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EXISTENCE AND UNIQUENESS ANALYSIS FOR FRACTIONAL
V-DIFFERENCE TWO-POINT BOUNDARY VALUE PROBLEMS
WITH FULLY DIFFERENCE BOUNDARY CONDITIONS

YOUSEF GHOLAMI® AND ELNAZ POORTAGHI

(Communicated by F. Atici)

Abstract. In this article a fractional-order V -difference two-point boundary value problem of
order [2,3) is investigated. One of the interesting parts of this boundary value problem is its
boundary conditions that includes all of the possible fractional orders o € [0,1), a =1, and
o € [1,2). Thanks to the Green’s function approach, the main problem is transfered into an
appropriate functional space and then, making use of fixed point techniques such as nonlinear
alternative of Leray-Schauder and Krasnoselskii-Zabreiko fixed point theorems existence of at
least one solution is approved for the boundary value problem under study. Next, we choose the
Banach contraction principle to make a uniqueness criterion. At the and, we examine our theo-
retical findings with some numerical prototypes to show applicability of the solvability results in
practice.

1. Introduction

Fractional differential equations as widest branch of fractional calculus is known
as leading mathematical theory to study the history dependent phenomena. Indeed,
generalizing the integer-order integration and consequently differentiation to arbitrary
orders, provides this opportunity to compose the time-line of the phenomena under in-
vestigation with these interval sliding orders. This unique property of the fractional
differential equations makes them more reliable mathematical tools in the modeling of
real-life phenomena as well as their engineering approaches. Between variety of the
continuous and discrete fractional-order operators, the Riemann-Liouville fractional
operators as the prime generation have a very special data preserving property. Ac-
tually, if we instantly apply these operators on constant functions, not only constants
are kept but also they are composed with the order of applied Riemann-Liouville frac-
tional operators. This nice property may lead us to use Riemann-Liouville fractional
operators in both of the continuous and discrete cases to study the qualitative dynam-
ics of real-life phenomena in frame of fractional-order differential equations. In order
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of find more details on the importance of fractional differential equations and partic-
ularly, Riemann-Liouville fractional differential equations we suggest the followers to
see [1], [22], [32], [35], [37], [38] and related bibliography cited therein.

Paying attention on the discrete versions of the Riemann-Liouville fractional op-
erators, we have forward and backward difference operators that are known as the
Riemann-Liouville fractional A-difference and V-difference operators, respectively.
During the past two decades the literature has witnessed considerable attention to in-
vestigate on the discrete fractional differential equations. One of the most interesting
research fields of fractional difference equations is Green’s function technique on an
appropriate fixed point scheme for solvability of discrete fractional boundary value
problems. The interested follower can find huge number of research works on this
topic. As instance, we suggest the following collection for more consultation on this
concept, [2]-[21], [25]-[24], [33], [34], [36], [39] and [40]. In this position we give
some motivations to this article. The authors in [18] considered the following system
of fractional V -difference two-point boundary value problems:

(v )+( i Ei§>)=0»

)
)
u(a+1) _(v(a+1)
u(b+1) v(b+1)
for which 1 <o, <2, r€la+2,b+1]n={a+2,a+3,...,b,b+1},and a,b € Z
with a > 0, b > 3. Also, f,g:[a+2,b+ 1]y x R — R. Using Green’s function
approach for some fixed point techniques, two existence criteria has presented for the
fractional V -difference two-point boundary value sysytem (1.1).

In [23], the authors studied the following fractional V -difference boundary value
problem

(1.1)

{ - (Vf)(e)u> (2) = plzu(z), z€NL,, (1.2)
u(

e)=g(u), u(f)=0,
where e, f € R, with f—ee N3, £ € (1,2), p:N':+2 x R — R is continuous function,

and g€ C (N{ ,R) . As in the previous case, the Green’s function technique on desired

functional space has chosen to obtain some existence, multiplicity and uniqueness of
positive solutions for the fractional V -difference boundary value problem (1.2).

Motivating by the above works, we are interested in the following two-point frac-
tional V -difference boundary value problem:

{ (V%x) (2) +O(z,x) =0, zeNoT) =[a+2,a+3,...,b,b+1]y, 2<a<3,
)

(Ve %) (a+1) = (Vx) (b+1) = (V% 2x) (b+1) =0,

(1.3)
having the setting a,b € Z, b—a € Ny. Also, O : Nb+2 X R — R. Traditionally,
the appeared fractional-order operators in related problems have to be identified. Ac-
cordinglly, sz+ stands for the fractional V -difference operator of order y with lower

0
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terminal 7y, that will be defined clearly in the next section. Considering the special
boundary conditions that cover all orders belong to the interval (0,2), opens up a new
window into the garden of Green’s functions.

Here, we state the organization of rest of the paper. Section 2 includes all pre-
liminary requirements to reach the main resluts of this investigation. In this way, it
contains some essentials of discrete fractional calculus. Besides, all needed elements of
the fixed point theory such as statements of nonlinear alternative of Leray-Schauder and
Krasnoselskii-Zabreiko fixed point theorems that are chosen be to applied for existence
of solutions of the two-point fractional V-difference boundary value problem (1.3).
Furthermore, the Banach contraction principle is recalled to lead us to a uniqueness
criterion for our main problem. Next, we have Section 3 where all of the theoretical
existence and uniqueness criteria will be obtained by the use of some detailed analysis
linking fractional calculus, Green’s function approach, and functional analysis. In Sec-
tion 4 we consider some test problems to examine validity of the theoretical solvability
findings in practice. At the end, we have Section 5 to summarize research line of this
investigation.

2. Preliminaries

As organized, in this section we provide everything is needed to obtain some exis-
tence and uniqueness criteria for boundary value problem (1.3). To this aim, we divide
this section into two parts. The first part contains all of necessary definitions and tech-
nical lemmas of V-difference fractional calculus that will be needed in the theoretical
analysis in next section. In the section part, we have some fixed point techniques that in
combination with the Green’s function approach in an appropriate functional frame will
lead us to the expected solvability tools. So, at the first step we start with presenting the
foundation of V -difference operators as follows.

DEFINITION 2.1. [2,22] Suppose p is a positive integer. Then, by the rising
function of z we mean the following

_ pl _
F=1]G+)), P=1
=0

In the case that we generalize the positive integer p to arbitrary real number ¢, hence,
we have so called fractional rising function given by
z T(z+o)

=—— 2 zeR-Z_, 0%=0. 2.1
¢ ['(z) ‘ 21

In order to illustrate graphical structure of the fractional rising functions, we have Fig-
ure 1, below.

As will be seen, the fractional rising functions are kernels of the fractional V-
difference operators, indeed. Relying on them, we define now the fractional V-sum
operators as follows.
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0
z

@ 2%, a€(0,1) ) %, ae(1,2)

2

Figure 1: Fractional rising function for o, € (0,2)

DEFINITION 2.2. [2,22] Left and right sided fractional V-sum operators of order
a > 0 are defined as

V,900) = gy BE-00)TI00), 0:N R (2)
b _
V9000 = gy 268 To(). 9 — R @3

respectively, where §(s) =s—1, N, = {a,a+1,a+2,...}y and N’ = {... b -2,
b—1,b}y.

Based on definitions of the fractional V-sum operators, we can now define corre-
sponding fractional V -difference operators as follows.

DEFINITION 2.3. [2,22] Left and right sided fractional V -difference operators
oforder 0<n—1< o <n, neN are defined as

V% (z) = ﬁvg ( 2(z— 5(s))" 1o (s)), (2.4)
—1)" b -
VE 0 = oo (2@— 6<z>"“1¢<s>>, @)

for which, o >0, n=[ot]+ 1 and A, traditionally demonstrates the forward difference
operator acting on the variable z.

We finalize discrete fractional calculus by presenting some of essential proper-
ties of fractional V-sum and V -difference operators including power rules and mutual
inversion interactions, as follows.

LEMMA 2.4. [12,18] Suppose ¢ is a real-valued function and & > 0, 0 <
n—1<n<n. Then

(P1) V2V 10(2) =V, S o(2) = VIV Fo(2),
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(P) VIV 0(2)=0@) +eilz—a)T T+erz—a)T 2 4. +eulz—a)T 7,
GER,i=12,...,n

(Ps) VY.V 10(z) = ¢(2).

(Ps) VI (z—a)®= FF(5+1) (z—a) M E-n+1gL

(E—m+1)

We are now at the beginning of the second part, where we state the nonlinear
alternative of Leray-Schauder and Krasnoselskii-Zabreiko fixed point theorem for ex-
istence of at least one solution for farctional boundary value problem (1.3). In addition,
the Banach contraction principle is chosen to establish a uniqueness criterion for (1.3).
Finally, our desired normed functional space is introduced.

THEOREM 2.5. ([18]) Nonlinear alternative of Leray-Schauder. If A be a convex
subset of Banach space % and ¥ is an open subset of A with 0 € ¥, then, each
completely continuous mapping T : ¥ — A satisfies at least one of the two following
properties:

(Ly) There exist an w € ¥ such that Ty = .

(Lp) There existan ¢ € dY and 0 € (0,1) such that ¢ = 0T ¢.

THEOREM 2.6. ([18]) Krasnoselskii-Zabreiko fixed point theorem. Suppose %
is a Banach space. Let T : 8 — A is a completely continuous mapping. If £ : B — B
be a linear bounded mapping does not admit 1 as an eigenvalue. If

ITo—29l _

im 0, (2.6)
Iofl—= @]l

then, T has a fixed point in AB.

Next, we have the Banach fixed point theorem that will lead us to make a unique-
ness criterion for (1.3).

THEOREM 2.7. ([31]) Banach fixed point theorem. Suppose % is a complete
metric space with a contraction mapping T : 8 — PB. Then, T admits a unique fixed
point in A.

As the last preparatory tool, we introduce here the Banach space 4 as follows.

b+1
&0

= ({wwimtrt —Rhillla) . Iola = ma o
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3. Main results: existence and uniqueness analysis

This section contains theoretical aspect of this investigation, where it will prove
that under which conditions the fractional V -difference two-point boundary value prob-
lem (1.3) has at least one solution, as well as under which one it admits a unique so-
lution. In order to reach the main conclusion, we are going to divide this section into
three subsections. In the first subsection, we work on the Green’s function approach to
transform two-point boundary value problem (1.3) into corresponding V-sum equation.
In this case, we are ready to migrate into the Banach space 4 that allows us to apply
our analysis on the mentioned fixed point theorems in the previous section. Second
subsection is devoted to the existence results. In this subsection we apply the nonlinear
alternative of Leray-Schauder fixed point theorem as well as the Krasnoselskii-Zabreiko
fixed point theorem on Banach space # to prove that under certain conditions the two-
point boundary value problem (1.3) has at least one solution. In the third subsection and
in the light of the Banach fixed point theorem, we need some hypothesis that enables
us to have a contraction mapping in the Banach space Z. Thanks to the existence of
contraction mappings, the Banach fixed point theorem directly guarantees existence of
a unique solution for two-point boundary value problem (1.3). So, we start with the
Green’s function analysis as follows.

3.1. Green’s function analysis

This subsection includes two technical lemmas in general. In frame of these tech-
nical lemmas detailed structure of the Green’s function corresponding to the fractional
V -difference two-point boundary value problem (1.3) is identified.

LEMMA 3.1. Suppose B : NZI; — R. Then, the solution x(z) of the fractional

V -difference two-point boundary value problem

(V%x) (2) +E(2) =0, z€ Nzié, 2< o <3, A
(VO %) (@+1) = (Vx) (b+1) = (V% 2x) (b+ 1) =0, '
uniquely solves the fractional V -sum equation
b+1
x(2)= Y G(z,9E(s), zeN), (3.2)
s=a+2

Sfor which, G(z,s) denotes the Green’s function of the boundary value problem (3.1),



FRACTIONAL V -DIFFERENCE TWO-POINT BOUNDARY VALUE PROBLEMS 277

and is given by
G(z,9)

(b—a)! T(b—s+a)
a—3  (b—sl)!

z—a—1)!

(b—a)! o
b—s+2) p—(z—s+1)*L
Th-ata—3 o5t )} (z=s+1)
a+2<s<z<b+1,

(a_l){F(z—a—Hx 3) [z ata—3)b—s+2)+
1 -2
T(h—a+a-3)| o-3

(b—a)! T(b—s+a)
-3  (b—sl)!

(z—a—1)!

(b—a)!
. (b—s+2) p;
Th—ata—3 &7+2
a+2<z+1<s<b+ 1.

(a—l){w [(z—a+a—3)(b—s+2)+
2
3

(3.3)

Proof. Let us start the proof with
(V4x) () = —E(z), zeNT), 2<a<3. (3.4)
Applying the inversion rule (P;) in Lemma 2.4, we arrive at the following:
x(2)=ciz—a)* T+ er(z—a)* 2+ c3(z—a)? > — (V. 2E) (2). (3.5)

Based on (3.5), and making use of the power rule (Ps) in Lemma 2.4, we get the
following results:

(Ve 'x) (x) =ail(@) = Y, E(s), (3.6)
s=a+2
(Ve %x) (2) = e T () + eol (e — 1) — i (z—s+1)E(s), (3.7)
s=a+2
(Vo) (2) = ci(a—1)(z—a)* P4 ea(a—2)(z—a)* 3+ e3(o—3)(z—a)®?
1 2 e
_ms:%z(z_ﬁl) E(s). (3.8)

Next step is to apply the boundary conditions. In this way, we have

(Ver'x) (@+1)=0=c; =0, (3.9)
b+1

Y (b—s+2)E(s)

s=a+2
Ioe—1)

(VO 2) (0+1)=0=>cr = , (3.10)
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(Vx)(b+1)=0=
bf (b—s+2)* 2= (—2)(b—s+2)(b—a+1)*3|E(s)

s=a+2
Cc3 =

(a—3).T(0—2).(b—a+1)2*
(3.11)

If we substitute (3.9)—(3.11) into (3.5), we get that

—q)%2 bl
x(z)z% Y (b—s+2)E(s)

s=a+2
b+1 - -
N o |b—s+2)* 2= (a—2)(b—s+2)(b—a+1)*3
—3s=a+2
F(z—a)® Y

[1]
=

(a—3).T(a—2).(b—a+1)2*

(3.12)
Appropriately splitting the domain of s in the appearing finite sums, one has
1 b+1
x(z)==— Y H(z9)E(s), (3.13)

F(Ot) s=a+2

where,

H(z,s)

((x—l){(z—a)o‘z(b—H—Z)—i— !

(—=3)(b—a+1)*4

}—(z—s+l)m;

-l(z—a)m(b—s+2)m—(oc—2)(b—s+2)

1 a+2<s<z<b+1,

((x—l){(z—a)m(b—H—Z)-l- !

(a—3)(b—a+1)*4

If we use definition of the fractional rising function (z — a)B , given by (2.1), the fact
that for each positive integer m, I'(m) = (m — 1)!, and this key point that

-l(z—a)"“3(b—s+2)m— (a=2)(b—s+2)

a+2<z+1<s<b+1.
(3.14)

z—a)f =Gz—a+B-1)(z—a)P ", (3.15)
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then, having some simplification on the second part of (3.14) we come to the conclu-
sion that the prime Green’s function H(z,s) changes its form into the Green’s function
G(z,s) given by (3.3). To see happening of this process, we follow the forthcoming
sequence of calculations:

= e
(a—1)(z—a) (b_s+2)+(a_1)(a—3)(b—a+l)m

—(a—1)

(a—2)(b—s+2)
(a—=3)(b—a+1)4
o AT (z—a)ﬁ(z—a)m_ (a—2)(b—s+2)
_(O( 1){(2 ) (b +2)+(a_3>(b_a+1)ﬂ (OC—3)(b—a+1) }
INz—a+a-3)I'(b—s+a)
(a_w{w(b_Hm Me—al(b—s+2)

e I e
 (a=2)(b-s+2)
rb—a+oa—3)
(=3 —ar

—(0—1) { —F(EZ__‘Z;’_O‘U_! 2) (b—s+2)

b—a)T(z—a+a-3)'(b—s+a)
(¢—=3)(z—a—1)i(b —s+l)'F(b—a+a—3)

a— b—s+2
Ta-3 (b—a) (b—a+oc—3)}

:(a—1){%[(z—a+a—3)(b—s+z)

b—a)!T(b—s+a) 1
o—3 (b—s+1)! T(b—a+a-3)

o—2 (b—a)!
- a—3r(b—a+a—3)(b_s+2)}'
(3.16)

The clarifying sequence of calculations in (3.16) guarantees that x(z) uniquely charac-
terizes solution of the fractional V-difference two-point boundary value problem (3.1)
in the form of fractional V-sum equation

b+l
x(z)= Y G(z)E(s), zeN).
s=a+2
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So, the conclusion of this technical lemma is approved now. [

In the next technical lemma we obtain maximum of the Green’s function G(z,s).

LEMMA 3.2. Suppose a,b € Z, with b—a € Ny. Then,

1 [Tb—a+oa-2)
aﬁﬁHG@”‘Wxa—n{ (b—a—1)!

o—2 (b—a)(b—a)!
Ca—30(b—a+oa—3)(

a—2
b— —3)——+1
l( a+o )a_3+

(3.17)

Proof. Frist part of the proof is devoted to find out which one of two pieces in

Green’s function G(z,s) gives us its maximum vlaue at NZE To this aim, we need to

use the following key point:

INz—s+a)
I(z—s+1)

So, it is clear now that foreach a +2 <z+1<s<b+1,

1 {F(z—a+o¢—3)

(z—s+1)% 1= >0, a+2<s<z<b+1,ac23). (3.18)

max G(z,5) = Gmax(z,5) = l(z—a+o¢—3)(b—s+2)

z,seNbt] I(a—1) (z—a—1)!
(b—a)! T(b—s+a) I
* -3 (b—s1)! 'F(b—a+a—3)] (3.19)

a-2  (b—a)
_a—3'mb—a+a—$'w_s+m}'

With a direct calculation it follows that for each z,s € N}a’ié,

A(z—a)*2>0, Az—a)*?<0. (3.20)
Also, for each s € N}a’ié, -
As(b—s+2)*2<0. (3.21)
Considering (3.19) and making use of the monotonicity results (3.20) and (3.21), yields
the following:
max G(z,5) = Gmax(b+ 1,a+2). (3.22)
zseNEE)

Equivalently, we get that

e Ma-1)| (G-a-1)

a+2

1 I'b— -2 -2
max G(z,s) = { (boata )l(b—a+a—3)%+l

o—2 (b—a)(b—a)!
Ca—30(b—a+oa—3)(
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This completes the proof. [

Completing the analysis of Green’s function corresponding to the fractional
V -difference two-point boundary value problem (1.3), its time to attempt for the solv-
ability analysis. The first part of solvability analysis is devoted to the existence of
solutions for (1.3) and is presented in the next subsection.

3.2. Existence analysis

In this part of main results, we shall make use of two fixed point theorems nonlin-
ear alternative of Leray-Schauder and Krasnoselskii-Zabreiko to obtain two citeria for
existence of at least one solution for the fractional V-difference two-point boundary
value problem (1.3). To this aim, we need at first some hypotheses on the nonlinearity
of (1.3). Prior to presenting existence analysis, assume that the following hypotheses
are satisfied.

(E1) There exist positive real-valued function u : Nla’ié — R™ and positive real-

valued increasing function v : R — R™, satsifying the following property:
0(z,x)] < u(2)v(x]).

(E2) There exists real-valued function o : NZI; — R, for which the following limit
holds:
O(z,x)

=0(z2).

llxllg—e X )
In the followig theorem, using the nonlinear alternative of Leray-Schauder fixed point
theorem stated by Theorem 2.5, we prove the first existence result for the fractional
V -difference two-point boundary value problem (1.3).

THEOREM 3.3. Suppose that the hypothesis (E) is satisfied. Then, the fractional
V -difference two-point boundary value problem (1.3) has at least one solution in the
Banach space A, provided that

b+1

Y 1) < |Gumax| " ev(e) ™" (3.23)
s=a+2

Proof. Since we are going to use fixed point theory to reach an existence result,
so, we need some change on the fractional V -difference boundary value problem (1.3).
Our strategy to solve (1.3) is to prove that second part of Theorem 2.5, namely (L) is
not satisfied and consequently the first part must hold. So, as the first step we define the
operator T : B — A is follows:

bl
(Tx)(z) = Y G(z,9)0(z,s), ZENZB, (3.24)
s=a+2
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for which the Green’s function G(z,s) is defined by (3.3). Checking out the statement
of Theorem 2.5, we need to solve the following changed boundary value problem:

(V%x) (2) + 00(z,x) =0, zeN)=la+2,a+3,....b,b+1]y, 2<a<3,

(V%) (a+1) = (Vx) (b+ 1) = (V22x) (b+1) =0,

(3.25)
with 6 € (0,1). Thus, according to (3.24) and (3.25), we find out that in order to solve
the changed fractional V-difference boundary value problem (3.25), we have to solve
the following fixed point problem

O0Tx = x. (3.26)

It is necessary to characterize exactly ¥ C % in Theorem 2.5. To this end, we define it
as follows:

‘P:{xe%

XII,%<8}, e eR*. (3.27)

In this case, this is obvious that for each x € ¥, we have ||x|| z = €. Now, we are ready
to prove that second part of Theorem 2.5 is not satisfied. To this aim, we suppose on
the contrary that the second part (L) is satisfied. So, there exist x € ¥ and 6 € (0,1)
such that

0Tx=x. (3.28)
Then, we get that
Ol1Tx]| 5 = |l - (3.29)

Applying (3.24), on (3.29), yields the following reslut:

b+1
6 Y G(z,5)0(z,s) =¢.
s=a+2
b+1
— 0|Gmax| Y O(z,5) > €. (3.30)
s=a+2
b+1
= 0|Gmax|v(e) Y, |u(z)| > e
s=a+2

Based on the above analysis, we come to the conclusion that

b+1

> uz)] = |Gunlev(e), (3.31)
s=a+2

which makes a contradiction with the necessary condition (3.23). So, it has proven that
the second part of Theorem 2.5, (L;), is not satisfied and consequently its first part has
to be satisfied, that is the fixed point problem

Tx=x, (3.32)

where the opertaor 7 is defined by (3.24), has at least one fixed point in the Banach
space Z. It equivalently means that, the fractional V-difference two-point boundary
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vlaue problem (1.3) has at least one solution in the Banach space Z. So, the proof is
completed. [

Having the first existence criterion in hand, it is time to make second existence
criterion. This purpose is done using the Krasnoselskii-Zabreiko fixed point theorem as
follows.

THEOREM 3.4. Suppose the hypothesis (E) is satisfied. Then, the fractional
V -difference two-point boundary value problem (1.3) admits at least one solution in 5B
provided that the following condition holds:

b+1
D max\G(z s)| < o]l (3.33)

s=a+2

Proof. We start the proof by chracterizing the bounded linear mapping . as fol-
lows:

b+1
LB —B, (LX)()= Y Glzs)x(s)o(s), zeNIL (3.34)
s=a+2

As one of the conditions of the Krasnoselskii-Zabreiko fixed point theorem, we have to
show that 1 is not an eigenvalue of the mapping . . Indeed, in the light of hypothesis
(E») and the necessary condition (3.33), one may conclude that for each z € N2}

a+2°
b+l
[Zx]|z < Y, max|G(zs)|] (3.35)
s=a+2 ©
and consequently,
1-Zxll < ||x]|2- (3.36)

So, .Z is a blunded linear mapping and does not admit 1 as its eigenvalue. Next, we
have to analyze (T —.%)x as follows. For an arbitrary € > 0, we have

b+1
ITx—2ala=| ¥ G(m){@@)_x(z)a(s)}
s=a+2 #
b (3.37)
szaxG z,5)[10(s) —x(z) o (s) || »
s=a-+

< Gmax(b—a)e||x|| 2.
The limit approach (3.37) directly leads us to this fact that
Tx— Zx|| 4
i [Tx—=2Zxllz _ 0. (3.38)
el ¥l

Since all conditions of the Krasnoselskii-Zabreiko fixed point Theorem 2.6 hold, we
come to the conclusion that the fractional V -difference two-point boundary value prob-
lem (1.3) has at least one solution in %. This completes the proof. [
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As observed above, during the existence analysis we made use of the nonlinear al-
ternative of Leray-Schauder and Krasnoselskii-Zabreiko fixed point theorems and some
appropriate hypotheses to prove that the fractional V-difference two-point boundary
value problem (1.3) admits at least one solution in the Banach space #. So, as planned
we are done with the existence analysis and continue with the uniqueness analysis. To
this aim, we shall apply the Banach fixed point theorem to show that under appropriate
conditions, the boundary value problem (1.3) has a unique solution in %.

3.3. Uniqueness analysis

This is the last part of our solvability analysis, where we have to prove that under
which conditions the fractional V -difference two-point boundary value problem (1.3)
has exactly one solution in . To this aim, we state and prove the following theorem.

THEOREM 3.5. Suppose that ©(z,x) : NZI; x R — R is a Lipschitzian with re-
spect to x, that is there exist positive parameter p such that

|®(Z7x)_®(Z7y)| gp‘x_y‘v X,yE%. (3.39)

Then, the fractional V -difference two-point boundary value problem (1.3) has a unique
solution in A, in the case that

Gmaxp (b —a) < 1. (3.40)

Proof. Let us consider once again the operator 7' defined by (3.24) as follows:

b+l
(Tx)(z) = Y, Glz,5)0(zs), zeNfl. (3.41)
s=a+2

Thanks to the Lipschitz nature of the nonlinearity ©(z,s) with respect to the second
variable as well as the necessary condition (3.40), we get that for each x,y € £,

b+1
ITx=Tylz=| Y, G(z5)(0(z,x) —O(z,))

s=a+2 B
b+1

< ), pmax|G(z,s)|[lx—yllz (3.42)
s=a+2 <

=p(b—a)Gmax|[x—y||l 2

<|[lx=ylz

So, it has proven that the operator 7 given by (3.41) is a contraction operator in the
Banach space #. So, according to the Banach fixed point Theorem 2.7, T has a
unique fixed point in #. Equivalently, the Banach fixed point theorem guarantees that
the fractional V -difference two-point boundary value problem (1.3) admits exactly one
solution in the Banach space Z. This completes the proof. [J
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REMARK 3.6. Having a general overview on the structure of solvability analysis,
it is straightforward that in all of the existence and uniqueness analysis, the Green’s
function approach is the most fundamental factor. Indeed, the role of Green’s function
as discrete kernels of fractional V-sum equations enables us to investigate fractional
V -sum equations in appropriate functional spaces instead of the original fractional V -
difference boundary value problems. This key point indicates the importance of Green’s
function approach in the investigation on the solvability of boundary value problems in
general and fractional V -difference boundary value problems in particular.

4. Test problems

EXAMPLE 4.1. Consider the following fractional V -difference two-point bound-
ary value problem:

(I —sin(z))exp(1 +0.01x)

(V) @)+ W =0 2ENn
(V5x)(2) = (Vx) (6) = (Voix)(6) =0,

Comparing the test model (4.1) by (1.3), it figures out that the following setting are
chosen:

a=2.5, 4.2)

a=0, b=S5, 4.3)

u(z) =0.25(1 —sin(z)), (4.4)
X

v=00lexp(1l+-—), 4.5)

e = 10. ( 100) (4.6)

In the following, we graphically illustrate the functions u(z) and v(x) in Figure 2.

11
N
<10 7
0.9 ‘
0.8 ‘
1 .
10

5

0.4

l’.l s L ‘H Hl

20 25
z z

Figure 2: Lefi: (2) = 0.25(1 - sin(2)). Right: v(x) =0.01exp 1+ 1%)

An immediate evaluation shows that the hypothesis (E;) holds. Also, with a direct
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calculation, we arrive at the following numerical results:

. Oma 55733, (4.7)
3 u(z)| ~ 3.0709, (4.8)
’ v(e) ~0.03, (4.9)
G, lev(e)™ ~5.9809. (4.10)

Now, if we compare (4.8) with (4.10), we come to the conclusion that

6

3 u(2)] < Graxevie) ™" (4.11)
2

Since all conditions of Theorem 3.3 are satisfied, so, the fractional V -difference two-
point boundary value problem (4.1) has at least one solution in the Banach space %.

EXAMPLE 4.2. As second prototype, we are going to examine validity of the ex-
istence criterion given by Theorem 3.4. To this aim, we consider the fractional V-
difference two-point boundary value problem

(Ve:"x)(z) +xexp(=72%) =0, zeN§,

(4.12)
(V5:75x) (3) = (Vx) (8) = (V3°x) (8) = 0.
It is clear that, we have the following setting:
a=2.75, (4.13)
a=1, b=7, (4.14)
o(z) =exp (-77), (4.15)
O(z.x) = x0(2). (4.16)

We visualize the functions 0(z) and ©(z,x) by the Figure 3, as follows.

..

0 5

Figure 3: Left: 0(z) = exp(—722). Right: ©(z,x) = x0(2)
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Considering the above setting, it is obvious that the hypothesis (E7) is satisfied.
Furthermore, according to the above numerical setting we have

Gmax ~ 112.238, (4.17)
|62 ~ 4.3596 x 1028, (4.18)

So, we get that

bl
Y maxG(z,x)||o
a2 ©

27~2.9359%x 1075 < 1. (4.19)

B = (b_a)GmaxHO'

This shows that the necessary condition (3.33) in Theorem 3.4 is also satisfied. Since all
conditions of Theorem 3.4 hold, it has shown that the fractional V -difference two-point
boundary value proble (4.12) admits at least one solution in the Banach space %.

EXAMPLE 4.3. This is the third prototype, where we have to test practical ap-
plicability of the uniqueness criterion given by Theorem 3.5. So, let us consider the
following boundary value problem:

- xarctan (22 — 1)
(Vo) (@) + 2024(1 +x)

(Vo2x) (4) = (Vx)(10) = (V)#x) (10) = 0.

=0, zeN}, 4.20)

Taking a look at the boundary value problem (4.20), we find out the following setting:

o =225, 421

a=2, b=09, 4.22)

B(z) =arctan (* — 1), (4.23)
__ xB()

O(z,x) = 2004(1 1 2) (4.24)

In the Figure 4, the functions (z) and ©(z,x) are illustrated.

0.0005

0.0000

B(2)

-0.0005+

Figure 4: Left: B(z) = arctan (z* — 1). Right: ©(z,x) = %



288 Y. GHOLAMI AND E. POORTAGHI

A simple calculation gives us the following numerical outcomes:

G ~ 208.641, (4.25)
p =max f3(z) ~ 0.0007. (4.26)
Z

Based on the recent numerical findings, it is easy to check that the necessary condition
(3.39) is satisfied. In addition, according to (4.25) and (4.26), one has

Grmax (b — a)p ~ 0.9801 < 1. (4.27)

Since all conditions of Theorem 3.5 are fulfilled, so, it has proven that the fractional
V -difference two-point boundary value problem (4.20) has a unique solution in the
Banach space #.

5. Concluding remarks

In this article, a special class of fractional V -difference two-point boundary value
problems have chosen to be investigated. Considering the literature, most of the fractio-
nal-order boundary value problems have an order a € [1,2) and are subjected (at least
partly) to the Dirichlet boundary condition. The proposed boundary value problem in
this paper has an order o € [2,3) and is subjected to the fully difference boundary
conditions including the sub-orders oz —2 € [0,1), ov — 1 € [1,2) and order y = 1.
This collection of sub-orders in the boundary conditions, predict a new structure for
the corresponding Green’s function. The fundamental role of the extracted Green’s
function, enables us link to the fixed point theory, particularly some interesting fixed
point techniques such as the nonlinear alternative of Leray-Schauder and Krasnoselskii-
Zabreiko fixed point theorems, that in frame of some appropriate Banach spaces and
under some hypotheses essentially imposed on the nonlinearity ©(z,x), led to existence
of at least one solution within the considered Banach space. This is another one of
differences of this ivestigation in comparision with the existing literature. Since, the
Krasnoselskii fixed point theorem is commonly used to reach an existence criterion for
considered boundary value problems. In continuation, using the Banach fixed point
theorem, a uniqueness criterion for the main problem has obtained. Validity of all the
theoretical solvability criteria have examined in Section 4, and it has proven that all of
the theoretical findings are valid in practice.
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