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Abstract. This paper explores the existence of solutions for fractional hybrid differential equa-
tions that involve the  -Caputo derivative, defined on time scales. The  -Caputo derivative
extends the classical Caputo derivative by adapting it to time scales, making it possible to model
systems that exhibit both continuous and discrete behavior. This unique characteristic allows the
 -Caputo derivative to capture dynamics that occur across varying time intervals, providing a
more versatile framework for mathematical modeling.

To demonstrate the existence of solutions, the study leverages Dhage’s fixed point theorem
is a powerful and widely recognized tool for establishing the existence of fixed points in Banach
algebras. By applying this theorem to fractional hybrid differential equations on time scales,
the research introduces an innovative approach that bridges theoretical concepts with practical
application.

To validate the correctness and real-world relevance of the theoretical findings, the study
includes a practical example involving uncertainty modeling in physical systems. This example
illustrates how the proposed method can be applied in scenarios where both deterministic and
uncertain behaviors are present.

The outcomes of this research offer promising potential for various fields, including biol-
ogy, engineering, and control theory, where dynamic systems often require flexible mathematical
frameworks to address complex behavior.

1. Introduction

In recent years, fractional differential equations have gained significant attention as
powerful tools for modeling complex systems across various fields, including complex
systems in control theory [3], diffusion problems in physics [5], economic applications
such as interest rates, commodity prices, and market fluctuations [4], as well as precise
dimensional analysis in image processing [2]. These equations are particularly effective
in capturing phenomena that involve memory effects and uncertainty, making them
highly valuable for real-world applications where such factors play a crucial role.

One notable advancement in this area is time scales theory, which unifies contin-
uous and discrete dynamic systems under a single framework. This unified approach
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expands the potential for more versatile and comprehensive mathematical models, es-
pecially for systems that exhibit both continuous and discrete behavior.

A key concept in this framework is the  -Caputo derivative, an extension of
the classical Caputo derivative designed specifically for time scales. By combining
the flexibility of the Caputo derivative with the adaptability of time scales theory, the
 -Caputo derivative becomes a powerful tool for analyzing hybrid systems that operate
across diffrent time domains [7, 14].

While previous studies have explored the  -Caputo derivative within the context
of classical fractional differential equations, its application to fractional hybrid differ-
ential equations remains relatively limited. This study seeks to address this gap by em-
ploying Dhage’s fixed point theorem to demonstrate the existence of solutions for such
equations. Dhage’s theorem is particularly well-suited for this purpose, as it efficiently
handles conditions involving Lipschitz continuity and compactness – key properties
that are critical when analyzing complex dynamic systems [8–10, 15].

The primary contribution of this study lies in the introduction of a novel solution
method that applies the  -Caputo derivative to hybrid differential equations on time
scales. To validate the theoretical results, the study includes a practical example focused
on uncertainty modeling in physical systems, demonstrating the method’s applicability
in real-world scenarios.

The findings of this research hold promising potential for a wide range of applica-
tions, particularly in dynamic systems found in biology, engineering, and control theory.
By extending the capabilities of the  -Caputo derivative to hybrid systems, this work
paves the way for improved modeling techniques in fields where both deterministic and
uncertain behaviors must be accounted for.

In [13], Otrocol particularly explored the following problem:

⎧⎨
⎩v′( ) = F ( ,v( ))+G

(
 , max

�∈[0, ]
v(�)

)
,

v(0) =  ,

where  ∈ [0,d] , d ∈ R ,  ∈ R
p , and F ,G ∈ [0,d]×R

p −→ R
p .

In [12], the authors investigated the existence and uniqueness of solutions to initial
value problems for Caputo -fractional differential equations with maxima on the time
scales TS of the form:

{
Ccv( ) =  ( ,v( ),V ( )) ,  ∈  = [c,d]TS := [c,d]∩TS, 0 <  < 1,

v(c) =  ,

where v : [c,d]TS −→ R , V ( ) = max
�∈[c, ]

v(�) , d > c , Cc is the Caputo -fractional

derivative operator of order  ,  : [c,d]TS ×R
2 −→ R is a function, and  represents

a real number.

In this article, we investigate the existence of a solution for  -Caputo’s -fractional
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nonlinear hybrid differential equations with maxima on the time scales:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ,
c

(
v( )

F ( ,v( ))

)
=  ( ,v( ),V ( )) ,

 ∈  = [c,d]TS := TS ∩ [c,d], 0 <  < 1,

v(c)
F (c,v(c)) =  ,

(1)

where C ,
c is  -Caputo -fractional derivative operator of order  , c < d ,  ∈ R ,

v : [c,d]TS −→ R , V ( ) = max
�∈[c, ]

v(�) ,  : [c,d]TS ×R
2 −→ R is a function.

The structure of this paper unfolds as: in the section 2, we present some pre-
liminary concepts related to fractional calculus. In section 3, we establish criteria for
the existence of solutions to the problem above. In section 4, provides an example to
illustrate the practical applications of these results.

2. Preliminaries

This section introduces the key mathematical concepts and methods that form the
foundation of this study. The provided explanations aim to offer both technical clarity
and intuitive understanding.

Time scales theory

Time scales theory bridges continuous and discrete time models, offering a uni-
fied framework for analyzing dynamic systems. By blending these two perspectives,
time scales theory enables researchers to describe systems that evolve continuously, in
discrete steps, or in a combination of both. For example:

• TS = R −→ Represents continuous systems, such as temperature changes over
time.

• TS = Z −→ Represents discrete systems, like population counts recorded at reg-
ular intervals.

• TS = qk (where q > 1 and k ∈ N) −→ Describes specialized time scales used
in areas like quantum mechanics or dynamic systems with exponential growth
patterns.

EXAMPLE 1. Let

(1) TS2 = {√r : r ∈ N0} ,

(2) TS1 = {2r : r ∈ Z}∪{0} ,

TS1 and TS2 are both time scales.
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DEFINITION 1. Let TS be a time scale. For each  ∈TS , we define two operators
 : TS → TS and  : TS → TS , by the following formulas:

 ( ) = sup{ ∈ TS :  < },

and

( ) = inf{ ∈ TS :  > }.

The operators  and  , are called backward jump and forward jump, respectively.

In the previous definition, we specify that

1. sup /0 = infTS (which means  ( ) =  if the set TS contains a minimum ele-
ment  ),

2. inf /0 = supTS (which means ( ) =  if the set TS contains a maximum ele-
ment  ),

where /0 represents the empty set.

EXAMPLE 2. Let’s briefly examine some examples: TS = R, and TS = Z .

(1) If TS = Z , for any number  in the set Z , we have{
( ) = inf{ ∈ Z :  > } = inf{ +1, +2, +3, +4, +5, · · ·} =  +1,

 ( ) =  −1.

(2) If TS = R , then for any number  in the set R , we have{
( ) = inf{ ∈ R :  > } = inf( ,) =  ,

 ( ) =  .

DEFINITION 2. Here are some other definitions that we need in this paper:

1. Left-Scattered: A point  is said to be left-scattered if  () <  .

2. Right-Scattered: A point  is said to be right-scattered if () >  .

3. Isolated: A point  is called isolated if it is both left-scattered and right-scattered
simultaneously.

4. Left-Dense: A point  is said to be left-dense if  () =  and  > infTS .

5. Right-Dense: A point  is said to be right-dense if () =  and  < supTS .

6. Dense: A point  is called dense if it is both left-dense and right-dense simulta-
neously.
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DEFINITION 3. Let g : TS −→ R be a function. The function g is termed
rd -continuous if it satisfies two conditions:

1. It is continuous at all dense points in TS when approaching from the right.

2. It has finite left-side limits at all left-dense points in TS .

Let Crd denote the set of all functions g : TS −→ R that are rd -continuous.

 -Caputo derivative

The  -Caputo derivative generalizes the classical Caputo derivative to time scales,
providing a flexible tool for modeling systems that exhibit memory effects or uncer-
tainty. By incorporating a  function, this derivative adapts to dynamic systems that
combine continuous evolution with discrete changes a feature particularly useful in hy-
brid models. This adaptability makes it ideal for analyzing complex processes such as
biological rhythms, financial cycles, or engineering systems with periodic updates.

DEFINITION 4. [6] (Delta derivative) Let  : TS −→ R be a function and  be
an element of TS . The -derivative of the function  at the point  , denoted ( )
(if it exists), is given such that for all  > 0, there exists a neighborhood  of  ∈ TS
satisfying:∣∣∣(( ))−(�)−( )[( )− �]

∣∣∣ �  |( )− �|, for each � ∈ .

DEFINITION 5. [6] Given a function  defined from I to R , where I is a
bounded closed interval of TS . We say that  is a -antiderivative of the function
 : [d,r) −→ R if the following conditions are satisfied:

1.  is continuous on [d,r] ,

2. ( ) = g( ) for all  ∈ [d,r) ,

3.  is delta differentiable on [d,r) .

The -integral of  from d to r is defined as follows∫ r

d
( ) = (r)−(d).

LEMMA 1. [6] Given that TS denotes a time scale and  is an increasing and
continuous function on [d,r] within this time scale. Define  as the extension of the
function  to the real interval [d,r] using the following expression

( ) =

{
( ) if  ∈ TS,

(�) if  ∈ (�,(�)) /∈ TS.

Then, ∫ r

d
( ) �

∫ r

d
( )d .
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DEFINITION 6. ( -Caputo -fractional integral operator on the time scales)
Given that TS denotes a time scale such that [c,d] is an interval of TS and v is an
integrable function on the interval [c,d] . Let  ∈ C n([c,d],R) with  ′

(t) > 0 for
each t in [c,d] . Consider  > 0. The -fractional integral at order  in the sense of
 -Caputo for the function v is given by the following expression

TSJ,c v( ) :=
1

()

∫ 

c
 ′(�)(( )−(�))−1v(�)�.

DEFINITION 7. ( -Caputo -fractional derivative operator on the time scales)
Given that TS denotes a time scale such that [c,d] is an interval of TS and v : TS −→R

is a continuous function. Let  ∈ C n([c,d],R) with  ′(t) > 0 for every t in [c,d] . The
-fractional derivative of order  in the sens of  -Caputo for the function v is defined
by de following expression

C,c+ v( ) =
1

(n− )

∫ 

c
 ′(�)(( )−(�))n−−1v

[n]

 (�)�, (2)

where

v
[n]

 (�) =
(

1
 ′(�)

d
d�

)n

v(�) and n = []+1.

The symbol [·] denotes the integer part.

THEOREM 1. (semigroup property) Suppose that the function  is integrable on
the interval [c,d] , and that  and  are two positive real constants. Then,

TSJ ,
c

TSJ ,
c  ( ) = TSJ+ ,

c  ( ).

Dhage’s fixed point theorem

Dhage’s fixed point theorem is a powerful theoretical tool used to establish the
existence of solutions for fractional hybrid differential equations. Its strength lies in its
ability to efficiently combine Lipschitz continuity and compactness conditions, both of
which are crucial when dealing with dynamic systems that involve uncertainty or non-
linear behavior. By leveraging these properties, Dhage’s theorem ensures the existence
of solutions even in complex systems where traditional methods may fall short.

THEOREM 2. (Dhage theorem) [11] we consider S as a bounded, closed, convex,
and non-empty subset of  , the Banach algebra. Let G1 : −→  and G2 : S −→  be
two operators which satisfy the following properties:

(a) G2 is completely continuous,

(b) G1 is Lipschitzian with a Lipschitz constant  ,

(c) u = G1(u)G2(v) implies that u in S for every v in S , and

(d)  < 1 , where  = ‖G2(S)‖ = sup{‖G2(u)‖ : u ∈ S} .

Then, the operator u = G1(u)G2(u) has a fixed point.
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3. Results

This section outlines the proof of solution existence for fractional hybrid differen-
tial equations involving the  -Caputo derivative, followed by an illustrative example
that demonstrates the practical application of the theoretical results. The following as-
sumptions are required:

(H1) The function F ∈ C (×R,R\{0}) where it satisfies the conditions that:

(i) |F ( ,v)−F ( ,u)| � L|v−u|, L > 0 for all u, v ∈ Crd(×R).

(ii) The mapping v −→ v
F ( ,v) is increasing in R a.e., for  ∈  .

(H2)  ∈ C (×R
2,R) is a function such that | ( ,v( ),u( )| � h( ) a.e.,  ∈  ,

h ∈ C (,R+).

DEFINITION 8. A function v ∈ C 1
rd( ,R) is a solution to the -fractional hy-

brid problem (1) , if it fulfills the initial condition v(c) =  and satisfies the fractional
equations C ,

c v( ) =  ( ,v( ),V ( )) on  .

LEMMA 2. Let  :  ×R
2 −→ R be a rd -continuous and 0 <  < 1 . Then, the

function v ∈ C 1
rd( ,R) serves as a solution to the -fractional hybrid problem (1) if

and only if it verifies the following integral equation:

v( ) = F ( ,v( ))
(
+

1
()

∫ 

c
 ′(�)(( )−(�))−1 (�,v(�),V (�))�

)
, (3)

where V (�) = max
�∈[c, ]

v(�) .

Proof. From (2), we have

C,c+

( v( )
F ( ,v( ))

)
=

1
(1− )

∫ 

c
 ′(�)(( )−(�))−

( v( )
F ( ,v( ))

)


(�)�

= T

SJ1−,
c

( v( )
F ( ,v( ))

)


.

Since  ∈ (0,1) . Then, the proof can be concluded from the relations

TSJ,c
C ,

c

(
v( )

F ( ,v( ))

)
= TSJ,c

TSJ1−,
c

( v( )
F ( ,v( ))

)



=
v( )

F ( ,v( ))
− v(c)

F (c,v(c))

=
v( )

F ( ,v( ))
− ,
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it follows that

v( ) = F ( ,v( ))
(
 +

1
()

∫ 

c
 ′(�)(( )−(�))−1 (�,v(�),V (�))�

)
,

where V (�) = max
�∈[c, ]

v(�) . �

THEOREM 3. Assuming that the conditions (H1) and (H2) are met. Then, under
the following condition

L

(
M +

‖h‖
(1+ )

((d)−(c))
)

< 1, (4)

the -fractional hybrid problem (1) has a solution.

Proof. Let M = | | and  = (C (,R),‖.‖) , where ‖v‖ = sup
∈

|v( )| . It is evi-

dent that  forms a Banach algebra, where multiplication is defined as follows

(uv)( ) = u( )v( ),  ∈ , u,v ∈ .

We define a subset S of  as

S = {v ∈  : ‖v‖ � r},

where

r =
MF

(
M + ‖h‖

(1+) ((d)−(c))
)

1−L
(
M + ‖h‖

(+1) ((d)−(c))
) .

It is easy to prove that S is a bounded, closed and convex subset of  , the Banach
algebra. Let’s consider the operators G1 : −→  and G2 : S −→  , which are defined
as follows

G1v( ) = F ( ,v( )) , (5)

G2v( ) =  +
1

()

∫ 

c
 ′(�)(( )−(�))−1 (�,v(�),V (�))�. (6)

The operator equation form representing the equivalent integral equation Eq. (3) corre-
sponding to the fractional hybrid problem (1) is expressed as

v = G1v G2v, v ∈ .

We establish that the operators G 1 and G 2 verify the conditions stated in Theorem 2.
The proof is structured in four key steps to ensure clarity and logical progression:
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1. Verifying the Lipschitz condition: The proof begins by confirming that the given
function satisfies the Lipschitz condition.

We prove that G1 is Lipschitz.
Applying the Lipschitz condition to F , with v,u ∈  and  ∈  , we obtain

|G1v( )−G1u( )| = |F ( ,v( ))−F ( ,u( ))|
� L|v( )−u( )|.

This gives,
‖G1v−G1u‖ � L‖v−u‖, u,v ∈ .

2. Demonstrating compactness: Next, the Ascoli-Arzelà theorem is applied to es-
tablish compactness. This step ensures that the function is contained within a bounded
and closed set, a key requirement for proving the existence of a solution.

In this step, we will show the complete continuity of the operator G2 . We demon-
strate that G2 : S −→  is a continuous and compact operator on S into  .

To begin, we establish the continuity of G2 on S . Let vn ∈ S converging to v ∈ S .
For each  ∈  , we have

|G2vn( )−G2v( )|

� 1
()

∫ 

c
 ′(�)(( )−(�))−1 | (�,vn(�),Vn(�))−  (�,v(�),V (�))|�,

using Lemma 1, we get

|G2vn( )−G2v( )|

� 1
()

∫ 

c
 ′(�)(( )−(�))−1 | (�,vn(�),Vn(�))−  (�,v(�),V (�))|d�.

On the other hand, from (H2) , we deduce that

 ′(�)(( )−(�))−1 | (�,vn(�),Vn(�))−  (�,v(�),V (�))|
� 2 ′(�)(( )−(�))−1‖h‖,

and

lim
n→

 (�,vn(�),Vn(�)) =  (�,v(�),V (�)) .

Applying Lebesgue’s dominated convergence theorem leads us to the following limit

lim
n→

∫ 

c
 ′(�)(( )−(�))−1 | (�,vn(�),Vn(�))−  (�,v(�),V (�))|d� = 0,

for all  ∈ .

This prove that G2 is a continuous on S .
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Based on assumption (H2) , for every v ∈ S and  ∈  , we obtain

|G2v( )| � | |+ 1
()

∫ 

c
 ′(�)(( )−(�))−1| (�,v(�),V (�))|�

� M +
1

()

∫ 

c
 ′(�)(( )−(�))−1|h(�)|�

� M +
‖h‖
()

∫ 

c
 ′(�)(( )−(�))−1�.

From Lemma 1, we derive that

|G2v( )| � M +
‖h‖
()

∫ b

c
 ′(�)(( )−(�))−1d�

� M +
‖h‖

(+1)
((d)−(c)) .

This gives,

‖G2v‖ � M +
‖h‖

( +1)
((d)−(c)) . (7)

This demonstrates that the operator G2 is uniformly bounded on  .
Furthermore, we establish that the operator G2(S) is an equicontinuous set in  .

Let v ∈ S and 1 , 2 ∈  such that 1 < 2 . Then, we have

|G2v(2)−G2v(1)|

� 1
()

∫ 1

c
 ′(�)

(
((2)−(�))−1− ((1)−(�))−1) | (�,v(�),V (�))|�

+
1

()

∫ 2

1

 ′(�)((2)−(�))−1| (�,v(�),V (�))|�.

According to Lemma 1, we can obtain the following

|G2v(2)−G2v(1)|

� 1
()

∫ 1

c
 ′(�)

(
((2)−(�))−1− ((1)−(�))−1) |h(�)|d�

+
1

()

∫ 2

1

 ′(�)((2)−(�))−1|h(�)|d�

� ‖h‖
( +1)

(((2)−(c)) − ((1)−(c))) .

This demonstrates that G2(S) is equicontinious set in  . Since G2(S) is equicontinious
and uniformly bounded set in  . Then, by applying the Ascoli-Arzela theorem, we get
G2 is completely continuous.
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3. Establishing subset invariance: The proof then demonstrates that the operator
remains within the specified subset, effectively defining the boundaries of the solution
set.

Let v ∈  and u ∈ S such that v = G1v G2u . Our objective is to demonstrate that
v ∈ S . Utilizing hypothesis (H1) and condition (7), we obtain

|v( )| = |G1v( )G2u( )|
�

{
|F ( ,v( ))−F ( ,0)|+ |F ( ,0)|

}(
M +

‖h‖
( +1)

((d)−(c))
)

� {L|v( )|+MF}
(

M +
‖h‖

( +1)
((d)−(c))

)
.

This gives,

|v( )| �
MF

(
M + ‖h‖

(+1) ((d)−(c))
)

1−L
(
M + ‖h‖

(+1) ((d)−(c))
)

= r, for all  ∈ .

Therefore,

‖v‖ � r.

This establishes that v ∈ S .

4. Linking the Lipschitz constant to the maximum function: Now, we show that
 < 1.

We have

 = L and  = M +
‖h‖

( +1)
((d)−(c)) .

By condition (4), we can get the following

 = L

(
M +

‖h‖
( +1)

((d)−(c))
)

< 1.

By proceeding through steps 1 through 4, we can conclude that all the conditions out-
lined in Theorem 2 are met. Thus, the following equation

v = G1vG2v

possesses a solution in S , which is a solution to the -fractional hybrid problem (1).
This concludes the proof of the theorem. �
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4. Example application

To illustrate the practical relevance of the theoretical results, the study presents an
example that models uncertainty in physical systems. In this example, the functions
presented satisfy the Lipschitz condition, attain a maximum value within the defined
interval, and meet the conditions outlined by Dhage’s Fixed Point Theorem.

By demonstrating these properties, the example highlights how the proposed met-
hod can be applied in various real-world scenarios. For instance, the findings may prove
useful in modeling biological processes involving irregular growth patterns, analyzing
temperature fluctuations in engineering systems, or predicting volatility in financial
markets. These potential applications underscore the study’s contribution to advancing
mathematical modeling techniques for complex dynamic systems. Let us consider the
following hybrid problem:⎧⎨

⎩
C ,

c

(
2|v(t)|+2|v(t)|2

et−1

)
=

exp{−max�∈[0,t]|v(�)|}
|v(t)|+1+ t2

, t ∈  = [0,1]TS ,

v(0) = 0,

(8)

where TS represent any time scale that includes both 0 and 1. Here c = 0, d = 1,
 = t ,  = 1

2 , M = 0 and

F (t,v) =
et−1

2(1+ v)
,

 (t,v,u) =
e−u

|v|+ t2 +1
.

Let t ∈ [0,1] and u,v in R , we have

|F (t,v)−F (t,u)| � 1
2

∣∣∣ |u|− |v|
(|v|+1)(1+ |u|)

∣∣∣
� 1

2
|v−u|.

Hence, the condition (H1) holds, with L = 1
2 . We also have the following inequality

| (t,v,u)|� h(t),

where h(t) = 1
t2+1

and thus

∫ 1

0
h(t)dt =

∫ 1

0

1
t2 +1

dt =

4

.

Then, condition (H2) holds.
Now, we can show that

L

(
M +

‖h‖
( +1)

((d)−(c))
)

= 0.4431134627< 1.
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Conclusion

This study successfully establishes the existence of solutions for fractional hybrid
differential equations involving the  -Caputo derivative. By employing Dhage’s Fixed
Point Theorem, a solid theoretical framework has been developed, ensuring a rigorous
foundation for the proposed method. The validity of this framework was further con-
firmed through a carefully constructed practical example, demonstrating the method’s
effectiveness in addressing real-world problems.

The primary contribution of this research lies in addressing a notable gap in the
literature – the application of the  -Caputo derivative on time scales to analyze frac-
tional hybrid differential equations. This innovative approach extends the capabilities
of existing methods and introduces new possibilities for modeling dynamic systems
that exhibit both continuous and discrete behavior.

Beyond its theoretical advancements, this study holds significant practical poten-
tial. The proposed method offers promising applications in diverse fields such as bio-
logical systems, engineering processes, and financial forecasting – particularly in sce-
narios where uncertainty plays a critical role.

However, it is important to note that this study primarily focuses on establishing
the existence of solutions. To build upon this foundation, future research should ex-
plore numerical validation techniques to test the method’s performance under various
conditions. Additionally, applying the proposed method to real-world problems could
provide valuable insights into its practical utility.

Further investigations could also examine alternative fixed-point theorems, such as
Krasnoselskii’s or Schauder’s theorem, to assess their suitability for more complex sys-
tems. Exploring these alternative approaches may reveal new strategies for improving
solution methods in nonlinear and hybrid differential equations.

By expanding the theoretical groundwork established in this study, future research
can help bridge the gap between mathematical theory and practical application, unlock-
ing new possibilities for solving complex dynamic problems.

Future works

The findings of this study open several promising avenues for future research.
Expanding upon the theoretical framework and practical implications outlined in this
work can help address unanswered questions and explore new applications for the  -
Caputo derivative in dynamic systems. Below are some key directions that warrant
further investigation:

1. Development of Numerical Methods:
One important direction for future research is the development of efficient numer-
ical methods for solving fractional hybrid differential equations involving the  -
Caputo derivative. Developing iterative algorithms specifically designed for these
equations could provide practical tools for approximating solutions in complex
systems. Additionally, incorporating error analysis techniques would be crucial
to evaluate the accuracy, stability, and convergence properties of these numerical
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methods. Such advancements would strengthen the practical implementation of
the theoretical findings.

2. Expanding Application Areas:
The versatility of the proposed method suggests that it could have meaningful ap-
plications in various scientific fields. For example, in engineering, the  -Caputo
derivative may improve heat transfer models by accounting for memory effects
and non-uniform thermal behavior. In biology, this derivative could help model
cell growth cycles or population dynamics in environments with variable condi-
tions. Likewise, in economics, it may enhance models for analyzing financial
market volatility, particularly in systems influenced by irregular fluctuations or
unexpected shocks.

3. Stability and Asymptotic Behavior:
Investigating the long-term behavior and stability of fractional hybrid differential
equations involving the  -Caputo derivative present another valuable direction
for future studies. Analyzing stability properties is essential for ensuring that so-
lutions remain well-behaved over extended time periods, especially in dynamic
systems prone to unpredictable changes. Understanding asymptotic behavior
would also offer insights into system equilibrium points and long-term trends,
further enhancing the reliability of such models.

4. Generalized Fixed Point Theorems:
Exploring alternative fixed-point theorems could expand the theoretical founda-
tion established in this study. Investigating methods such as Krasnoselskii’s or
Schauder’s theorem may uncover new solution criteria, particularly for highly
nonlinear or multi-dimensional problems. Identifying the strengths and limita-
tions of diffrent fixed-point theorems in this context could provide valuable in-
sights for improving solution techniques for complex systems.

5. Control Systems on Time Scales:
The  -Caputo derivative also shows potential for contributing to the develop-
ment of innovative control strategies for dynamic systems. Future research may
explore its role in designing control mechanisms for robotics, biomechanics, and
environmental modeling. By accounting for both continuous and discrete dy-
namics, the  -Caputo derivative may offer improved precision and stability in
systems requiring adaptive control strategies.
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