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SYSTEMS WITH THREE POINTS BOUNDARY CONDITIONS

HALIMA KADARI, ABDELKRIM SALIM ∗ , SALIM KRIM

AND MOUFFAK BENCHOHRA

(Communicated by S. K. Ntouyas)

Abstract. In this paper, we investigate the existence, uniqueness, and Ulam stability of solutions
to systems of Caputo-tempered fractional differential equations subject to three-point boundary
conditions. The analysis is grounded in an extended version of Perov’s fixed point theorem and
a Krasnoselskii-type approach. By integrating these methods with techniques involving vector-
valued metrics and matrix sequences that converge to zero, we establish their primary theoretical
results. To further elucidate the findings, illustrative examples are provided in the final section
of the paper.

1. Introduction

Fractional differential equations generalize ordinary differential equations to non-
integer orders, offering a powerful framework for modeling and understanding a wide
range of phenomena in science and engineering, such as electrochemistry, control sys-
tems, porous media, and electromagnetism [4, 7, 8, 10, 37, 39, 40, 44]. In recent years,
the study of boundary value problems for fractional differential equations has attracted
significant attention from mathematicians, leading to substantial advancements in the
field [3, 5–7].

Tempered fractional calculus has recently emerged as a significant extension of
fractional calculus operators, generalizing various forms and providing analytic ker-
nels that effectively capture the transition between normal and anomalous diffusion.
The concept of tempered fractional derivatives extends beyond the conventional frame-
work of fractional derivatives to accommodate functions characterized by exponen-
tially decaying tails. In the pioneering work by Buschman [13], the initial definitions
of fractional integration involving weak singular and exponential kernels were intro-
duced. Demonstrated to be a valuable tool, this extension holds particular significance
in applications where memory effects are crucial, such as in viscoelastic materials,
nonlocal models in physics, and fractional-order control systems [15,24,25]. The tem-
pered fractional derivative enables a more precise depiction of underlying dynamics,
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encompassing both long-range memory and rapidly decaying behaviors. For a more
comprehensive exploration of this subject, additional insights can be found in refer-
ences [22, 23, 26, 27, 35,36].

Ulam-Hyers stability is a concept in functional equation theory, originating from
Ulam’s 1940 question about the conditions for an approximately additive function to be
close to an exact additive function, see [41]. Hyers provided a partial answer in 1941,
proving that if a function approximates an additive condition, there is an exact additive
function close to the approximate one, see [16]. This concept has been extended to
various functional equations and mathematical settings, significantly influencing their
study and applications in various fields. Further elaboration on this topic can be found
in [1, 32, 33, 43].

Coupled systems involving fractional differential equations are of interest in vari-
ous scientific and engineering fields. These systems generally comprise multiple equa-
tions, which can be interconnected through their derivatives or the variables they de-
scribe. For more information, see publications [2, 10–12] and the references therein.
Such systems are used to model fractional-order dynamics in contexts like viscoelastic
materials, biological processes, and complex networks. The Ulam stability of ordinary
and fractional differential equations has recently been studied in [9, 17, 18, 29–33].

In [35], the authors investigated the following class of Caputo tempered fractional
differential equation:

{(
C
1

D
 ,
t y

)
(t) = f

(
t,y(t),

(
C
1

D
 ,
t y

)
(t)
)

; t ∈ J := [1,2],

iy(1)+ jy(2) = y()+ ,

where 0 <  < 1,  � 0, C
1

D
 ,
t is the Caputo tempered fractional derivative,

f : J×R×R is a continuous function, 1 <  < 2 < + , i, j, , are real constants.
As a continuation of previous results, in this paper, we study existence, uniqueness

and Ulam stability results for the fractional differential equation involving the Caputo
tempered fractional derivative:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
0 D

1,1
t y1(t) = f1(t,y1(t),y2(t)), t ∈ J := [0,b],

C
0 D

2,2
t y2(t) = f2(t,y1(t),y2(t)), t ∈ J := [0,b],

1y1(0)+1y1(b) = 1y1(1)+ 1,

2y2(0)+2y2(b) = 2y2(2)+ 2,

(1)

where 0 < 1,2 � 1, 1,2 > 0, fi : J×R×R → R , for i = 1,2, C
0 D

i ,i
t , i = 1,2,

are the Caputo tempered fractional derivatives of order i , i = 1,2, i , i , i , i , for
i = 1,2 are positive constants, i ∈ [0,b] for i = 1,2.

We begin by presenting some preliminary results and introducing the concept of
matrices that converge to zero. In Section 3, we provide sufficient conditions for the ex-
istence of solutions to system (1), using an application of the Krasnoselskii fixed point
theorem. In Section 4, we employ a Perov-type fixed point theorem to derive existence
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and uniqueness results. In Section 5, establish the Ulam stability of the system. Both
methods rely on the use of convergent matrices and vector norms. In Section 5, several
examples are provided to illustrate the main results.

2. Preliminaries

In this section, we recall some basic notations, definitions, and lemmas and the
necessary notation needed in the remainder of the paper.

Let C(J,R) be the Banach space of all continuous functions from J to R , with
the norm

‖y‖C := sup
t∈[0,b]

|y(t)|.

Then, C(J,R)×C(J,R) is the generalized Banach space equipped the norm

‖(y1,y2)‖C×C := (‖y1‖C,‖y2‖C)T .

DEFINITION 1. (The Riemann-Liouville tempered fractional integral [22, 34, 38])
Suppose that the function  ∈C([0,b],R) ,  > 0. Then, the Riemann-Liouville tem-
pered fractional integral of order  is defined by

0I
 ,
t (t) = e−t

0I

t

(
et(t)

)
=

1
( )

∫ t

0

e−(t−)()
(t − )1− d, (2)

where 0I

t denotes the Riemann-Liouville fractional integral [19], defined by

0I

t (t) =

1
( )

∫ t

0

()
(t− )1− d. (3)

Obviously, the tempered fractional integral (2) reduces to the Riemann-Liouville frac-
tional integral (3) if  = 0.

DEFINITION 2. (The Riemann-Liouville tempered fractional derivative [22, 34])
For n−1 <  < n ; n∈N+,  � 0. The Riemann-Liouville tempered fractional deriva-
tive is defined by

0D
 ,
t (t) = e−t

0D

t

(
et(t)

)
=

e−t

(n−  )
dn

dtn

∫ t

0

e()
(t − )−n+1

dt,

where 0D

t denotes the Riemann-Liouville fractional derivative [19], given by

0D

t (t) =

dn

dtn

(
0I

n−
t (t)

)
=

1
(n−  )

dn

dtn

∫ t

0

()
(t − )−n+1

d.

DEFINITION 3. (The Caputo tempered fractional derivative [22, 38]) For n−1 <
 < n ; n ∈ N+,  � 0. The Caputo tempered fractional derivative is defined as

C
0 D

 ,
t (t) = e−t C

0 D

t

(
et(t)

)
=

e−t

(n−  )

∫ t

0

1

(t− )−n+1

dn

dn (e())d,
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where C
0 D

 ,
t denotes the Caputo fractional derivative [19], given by

C
0 D


t (t) =

1
(n−  )

∫ t

0

1

(t− )−n+1

dn

dn()d.

LEMMA 1. ([22]) For a constant C ,

0D
 ,
t C = Ce−t

0D

t et , C

b1
D

 ,
t C = Ce−t C

0 D

t et .

Obviously, 0D
 ,
t (C) �= C

0 D
 ,
t (C) . And, C

b1
D

 ,
t (C) is no longer equal to zero, being

different from C
0 D

t (C) ≡ 0 .

LEMMA 2. ([22, 38]) Let  ∈Cn([0,b],R) ,  � 0 and n−1 <  < n. Then the
Caputo tempered fractional derivative and the Riemann-Liouville tempered fractional
integral have the following composite properties:

b1I
 ,
t

[
C
0 D

 ,
t (t)

]
= (t)−

n−1


k=0

e−t (t−0)k

k!

[
dk (et(t))

dtk

∣∣∣∣
t=0

]
,

and
C
0 D

 ,
t

[
aI
 ,
t (t)

]
= (t), for  ∈ (0,1).

DEFINITION 4. ([14]) Let X be a nonempty set. By a vector-valued metric on X
we mean a map d : X ×X → Rn with the following properties:

(i) d(u,v) � 0 for all u , v ∈ X , and if d(u,v) = 0, then u = v ;

(ii) d(u,v) = d(v,u) for all u , v ∈ X ;

(iii) d(u,v) � d(u,w)+d(w,v) for all u , v , w ∈ X .

A set X with a vector-valued metric d is called a generalized metric space. In
this space, the notions of Cauchy sequence, convergence, completeness, and open and
closed sets are similar to those in usual metric spaces. Here, if x, y ∈ Rn , where x =
(x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) , by x � y we mean xi � yi for i = 1,2, · · · ,n .
The pair (X ,d) is a generalized metric space with

d(x,y) :=

⎛
⎜⎝

d1(x,y)
...

dn(x,y)

⎞
⎟⎠ .

Notice that d is a generalized metric on X if and only if di , i = 1,2, · · · ,n , are metrics
on X .

Similarly, a vector valued norm on a linear space X is a mapping ‖ · ‖ : X → Rn
+

with ‖x‖ = 0 only for x = 0, ‖x‖ = | |‖x‖ for x ∈ X and  ∈ R , and ‖x+ y‖ �
‖x‖+ ‖y‖ for every x , y ∈ X . Associated to a vector valued norm ‖ · ‖ is a vector
valued metric d(x,y) := ‖x− y‖ , and we say that (X ,‖ · ‖) is a generalized Banach
space if X is complete with respect to d .

Next, we define what is meant by a matrix that is convergent to zero [28].
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DEFINITION 5. ([14]) A square matrix with real entries is said to be convergent
to zero if and only if its spectral radius (M) is strictly less than 1. In other words, all
the eigenvalues of M are in the open unit disc | | < 1 for every  ∈ C with det(M−
 I) = 0, where I denotes the identity matrix in Mn×n(R) .

The following result gives some characterizations of a matrix that converges to
zero.

THEOREM 1. ([14]) Let M ∈ Mn×n(R+); the following assertions are equiva-
lent:

(a) M is convergent to zero;

(b) Mk → 0 as k → ;

(c) The matrix (I−M) is nonsingular and

(I−M)−1 = I +M +M2 + · · ·+Mk + · · · .

(d) The matrix (I−M) is nonsingular and (I−M)−1 has nonnegative elements.

Some examples of matrices that are convergent to zero include:

(i) A =
(

a b
a b

)
, where a,b ∈ R+ and a+b < 1;

(ii) A =
(

a a
b b

)
, where a,b ∈ R+ and a+b < 1;

(iii) A =
(

a −a
b −b

)
, where a,b,c ∈ R+ and |a−b|< 1, a > 1, b > 0.

Before we state Perov’s fixed point theorem we must define a contractive operator.

DEFINITION 6. ([14]) Let (X ,d) be a generalized metric space. An operator
N : X → X is called contractive associated with a generalized metric d on X , if there
exists a convergent to zero matrix M such that

d(T (x),T (y)) � Md(x,y), for all x, y ∈ X .

Next, we give Perov’s fixed point theorem and Krasnoselskii’s fixed point theorem
for a sum of two operators.

THEOREM 2. ([14] (Perov’s fixed point theorem)) Let (X ,d) be a complete gen-
eralized metric space and T : X → X be a contractive operator with matrix M . Then
T has a unique fixed point u , and for each u0 ∈ X ,

d(Tk(u0),u) � Mk(I−M)−1d(u0,T (u0)) where k ∈ N.
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THEOREM 3. (Krasnoselskii’s fixed point theorem [14]) Let (X ,‖ · ‖) be a gen-
eralized Banach space. Suppose that  and  are two operators X −→ X such that

(A1)  completely continuous operator,

(A2)  be a continuous and M-contraction operator,

(A3) the matrix I−M has the absolute property if

B =
{

y ∈ X | (y)+
( y


)
= y,  ∈ (0,1)

}
,

is bounded.

Then the equation
y = (y)+(y), y ∈ X ,

has at least one fixed point.

For our discussion of the existence and uniqueness of the solutions and stability to
our problem, we also need the following concepts and results.

LEMMA 3. Let 0 < 1 < 1 , 1 = 1 +1e−1b− 1e−1 �= 0 and h1 : J → R is
a continuous functions. Then the problem

C
0 D

1,1
t y1 = h1(t); t ∈ J := [0,b], (4)

1y1(0)+1y1(b) = 1y1(1)+ 1, (5)

has a unique solution defined by

y1(t) =
1

1
+

1
1(1)

∫ 1

0
(1− s)1−1e−1(1−s)h1(s)ds

+
1

1(1)

∫ b

0
(t − s)1−1e−1(b−s)h1(s)ds

+
1

(1)

∫ t

0
(t− s)1−1e−1(t−s)h1(s)ds.

Proof. Applying the Riemann-Liouville tempered fractional integral of order 1

to both sides the equation (4), and by using Lemma 2 and if t ∈ J , we get

y1(t)− e−1t y1(0) =
1

(1)

∫ t

0
e−1(t−s)(t − s)1−1h(s)ds.

From the condition (5), we get

1y1(0)+1

(
y1(0)+

1
(1)

∫ b

0
(b− s)1−1e−1(b−s)h1(s)ds

)

= 1y1(0)+
1

1−1
1

(1)

∫ 1

0
(1− s)1−1e−1(1−s)h1(s)ds+ 1.
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Then

(1 +1e
−1b − 1e−1)y1(0) = 1 +

1
(1)

∫ 1

0
(1 − s)1−1e−1(1−s)h1(s)ds

− 1

(1)

∫ b

0
(b− s)1−1e−1(b−s)h1(s)ds.

By dividing, we have

y1(0) =
1

1
+

1
1(1)

∫ 1

0
(1 − s)1−1e−1(1−s)h1(s)dsds

+
1

1(1)

∫ b

0
(b− s)1−1e−1(b−s)h1(s)ds.

(6)

Substituting the values of y1(0) in (6), we obtain:

y1(t) =
1

1
+

1
1(1)

∫ 1

0
(1− s)1−1e−1(1−s)h1(s)ds

+
1

1(1)

∫ b

0
(t − s)1−1e−1(b−s)h1(s)ds

+
1

(1)

∫ t

0
(t− s)1−1e−1(t−s)h1(s)ds. �

Using Lemma 3, the solution (y1,y2) ∈ C(J,R)×C(J,R) of the system (1) is
given by

y1(t) =
1

1
+

1
1(1)

∫ 1

0
(1 − s)1−1e−1(1−s) f1(s,y1(s),y2(s))ds

+
1

1(1)

∫ b

0
(t− s)1−1e−1(b−s) f1(s,y1(s),y2(s))ds

+
1

(1)

∫ t

0
(t− s)1−1e−1(t−s) f1(s,y1(s),y2(s))ds,

and

y2(t) =
2

2
+

2
2(2)

∫ 2

0
(2 − s)2−1e−2(2−s) f2(s,y1(s),y2(s))ds

+
2

2(2)

∫ b

0
(t− s)2−1e−2(b−s) f2(s,y1(s),y2(s))ds

+
1

(2)

∫ t

0
(t− s)2−1e−2(t−s) f2(s,y1(s),y2(s))ds.
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3. Existence result

The existence result is based on Krasnoselskii’s fixed point theorem. Let us intro-
duce the following hypotheses:

(H1) The functions f1, f2 : J×R×R → R are continuous and there exist a∗1 , a∗2 , a∗3 ,
a∗4 > 0 such that:

| f1(t,y1,y2)− f1(t, y1, y2)| � a∗1|y1 − y1|+a∗2|y2 − y2|,
and

| f2(t,y1,y2)− f2(t, y1, y2)| � a∗3|y1 − y1|+a∗4|y2 − y2|,
for any (y1,y2) , (y1, y2) ∈ R×R .

(H2) Define the square matrix with spectral radius is less than one

 =
(

a∗11 a∗21

a∗32 a∗42

)
,

where the entries in  are defined by

1 =
1

(1 +1)

(
b1

(
1+

1

|1|
)

+
1

1
1

|1|

)
,

and

2 =
1

(2 +1)

(
b2

(
1+

2

|2|
)

+
2

2
2

|2|

)
.

Also, let

1 =
1

|1|(1 +1)

(
1b

1 + 1
1
1

)
,

and

2 =
1

|2|(2 +1)

(
2b

2 + 2
2
2

)
.

THEOREM 4. Assume that (H1) , (H2) are satisfied, if the matrix

M =
(

a∗11 a∗21

a∗32 a∗42

)
(7)

converges to 0 , then the problem (1) has at least one solution.

Proof. Let
 : C(J,R)×C(J,R) →C(J,R)×C(J,R),

be the operator defined by

(y1,y2) =(y1,y2)+(y1,y2), (y1,y2) ∈C(J,R)×C(J,R),
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where
(y1,y2) = (1(y1,y2),2(y1,y2)),

(y1,y2) = (1(y1,y2),2(y1,y2)),

1(y1(t),y2(t)) =
1

(1)

∫ t

0
(t − s)1−1e−(t−s) f1(s,y1(s),y2(s))ds,

2(y1(t),y2(t)) =
1

(2)

∫ t

0
(t − s)2−1e−(t−s) f2(s,y1(s),y2(s))ds,

1(y1(t),y2(t)) =
1

1
+

1
1(1)

∫ 1

0
(1− s)1−1e−1(1−s) f1(s,y1(s),y2(s))ds

+
1

1(1)

∫ b

0
(b− s)1−1e−1(b−s) f1(s,y1(s),y2(s))ds,

and

2(y1(t),y2(t)) =
1

2
+

2
2(2)

∫ 2

0
(2− s)2−1e−1(2−s) f2(s,y1(s),y2(s))ds

+
2

2(2)

∫ b

0
(b− s)2−1e−2(b−s) f2(s,y1(s),y2(s))ds.

In order to show that the conditions of Theorem 3 are satisfied, we will proceed in
several steps.

Step 1:  is a generalized contraction.
Let (y1,y2),(y1,y2) ∈C(J,R)×C(J,R) , using the assumption (H1) , we deduce that

|1(y1(t),y2(t))−1(y1(t),y2(t))|
� 1

|1|(1)

∫ 1

0
(1 − s)1−1e−1(1−s) | f1(s,y1(s),y2(s))− f1(s,y1(s),y2(s))|ds

+
1

|1|(1)

∫ b

0
(b− s)1−1e−1(b−s) | f1(s,y1(s),y2(s))− f1(s,y1(s),y2(s))|ds

� 1
|1|(1)

∫ 1

0
(1 − s)1−1 | f1(s,y1(s),y2(s))− f1(s,y1(s),y2(s))|ds

+
1

|1|(1)

∫ b

0
(b− s)1−1 | f1(s,y1(s),y2(s))− f1(s,y1(s),y2(s))|ds

� 1
(1)|1| (a

∗
1‖y1− y1‖C +a∗2‖y2− y2‖C)

×
(
1

∫ b

0
(b− s)1−1ds+ 1

∫ 1

0
(1− s)1−1ds

)

� a∗1
|1|(1 +1)

(
1b

1 + 1
1
1

)
‖y1− y1‖C

+
a∗2

|1|(1 +1)

(
1b

1 + 1
1
1

)
‖y2− y2‖C.
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Thus,
‖1(y1,y2)−1(y1,y2)‖C � 1 (a∗1‖y1− y1‖C +a∗2‖y2− y2‖C) , (8)

where

1 =
1

|1|(1 +1)

(
1b

1 + 1
1
1

)
.

Similarly, we have

|2(y1(t),y2(t))−2(y1(t),y2(t))| � a∗3
|2|(2 +1)

(
2b

2 + 2
2
2

)
‖y1− y1‖C

+
a∗4

|2|(2 +1)

(
2b

2 + 2
2
2

)
‖y2− y2‖C.

Thus,
‖1(y1,y2)−1(y1,y2)‖C � 2 (a∗3‖y1− y1‖C +a∗4‖y2− y2‖C) , (9)

where

2 =
1

|2|(2 +1)

(
2b

2 + 2
2
2

)
.

From (8) and (9), we obtain(‖1(y1,y2)−1(y1,y2)‖C

‖2(y1,y2)−2(y1,y2)‖C

)
� M

(‖y1− y1‖C

‖y2− y2‖C

)
,

with

M =
(

a∗11 a∗21

a∗32 a∗42

)
.

Since M converge to zero, this implies that  is a contraction operator.

Step 2:  is completely continuous operator.
The continuity of ( f1, f2) implies that the operator (y1,y2) = (1(y1,y2),2(y1,y2))
is continuous.

We want to show that  maps bounded sets into relatively compact sets, so let
D be a bounded subset of C(J,R) . Then there exists q > 0 such that ‖y1‖C � q1 and
‖y2‖C � q2 for all (y1,y2) ∈ D . Let (y1,y2) ∈ D .

Then for each t ∈ J , we have

|1(y1(t),y2(t))| � 1
(1)

∫ t

0
(t − s)1−1e−w1(t−s)| f1(s,y1(s),y2(s))|ds

� 1
(1)

∫ t

0
(t − s)1−1e−w1(t−s)| f1(s,y1(s),y2(s))− f1(s,0,0)|ds

+
1

(1)

∫ t

0
(t − s)1−1e−w(t−s)| f1(s,0,0)|ds

� 1
(1)

∫ t

0
(t − s)1−1e−w1(t−s) (a∗1|y1(s)|+a∗2|y2(s)|+b∗1)ds

� b

(1 +1)
(a∗1q1 +a∗2q2 +b∗1),
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which implies that

‖1(y1,y2)‖C � 2b1

(1 +1)
(a∗q∗+b∗1),

where a∗ = max{a∗1,a∗2} , q∗ = max{q1,q2} and b∗1 = sup
t∈J

| f1(t,0,0)| .
Similarly, we have that

‖2(y1,y2)‖C � 2b2

(2 +1)
(ã∗q∗+b∗2),

where ã∗ = max{a3,a4} , q∗ = max{q1,q2} and b∗2 = sup
t∈J

| f2(t,0,0)| .
Therefore,  maps bounded sets in C(J,R) into bounded sets in C(J,R) . More-

over, for any t ∈ J and 1,2 ∈ J with 1 < 2 , we have

|1(y1,y2)(2)−1(y1,y2)(1)|
� 1

(1)

∫ 1

0
(2 − s)1−1e−w1(2−s)− (1− s)1−1e−w1(1−s)| f1(s,y1(s),y2(s))|ds

+
1

(1)

∫ 2

1
(2 − s)1−1e−w1(2−s)| f1(s,y1(s),y2(s))|ds

� (a∗q+b∗1)

[∫ 1

0

(
(2 − s)1−1e−w1(2−s)− (1− s)1−1e−w1(1−s)

)
(1)

ds

+
(2 − 1)1−1

(1 +1)

]
.

Similarly, we have

|2(y1,y2)(2)−2(y1,y2)(1)|
� 1

(1)

∫ 1

0

(
(2 − s)2−1e−w2(2−s) − (1− s)2−1e−w2(1−s)

)
| f2(s,y1(s),y2(s))|ds

+
1

(2)

∫ 2

1
(2 − s)1−1e−w2(2−s)| f2(s,y1(s),y2(s))|ds

� (ã∗q+b∗2)

[∫ 1

0

(2 − s)1−1e−w2(2−s)− (1− s)1−1e−w2(1−s)

(2)
ds

+
(2 − 1)2−1

(2 +1)

]
,

which is not dependent on the pair (y1,y2) and the quantity (1,2)→ 0 which ensures
that (D) is equicontinuous. So, (D) is relatively compact on C(J,R) .
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Step 3. To show that the set

B =
{

(y1,y2) ∈C(J,R)×C(J,R) : (y1,y2)+
(y1


,
y2



)
,  ∈ (0,1)

}
is bounded, let (y1,y2) ∈ B . Then,

y1(t) =
1

1
+

1
1(1)

∫ 1

0
(1 − s)1−1e−1(1−s) f1(s,y1(s),y2(s))ds

+
1

1(1)

∫ b

0
(t− s)1−1e−1(b−s) f1(s,y1(s),y2(s))ds

+
1

(1)

∫ t

0
(t− s)1−1e−1(t−s) f1(s,y1(s),y2(s))ds,

and

y2(t) =
2

2
+

2
2(2)

∫ 2

0
(2 − s)2−1e−2(2−s) f2(s,y1(s),y2(s))ds

+
2

2(2)

∫ b

0
(t− s)2−1e−2(b−s) f2(s,y1(s),y2(s))ds

+
1

(2)

∫ t

0
(t− s)2−1e−2(t−s) f2(s,y1(s),y2(s))ds.

So,

|y1(t)| � 1

(1)
+

1
(1 +1)

(
b1

(
1+

1

|1|
)

+
1

1
1

|1|

)
(a∗1‖y1‖C +a∗2‖y2‖C +b∗1) ,

and

|y2(t)| � 2

(2)
+

1
(2 +1)

(
b2

(
1+

2

|2|
)

+
2

2r2
1

|2|

)
(a∗3‖y1‖C +a∗4‖y2‖C +b∗2) .

This implies

‖y1‖C � 1

(1)
+1b

∗
1 +a11‖y1‖C +a21‖y1‖C,

and

‖y2‖C � 2

(2)
+b∗22 +a32‖y1‖C +a42‖y1‖C.

Thus, we have

(
1−a∗11 a∗21

a∗32 1−a∗42

)(‖y1‖C

‖y2‖C

)
�

⎛
⎜⎜⎝

1

(1)
+1b∗1

2

(2)
+2b∗2

⎞
⎟⎟⎠ .
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Therefore,

(I− )
(‖y1‖C

‖y2‖C

)
�

⎛
⎜⎜⎝

1

(1)
+1b∗1

2

(2)
+2b∗2

⎞
⎟⎟⎠ . (10)

Since  is matrix converge then I−  is invertible (I− )−1 has a positive elements,
we have (‖y1‖C

‖y2‖C

)
� (I− )−1

⎛
⎜⎜⎝

1

(1)
+1b∗1

2

(2)
+2b∗2

⎞
⎟⎟⎠ .

Thus, by the Theorem 3, there exists at least one fixed point of  which in turn is a
solution of problem (1). �

4. Uniqueness result

In this section, we study the uniqueness result for the problem (1). The result is
based on Perov’s fixed point theorem.

THEOREM 5. If the assumptions (H1)–(H2) and (7) are satisfied, then system (1)
has a unique solution (y∗1,y

∗
2) .

Proof. For any (y1,y2),(y1,y2) ∈C(J,R)×C(J,R) , we obtain:

|1(y1,y2)(t)−1(y1,y2)(t)|
� 1

(1)

∫ t

0
(t − s)1−1e−w1(t−s)| f1(s,y1(s),y2(s))− f1(s,y1(s),y2(s))|ds

+
1

|1|(1)

∫ b

0
(b− s)1−1e−w1(b−s)| f1(s,y1(s),y2(s))− f1(s,y1(s),y2(s))|ds

+
1

|1|(1)

∫ 1

0
(1− s)1−1e−w1(1−s)| f1(s,y1(s),y2(s))− f1(s,y2(s),y2(s))|ds

� (a∗1‖y1− y1‖C +a∗2‖y2− y2‖C)
1

(1)

∫ t

0
(t − s)1−1ds

+(a∗1‖y1− y1‖C +a∗2‖y2− y2‖C)

× 1
(1)

(
1

∫ b

0
(b− s)1−1ds+ 1

∫ 1

0
(1 − s)1−1ds

)

� a∗1
(1 +1)

(
b1

(
1+

1

|1|
)

+
1

1
1

|1|

)
‖y1− y1‖C

+
a∗2

(1 +1)

(
b1

(
1+

1

|1|
)

+
1

1
1

|1|

)
‖y2− y2‖C

� 1 (a∗1‖y1− y1‖C +a∗2‖y2− y2‖C) ,
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where

1 =
1

(1 +1)

(
b1

(
1+

1

|1|
)

+
1

1
1

|1|

)
.

Thus,

‖1(y1,y2)−1(y1,y2)‖C � 1 (1‖y1− y1‖C +2‖y2− y2‖C) . (11)

Similarly, one can find that

‖2(y1,y2)−2(y1,y2)‖C � 2 (3‖y1− y1‖C +4‖y2− y2‖C) , (12)

where

2 =
1

(2+1)

⎛
⎝b2

(
1+

2

|2|
)

+
2

2
2

|2|

⎞
⎠ .

Thus it follows from (11) and (12), that(‖1(y1,y2)−1(y1,y2)‖C

‖2(y1,y2)−2(y1,y2)‖C

)
� 

(‖y1− y1‖C

‖y2− y2‖C

)
,

where

 =
(
11 21

32 42

)
.

By (7),  is a contraction operator. As a consequence of Perov’s fixed point
theorem (Theorem 2), we deduce that  has a unique fixed point (y∗1,y

∗
2) which is the

unique solution of the problem (1) on [0,b] . �

5. Ulam stability result

Now, we consider the stability result of our system.

DEFINITION 7. ([42]) Let (X ,d) be a metric space and let 1, 2 : X×X −→X
be two operators. Then the operational equations system

y1 = 1(y1,y2),
y2 = 2(y1,y2),

(13)

is said to be Ulam-Hyers stable if there exist c1,c2,c3,c4 > 0 such that for each 1,2 >
0 and each pair (y∗1,y

∗
2) ∈ X ×X

‖y∗1−1(y1,y2)‖C � 1,
‖y∗2−2(y1,y2)‖C � 2,

and there exists a solution (y∗1,y
∗
2) ∈ X ×X of (13) such that

‖y∗1− y1‖C � c11 + c22,
‖y∗2− y2‖C � c31 + c22.
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THEOREM 6. If the requirements of Theorem 5 are satisfied, then system (1) is
Ulam-Hyers stable.

Proof. Let (y∗1,y
∗
2) ∈C(J,R)×C(J,R) is a solution of following system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
0 D

1,1
t y∗1(t) = f1(t,y∗1(t),y

∗
2(t)), t ∈ J := [0,b],

C
0 D

2,2
t y∗2(t) = f2(t,y∗1(t),y

∗
2(t)), t ∈ J := [0,b],

1y∗1(0)+1y∗1(b) = 1y∗1(1)+ 1,

2y∗2(0)+2y∗2(b) = 2y∗2(2)+ 2,

(14)

with  , ∈ C(J,R)×C(J,R) two functions depend upon y1,y2 two functions such
that

|(t)| � 1 and |(t)| � 2 for t ∈ J.

Then, in view of Lemma 3, the solution of (14) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗1(t) = 1(y∗1,y
∗
2)(t)+ 1

(1)

∫ t
0(t − s)1−1e−1(t−s)(s)ds

+ 1
1(1)

(
1
∫ 1
0 (1− s)1−1e−1(1−s)(s)ds+1

∫ b
0 (t− s)1−1e−1(b−s)(s)ds

)
,

y∗2(t) = 2(y∗1,y
∗
2)(t)+ 1

(2)
∫ t
0(t − s)2−1e−2(t−s)(s)ds

+ 1
2(2)

(
2
∫ 2
0 (2− s)2−1e−2(2−s)(s)ds+2

∫ b
0 (t− s)2−1e−2(b−s)(s)ds

)
.

(15)

From the first equation of the system (15), we have

|y∗1(t)−1(y∗1,y
∗
2)(t)| �

1
(1)

∫ t

0
(t − s)1−1e−1(t−s)|(s)|ds

+
1

1(1)

(
1
∫ 1

0
(1 − s)1−1e−1(1−s)|(s)|ds

+1

∫ b

0
(t− s)1−1e−1(b−s)|(s)|ds

)

� 1
(1 +1)

(
b1

(
1+

1

|1|
)

+
1

1
1

|1|

)
.

From which, we have
‖y∗1−1(y∗1,y

∗
2)‖C � 11, (16)

where 1 defined in first part of proof.
Similarly, by the second equation of the system (15), we have

‖y∗2−1(y∗1,y
∗
2)‖C � 22, (17)
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where 2 defined in first part of proof.
Using (16), (17), (11) and (12), we obtain(‖y∗1− y1‖C

‖y∗2− y2‖C

)
=
(‖y∗1−1(y1,y2)‖C

‖y∗2−2(y1,y2)‖C

)

�
(‖y∗1−1(y∗1,y

∗
2)‖C

‖y∗2−2(y∗1,y
∗
2)‖C

)
+
(‖1(y∗1,y

∗
2)−1(y1,y2)‖C

‖2(y∗1,y
∗
2)−2(y1,y2‖C

)

�
(
1
2

)
+ 

(‖y∗1− y1‖C

‖y∗2− y2‖C

)
.

Since  is matrix converge then I −  is invertible (I − )−1 has a positive ele-
ments, we immediately obtain(‖y∗1− y1‖C

‖y∗2− y2‖C

)
� (I− )−1,

where  =
(
1
2

)
. If we denote (I− )−1 =

(
c1 c2

c3 c4

)
, then we obtain

‖y∗1− y1‖C � c11 + c22,

‖y∗2− y2‖C � c31 + c22.

Then, the system (1) is Ulam-Hyers stable. �

6. Some examples

In this section we give two examples illustrate usefulness of our main results.

EXAMPLE 1. We consider the following system of Caputo tempered fractional
differential boundary values problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

1
2 ,2
t y1(t) =

1

e(t+2)

(
t2 + ty1(t)+ y2(t)

)
, t ∈ J := [0,1],

C
0 D

1
4 ,3
t y2(t) =

e−2t+t (y1(t)+ y2(t))
(et + e−t)(1+ y1(t)+ y2(t)))

, t ∈ J := [0,1],

y1(0)+ y1(1) = y1

(1
2

)
+

1
3
,

y2(0)+ y2(1) = y2

(2
3

)
+

1
4
,

(18)

where 1 =
1
2

, 2 =
1
4

, 1 = 2 = 1 = 2 = 1 = 2 = 1 and 1 =
1
2

, 2 =
2
3

,

2 =
2
3

, 2 =
1
4

. Let

f1(t,y1,y2) =
1

e(t+2)

(
t2 + ty1(t)+ y2(t)

)
,
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and

f2(t,y1,y2) =
e−2t+t (y1(t)+ y2(t))

(et + e−t)(1+ y1(t)+ y2(t)))
.

For any (y1,y2) , (y1, y2) ∈ R×R and t ∈ [0,1] .

| f1(t,y1,y2)− f1(t, y1, y2)| � e−2 (|y1 − y1|+ |y2− y2|) ,
and

| f2(t,y1,y2)− f2(t, y1, y2)| � (|y1− y1|+ |y2− y2|) .

Hence the condition (H1) is verified with a∗1 = a∗2 = e−2 and a∗2 = a∗3 = 1.
For this example 1 = 1.9263 and 2 = 0.6465. Then we have

M =
(

0.2307 0.2307
0.6443 0.6443

)
.

Since c � 1 and by the shown examples in the preliminary section, we deduce that the
matrix M converge to zero.

Since all conditions of Theorem 4 are satisfied, our problem (18) has at least a
solution.

EXAMPLE 2. Consider the following system of Caputo tempered fractional dif-
ferential Boundary values problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

2
5 ,2
t y1(t) =

|y1(t)|
|y1(t)|+1

× sin4(t)
(10t +9)2 + siny2(t)+

t2

5
+

√
7

3
, t ∈ J := [0, ],

C
0 D

2
3 ,1
t y2(t) =

t siny1(t)
15(5+3t2)

+
t|y2(t)|

100(1+ |y2(t)|) , t ∈ J := [0, ],

y1(0)+

2

y1() = y1(2)+
√

2
2

,

y2(0)+ y2() =

2

y2

(5
2

)
+

3

,

(19)

where 1 = 2 = 1, 1 = 2 =

2

, 1 = 1 =  , f : J×R2 → R is defined by

f1(t,y1,y2) =
|y1(t)|

|y1(t)|+1
× sin4(t)

(10 t +9)2 + siny2(t)+
t2

5
+

√
7

3
,

and

f1(t,y1,y2) =
t siny1(t)

15(5+3t2)
+

t|y2(t)|
100(1+ |y2(t)|) .

It easy to find that

| f1(t,y1,y2)− f1(t, y1, y2)| �
1

102

(
|y1− y1|+

1
e

|y2− y2|
)

,
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and

| f2(t,y1,y2)− f2(t, y1, y2)| �


15(5+32)

(
|y1− y1|+


100

|y2− y2|
)

,

for all t ∈ J and (y1,y2),(y1, y2) . Hence the condition (H1) is verified with a∗1 =
1

102 ,

a∗2 = e− , a∗3 =


15(5+32)
and a∗4 =


100

.

For this example 1 = 11.0964 and 2 = 5.2041, and the matrix

 =
(

0.1109 0.4794
0.0732 0.1583

)
,

which has two the eigenvalues |1| = 0.0549 and 2 = 0.3249.
Simple computations show that all conditions of Theorem 5 and Theorem 6 are

satisfied, then system (19) has a unique solution (y∗1,y
∗
2) and is Hyers-Ulam-stable.

7. Conclusion

In this paper, we have made a substantial contribution to the study of certain classes
of fractional differential systems involving the Caputo tempered fractional derivative.
We have investigate qualitative and quantitative results such as the existence, unique-
ness, and Ulam stability of solutions to Caputo-tempered fractional systems subject to
three-point boundary conditions. The methodologies utilized are primarily grounded in
an extended version of Perov’s fixed point theorem and a Krasnoselskii-type approach
combined with some techniques involving vector-valued metrics and matrix sequences
that converge to zero. We have chosen to include illustrative examples demonstrating
that the requirements of the theorems are indeed met. We intentionally reserve the ap-
plication aspect for future papers, as it does not align with the primary focus of this
study. We hope for this study to serve as a cornerstone such future endeavors. In fu-
ture research, we aim to explore additional classes of fractional differential systems
and inclusions, including problems with retarded (delayed) and advanced arguments,
as well as impulsive problems, focusing on both instantaneous and non-instantaneous
impulses.
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