].

Suppose the vehicle is moving to the right of the origin, hence it is using the +1
engine. At this moment, which we will take as the starting point, # = 0, we apply
the engine change, that is, we immediately switch to the —1 engine. The equation of
motion will be

Di%q(r) = —1,

for a certain period of time until the +1 engine is used again. In this case gg > 0,
therefore h; # 0 and hy # 0, otherwise we would obtain a constant control and with
a single engine change, it is not possible to bring the car to the origin. Thus, the next
change will be to the +1 engine, therefore

hl(’L'*—S)a hy

rea) T

The function
h (T —s)? hy
S(s) :=
(s) r2a) | T(a)

se 0,77,
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is monotonic; hence, it changes sign only once. Let 7. € (0,7*) denote this change of
sign, so that S(z.) = 0. Therefore, the optimal control will be of bang-bang type (see
Theorem 2)

u*(t):{ —1, 0<t<te,

1, fe<t<T".
Next, let us find the switch time 7.. From (2) and (12), we conclude that

do0_go—1 4 _Vo_;20-1 2
( (o) Vo [E( 1) >_<F(2ﬁx+l) ,0<t<t,,
I'(a) T(o+1)

q(1)\ _
v(t) G0 _so—14 Vo 201 2% —(1—1.)%* (t—1.)**
(et ™ ) () () i
I(@) TT(atD) T(a+1)

Since we know that (g(t*),v(7*)) = (0,0), then

(T wp(e)P e ()2 21 1)
G F2e)  TQoa+1) TQRo+1)’ (3)
oo o) ()T 2 —i)" (14)

(o) [(a+1) T(a+1) "

From equation (13), we deduce that

x 1 av Vo
=1 {1—(5—2T*> : (15)

Substituting this value of 7. into (14), we obtain

_qo(m) T (@ P v L L avg?
0= () +F(2a){ S YR <1 T*> } (16)

We numerically solve equation (16) to find 7, and then substitute this value into
(15) to determine the switch time 7. of the motor. Our numerical experiments are
summarized in Table 2.

[ (qovo) [ ] 025 ] 05 [ 075 1 |

(1,2) t. | 1.570 | 2.656 | 3.312 | 3.732
’ 5 | 1.592 | 2.987 | 4.259 | 5.464
2.1) t. | 1.394 | 2.115 | 2.431 | 2.581
’ TF | 1.436 | 2.520 | 3.398 | 4.162
(2,2) te | 1.916 | 3.048 | 3.647 4
’ 7" | 1.954 | 3.493 | 4.805 6

Table 2: Values of ™ and t. for different initial conditions (qo,vo)-

From Table 2, we observe that fractional dynamics provide a better optimal time,
which decreases with the fractional index.
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5. Conclusions

In this paper, we have demonstrated the existence of solutions for linear fractional
differential equations in the sense of Riemann-Liouville when perturbed by an essen-
tially bounded function, i.e., when the control is essentially bounded. For these equa-
tions, we have shown that there exists an optimal time and an optimal bang-bang type
control. Furthermore, we have established the validity of a maximum principle, similar
to Pontryagin’s maximum principle in the classical case. We have also provided two
application examples of the results, in which we observed that fractional dynamics offer
the best optimal times and that these times improve for small values of the fractional
parameter.

In our study, we considered that the dynamics start at a point y°, meaning (Ié;o‘y)
(04) =°, and reach a point y' at a certain time # > 0, y(r) = y'. Among the various
lines of future research, potential areas include developing controllability criteria or
redefining the concept of reaching a state and studying the basic principles of control,
see for example [13]. One possible concept of reaching a state is: we reach a state
y! attime ¢ if (Ij;“y)(t+) = y'. This concept would be in harmony with the initial
condition concept.
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