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Abstract. This paper investigates the multiplicity of solutions for a class of fractional Hamilto-
nian systems defined by the system:{

tD
(−D

t u)(t)+L(t)u(t) = −a(t)G(u(t))+b(t)H(u(t))+h(t), t ∈ R

u ∈ H (R),

where tD
 and −D

t denote the Liouville-Weyl fractional derivatives with 1
2 <  < 1 , L(t)

is a symmetric and positive definite matrix in RN×N , a(t) and b(t) are positive bounded func-
tions, G(u) and H(u) are homogeneous functions on RN , and h(t) is a given function in RN .
Using variational techniques and the Pohozaev fibering method, we establish the existence of
infinitely many solutions when h(t) = 0 , and at least three solutions when h(t) is non-trivial but
sufficiently small. These results are novel and extend previous findings in the literature.

1. Introduction

Fractional differential systems have garnered significant attention due to advance-
ments in fractional calculus theory and their application across various fields like phy-
sics, chemistry, biology, and control theory, among others, see [2, 7, 10, 15, 20] for
example. Very recently, papers [2] and [23] explore advanced mathematical models
involving fractional derivatives and non-linear operators. The first paper investigates a
generalized singular capillarity system with the J -Hilfer fractional derivative, while
the second analyzes a singular generalized Kirchhoff-double-phase problem with the
p -Laplacian operator. Both works extend classical models to study complex systems
with singularities and non-linear dynamics.

Recent studies have focused on systems incorporating both left and right fractional
derivatives, with significant results on the existence and multiplicity of solutions using
nonlinear analysis techniques, see [3, 4, 8, 11, 34, 35]. Critical point theory has also
proven to be a powerful tool in this context, aiding in the study of differential systems
with variational structures, see [13, 22, 24]. For instance in 2013, Torres [29] investi-
gated the fractional Hamiltonian system{

tD
(−D

t u)(t)+L(t)u(t) = W (t,u(t)), t ∈ R

u ∈ H(R),
(FHS)
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where −D
t and tD

 denote left and right Liouville-Weyl fractional derivatives of

order 1
2 <  < 1 respectively, defined over the entire real axis. Here, L ∈ C(R,RN2

)
is a symmetric matrix-valued function, W ∈C1(R×RN ,R) , and W (t,x) = W

x (t,x)
represents the gradient of W with respect to its second variable. Torres established
the existence of at least one nontrivial solution to (FHS) using the Mountain Pass
Theorem, under the following hypotheses on L and W

(L0) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an
l ∈C(R, ]0,[) such that l(t) →  as |t| →  and

L(t)x · x � l(t) |x|2 , ∀(t,x) ∈ R×RN ;

(V1) W ∈C1(R×RN,R) and there exists a constant  > 2 such that

0 < W (t,x) � W (t,x) · x, ∀(t,x) ∈ R× (RN \ {0});
(V2) |W (t,x)| = o(|x|) as |x| → 0 uniformly with respect to t ∈ R ;
(V3) there exists W ∈C(RN ,R) such that

|W (t,x)|+ |W (t,x)| � ∣∣W (x)
∣∣ , ∀(t,x) ∈ R×RN.

Here, “ ·” denotes the standard inner product in RN and the associated norm is denoted
by |.| . In the study of the fractional Hamiltonian system (FHS) , various authors
have investigated the existence and multiplicity of solutions for fractional Hamiltonian
system (FHS) using critical point theory and variational methods. Key references
include [6, 14, 16, 17, 25–33, 36, 37, 38], along with their cited sources. Previously,
the potential W was assumed to satisfy conditions such as superquadratic [25–33],
subquadratic [14, 16, 37, 38], or a combination thereof [6, 17, 36]. Recently, in 2019,
Chai and Liu [5] examined the following fractional Hamiltonian system:{

tD
(−D

t u)(t)+L(t)u(t) = u(t)+b(t) |u(t)|q−2 u(t)+ h(t), t ∈ R

u ∈ H(R,RN),
(1.1)

where 1
2 <  < 1, q > 2, b ∈C(R, ]0,[) , h ∈ C(R,RN) ,  , are parameters. The

operator L satisfies condition (L0) . They introduce the assumption
(H1) b ∈C(R, ]0,[)∩L(R) , h ∈C(R,RN)∩L1(R) and q > 2.
By employing variational methods and the Nehari manifold, they establish the

following results:

THEOREM A. Under hypotheses (L0) and (H1) , if h = 0 , there exists a positive
constant 0 such that problem (1.1) has at least one nontrivial weak solution for −<
 < 0 .

THEOREM B. Under hypotheses (L0) and (H1) , if h �= 0 , there exists a positive
constant 0 such that problem (1.1) has at least two nontrivial weak solutions for
−<  < 0 and 0 <  <


2 , where  is a constant depending on  .

Note that in problem (1.1), the potential W (t,x) takes the form W (t,x) = G(x)+
b(t)H(x)+ h(t) · x where the maps G : u �→ 

2 |u|2 and H : u �→ 1
q |u|q are positively
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homogeneous. The objective of this paper is to generalize the previous results by Chai
and Liu to cases where G and H are arbitrary homogeneous maps. Specifically, we
consider the nonlinearity W in the form:

W (t,x) = −a(t)G(x)+b(t)H(x)+h(t) · x.

We adopt the following assumptions on a,b,G,H,L
(L) There exists a positive constant r0 such that inft∈R inf| |=1 L(t) · > 0 and

lim
|s|→

meas
(
{t ∈]s− r0,s+ r0[/L(t) � MIN}

)
= 0, ∀M > 0;

(W1) G,H ∈C1(RN ,R) and there exist two constants , with 1 <  � max{2,}
<  such that

G(sx) = |s| G(x) and H(sx) = |s| H(x), ∀(s,x) ∈ R×RN ;

(W2) G(x) > 0 and H(x) > 0 for all |x| = 1;

(W3) a ∈C(R,R+) is bounded if  � 2 and a ∈ L
2

2− (R) if 1 <  < 2;
(W4) b ∈C(R,R+) is bounded.
With these assumptions, we are prepared to state the main results of this paper.

THEOREM 1.1. (Symmetric case) Let h = 0 . Assume that (L) and (W1)–(W4)
hold. Then system (FHS) admits infinitely many nontrivial solutions.

THEOREM 1.2. (Non symmetric case) Let h ∈ L
′
(R,RN) where 1

 + 1
 ′ = 1 .

Suppose that (L) and (W1)–(W4) hold. Then there exists a positive constant  such
that, if ‖h‖L ′ <  , system (FHS) possesses at least three nontrivial solutions.

2. Preliminaries

2.1. Liouville-Weyl fractional calculus

The Liouville-Weyl fractional integrals of order 0 <  < 1 on the whole axis R

are defined as (see [9, 10, 22])

−It u(t) =
1

()

∫ t

−
(t− x)−1u(x)dx, (2.1)

and

t I

u(t) =

1
()

∫ 

t
(x− t)−1u(x)dx. (2.2)

The Liouville-Weyl fractional derivatives of order 0 <  < 1 on the whole axis R

are defined as the left-inverse operators of the corresponding Liouville-Weyl fractional
integrals (see [9, 10, 22])

−D
t u(t) =

d
dt

(−I1−
t u)(t) (2.3)



294 M. TIMOUMI

and

tD

u(t) = − d

dt
(t I1−

 u)(t). (2.4)

The Fourier transform of the Liouville-Weyl differential operators satisfies (see [9, 10])

−̂D
t u(s) = (is) û(s), (2.5)

t̂D
u(s) = (−is) û(s). (2.6)

Here, û denotes the Fourier transform of u .

2.2. Fractional derivative spaces

For 0 <  < 1, define the semi-norm

|u| =
∥∥|s| û

∥∥
L2

and the norm
‖u‖ = (‖u‖2

L2 + |u|2)
1
2 ,

and let
H(R,RN) = C

0 (R,RN)
‖.‖ ,

where

C
0 (R,RN) =

{
u ∈C(R,RN)/ lim

|t|→
u(t) = 0

}
.

It is well known that H(R,RN) is a reflexive Banach space. Denoting by C(R,RN)
the space of continuous functions from R into RN , we obtain the following Sobolev
lemma.

LEMMA 2.1. [16, Theorem 2.1] If  > 1
2 , then H(R,RN) ⊂ C(R,RN) , and

there exists a constant C = C such that

‖u‖L = sup
t∈R

|u(t)| � C ‖u‖ , ∀u ∈ H(R,RN). (2.7)

REMARK 2.1. From Lemma 2.1, we know that if u ∈ H(R,RN) with 1
2 <  <

1, then u ∈ Lp(R,RN) for all p ∈ [2,] , because∫
R
|u(t)|p dt � ‖u‖p−2

L ‖u‖2
L2 .

Now, we introduce the following fractional space

X =
{

u ∈ H(R,RN)/
∫

R
L(t)u(t) ·u(t)dt < 

}
.

Then X is a Hilbert space with the inner product

〈u,v〉 =
∫

R
[−D

t u(t) ·−D
t v(t)+L(t)u(t) · v(t)]dt
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and the corresponding norm
‖u‖2 = 〈u,u〉 .

Since X ⊂ H(R,RN) , then it is easy to see that X is continuously embedded into
Ls(R) for 2 � s �  .

LEMMA 2.2. [14] Under assumption (L) , the space X is compactly embedded
in Ls(R) for any s ∈ [2,[ . Moreover, for all s ∈ [2,] , there exists a constant s > 0
such that

‖u‖Ls � s ‖u‖ , ∀u ∈ X . (2.8)

To prove our results, we will employ the spherical fibering method as introduced
by Pohozaev in [18, 19]. For the sake of completeness, we will recall this method here.
Consider a real Banach space X with a norm ‖u‖X that is differentiable for u �= 0. Let
I be a functional on X of class C1(X \ {0}) . We can associate I with a functional Ĩ
defined on R×X as follows:

Ĩ(t,v) = I(tv), ∀(t,v) ∈ R×X .

Let S denote the unit sphere in X . The following result holds:

LEMMA 2.3. [18, Theorem 1.2.1] Let X be a real Banach space with a norm
differentiable on X \{0} , and let (t,v) ∈ (R\{0})×S be a conditionally critical point
of the functional Ĩ considered on R×S . Then the vector u = tv is a critical point of the
functional I , that is, I′(u) = 0 . In other words, any critical point (t,v) of Ĩ restricted
on (R\{0})×S generates the free nontrivial critical point u of I and vice-versa, that
is, the system I′(u) = 0 , u �= 0 is equivalent to{

Ĩ
′
t (t,v) = 0

Ĩ
′
v(t,v) = 0

for ‖v‖ = 1 . In the following, we will call the first scalar system of the previous system
the “bifurcation system”.

3. Proof of Theorem 1.1

We will proceed by successive lemmas.

LEMMA 3.1. Let K : RN → R be a function and  > 0 be a constant. We have
the following properties:

a) Equivalence of Homogeneity and Evenness: K is homogeneous of degree  if
and only if K is even and positively homogeneous of degree  .

b) Bounds on Positively Homogeneous Functions: If K is positively homogeneous
of degree  , then there exist constants mK ,MK ∈ R such that

mK |x| � K(x) � MK |x| , ∀x ∈ RN .
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c) Derivative of Positively Homogeneous Functions: If K is differentiable and
positively homogeneous of degree  , then K is positively homogeneous of degree
 −1 . Furthermore, for all x ∈ RN , the following identity holds:

K(x) · x = K(x).

Proof. a) It suffices to observe that

K(−x) = K((−1)x) = |−1| K(x) = K(x).

b) For x ∈ RN \ {0} , we have

K(x) = K

(
|x| x

|x|
)

= |x| K

(
x
|x|

)
.

Let mK = min{K(x)/ |x| = 1} and MK = max{K(x)/ |x| = 1} , we have

mK |x| � K(x) � MK |x| , ∀x ∈ RN .

c) For s > 0, we have for any y ∈ RN

K(sx) · y = lim
t→0+

K(sx+ ty)−K(sx)
t

= lim
t→0+

s−1 K(x+ t
s y)−K(x)

t
s

= s−1K(x) · y.

Since y is arbitrary, then K(sx) = s−1K(x) . For the equality, differentiate the
system

K(sx) = sK(x)

with respect to s to get
K(sx) · x =  s−1K(x).

Now, substitute s = 1 to get the desired result. �

LEMMA 3.2. Assume that (W1)–(W4) are satisfied. Then, we have
a) If un → u in L2(R) , then aG(un) → aG(u) in L2(R) .

b) If un → u in L(R) , then aH(un) → aH(u) in L


−1 (R) .

Proof. a) If un → u in L2(R) . We claim that aG(un) → aG(u) in L2(R) .
Arguing indirectly that there exist a subsequence (unk) and a constant 0 > 0 such that∫

R
a2(t)

∣∣G(unk(t))−G(u(t))
∣∣2 dt � 0, ∀k ∈ N. (3.1)



MULTIPLICITY OF SOLUTIONS FOR HAMILTONIAN SYSTEMS 297

Up to a subsequence if necessary, we can assume that 
k=1

∥∥unk −u
∥∥

L2 < and unk →
u almost everywhere on R . Let v(t) = 

k=1

∣∣unk(t)−u(t)
∣∣ , then v ∈ L2(R) and we

have
a2(t)

∣∣G(unk(t))−G(u(t))
∣∣2

� a2(t)M2
|G|

[ ∣∣unk(t)
∣∣−1 + |u(t)|−1 ]2

� 2a2(t)M2
|G|

[∣∣unk(t)
∣∣2(−1) + |u(t)|2(−1) ]

� 2a2(t)M2
|G|

[( ∣∣unk(t)−u(t)
∣∣+ |u(t)|)2(−1) + |u(t)|2(−1) ]

� c1a
2(t)

[
v2(−1)(t)+ |u(t)|2(−1) ] = w(t),

where c1 is a positive constant. By (W3) , w ∈ L1(R) , hence by the dominated conver-
gence theorem, one gets∫

R
a2(t)

∣∣G(unk(t))−G(u(t))
∣∣2 dt → 0 as k → ,

which contradicts (3.1). Hence aG(un) → aG(u) in L2(R) .
b) Let un → u in L(R) . We claim that bH(un) → bH(u) in L


−1 (R) . Argu-

ing indirectly that there exist a subsequence (unk) and a constant 0 > 0 such that∫
R

b


−1 (t)
∣∣H(unk(t))−H(u(t))

∣∣ 
−1 dt � 0, ∀k ∈ N. (3.2)

Taking a subsequence if necessary, we can assume that 
k=1

∥∥unk −u
∥∥

L <  and
unk → u almost everywhere on R . Let v(x) = 

1

∣∣unk(t)−u(t)
∣∣ , then v ∈ L(R) and

we have
b


−1 (t)

∣∣H(unk(t))−H(u(t))
∣∣ 
−1

� b


−1 (t)M


−1

|H|
[ ∣∣unk(t)

∣∣−1 + |u(t)|−1 ] 
−1

� 2
1

−1 b


−1 (t)M


−1

|H|
[ ∣∣unk(t)

∣∣ + |u(t)| ]
� 2

1
−1 b


−1 (t)M


−1

|H|
[(∣∣unk(t)−u(t)

∣∣+ |u(t)|) + |u(t)| ]
� c2

[
v + |u(t)| ]

= w(t),

where c2 is a positive constant. Since w ∈ L1(R) , then by the dominated convergence
theorem, one gets∫

R
b


−1 (t)

∣∣H(unk(t))−H(u(t))
∣∣ 
−1 dt → 0 as k → ,

which contradicts (3.2). Hence the claim is verified. �
LEMMA 3.3. Assume that (W1)–(W3) are satisfied. Then the functionals

I1 : u �→
∫

R
a(t)G(u(t))dt
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and

I2 : u �→
∫

R
b(t)H(u(t))dt

are continuously differentiable respectively on L2(R) and L(R) , and we have

I′1(u)v =
∫

R
a(t)G(u(t)) · v(t)dt, ∀u,v ∈ L2(R)

and

I′2(u)v =
∫

R
b(t)H(u(t)) · v(t)dt, ∀u,v ∈ L(R).

Proof. a) For u,v ∈ L2(R) , by the Mean Value Theorem and Hölder’s inequality,
we have ∣∣∣∣I1(u+ v)− I1(u)−

∫
R

a(x)G(u(t)) · v(t)dt

∣∣∣∣
=

∣∣∣∣∫
R

a(t)
[
G(u(t)+ v(t))−G(u(t))−G(u(t)) · v(t)]dt

∣∣∣∣
=

∣∣∣∣∫
R

a(t)
[
G(u(t)+ (t)v(t))−G(u(t))

] · v(t)dt

∣∣∣∣
�

(∫
R

a2(t) |G(u(t)+ (t)v(t))−G(u(t))|2 dt
) 1

2 ‖v‖L2

where  (t) ∈]0,1[ . By Lemma 3.2, the functional defined on L2(R) by

v �→
∫

R
a2(t) |G(u(t)+ v(t))−G(u(t))|2 dt

goes to zero as v → 0. Hence

I1(u+ v)− I1(u)−
∫

R
a(t)G(u(t)) · v(t)dt = o(‖v‖L2).

So I1 is differentiable on u and I′1(u)v =
∫
R a(t)G(u(t)) · v(t)dt for all v ∈ L2(R) .

Let us prove that I′1 is continuous. Let un → u in L2(R) , Lemma 3.2 and Hölder’s
inequality imply∥∥I′1(un)− I′1(u)

∥∥ = sup
‖v‖L2=1

∣∣I′1(un)v− I′1(u)v
∣∣

= sup
‖v‖L2=1

∣∣∣∣∫
R

a(t)
[
G(un(t))−G(u(t))

] · v(t)dt

∣∣∣∣
�

(∫
R

a2(t) |G(un(t))−G(u(t))|2 dt
) 1

2 → 0 as n → .

Hence I1 is continuously differentiable on L2(R) .
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b) For u,v∈ L(R) , by the Mean Value Theorem and Hölder’s inequality, we have∣∣∣∣I2(u+ v)− I2(u)−
∫

R
b(t)H(u(t)) · v(t)dt

∣∣∣∣
=

∣∣∣∣∫
R

b(t)
[
H(u(t)+ v(t))−H(u(t))−H(u(t)) · v(t)]dt

∣∣∣∣
=

∣∣∣∣∫
R

b(t)
[
H(u(t)+ (t)v(t))−H(u(t))

] · v(t)dt

∣∣∣∣
� Mb

(∫
R
|H(u(t)+ (t)v(t))−H(u(t))| 

−1 dt
) −1

 ‖v‖L ,

where  (t) ∈]0,1[ . By Lemma 3.2, the functional defined on L(R) by

v �→
∫

R
|H(u(t)+ v(t))−H(u(t))|


−1 dt

goes to zero as v → 0. Hence

I2(u+ v)− I2(u)−
∫

R
b(t)H(u(t)) · v(t)dt = o(‖v‖L ).

So I2 is differentiable on L(R) and as above, we prove that I2 ∈ C1(L(R)) . The
proof of Lemma 3.3 is completed. �

REMARK 3.1. Using Lemmas 2.2, 3.3, it is easy to see that I1 and I2 are contin-
uously differentiable on X , where X is defined in Section 2.

Associated to system (FHS) , is the energy functional J0 : X → R defined by

J0(u) =
1
2

∫
R

[ |−D
t u(t)|2 +L(t)u(t) ·u(t)

]
dt−

∫
R
W (t,u(t))dt

=
1
2
‖u‖2 +

∫
R

a(t)G(u(t))dt−
∫

R
b(t)H(u(t))dt.

From Remark 3.1, it is clear that J0 is continuously differentiable on X with derivative

J′0(u)v =
∫

R

[
−D

t u(t) · −D
t v(t)+L(t)u(t) · v(t)

]
dt

+
∫

R

[
a(t)G(u(t))−b(t)H(u(t))

] · v(t)dt

for all u,v ∈ X . Moreover, the critical points of J0 on X correspond to the solutions
of system (FHS) .

According to the spherical fibering method, we look for critical points u ∈ X of
the functional J0 of the type

u = sv where s ∈ R, v ∈ X , ‖v‖ = 1.
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Therefore the functional J0 can be extended to the space R×X by setting

J̃0(s,v) = J0(sv) =
s2

2
‖v‖2 +

∫
R

a(t)G(sv(t))dt−
∫

R
b(t)H(sv(t))dt

=
s2

2
‖v‖2 + |s|

∫
R

a(t)G(v(t))dt−|s|
∫

R
b(t)H(v(t))dt

for (s,v) ∈ R×X . Thus, the restriction of J̃0 on R×S , with S = {v ∈ X/‖v‖ = 1}
becomes

J̃0(s,v) =
s2

2
+ |s|

∫
R

a(t)G(v(t))dt−|s|
∫

R
b(t)H(v(t))dt

for (s,v) ∈ R×S . Hence, if s �= 0, the bifurcation system  J̃0
 s (s,v) = 0 takes the form

s+ |s|−2 s
∫

R
a(t)G(v(t))dt−  |s|−2 s

∫
R

b(t)H(v(t))dt = 0

which is equivalent to

1+ |s|−2
∫

R
a(t)G(v(t))dt−  |s|−2

∫
R

b(t)H(v(t))dt = 0. (3.3)

LEMMA 3.4. For any v ∈ X̃ = L2(R)∩L(R) , the function

v(s) = 1+ |s|−2
∫

R
a(t)G(v(t))dt−  |s|−2

∫
R

b(t)H(v(t))dt

possesses exactly two zeros ±s(v) . Moreover, the functional v �→ s(v) is continuously
differentiable on X̃ .

Proof. Since 1 <  � max{2,} <  , then it is clear that

lim
|s|→

v(s) = −.

Moreover

lim
s→0+

v(s) =

⎧⎪⎪⎨⎪⎪⎩
+, if 1 <  < 2

1+
∫
R a(t)G(v(t))dt, if  = 2

1, if  > 2.

Since v is continuous, we deduce by the Mean Value Theorem that v has at least two
zeros. It remains to prove that v has exactly two zeros. Indeed, for s �= 0, we have

 ′
v(s) = (−2) |s|−4 s

∫
R

a(t)G(v(t))dt− (−2) |s|−4 s
∫

R
b(t)H(v(t))dt.

We discuss two cases.
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a) First case: 1 <  � 2,  ′
v does not admit zeros. Hence v has exactly two

zeros: ±s(v) .
b) Second case:  > 2. In this case,  ′

v possesses two zeros ±s(v) with

s(v) =
( (−2)

∫
R a(t)G(v(t))dt

(−2)
∫
R b(t)H(v(t))dt

) 1
−

.

Using the variation table, we see directly that v admits exactly two zeros ±s(v) with
s(v) > s(v) .

Now, we shall prove that the functional v �→ s(v) obtained above is continu-
ously differentiable on X̃ . Let v0 ∈ X̃ , we consider the functional  : X̃ × I → R

defined by (v,s) = v(s) , where I = R∗
+ if 1 <  � 2 and ]s(v),+[ if  > 2.

Lemma 3.3 implies that  is continuously differentiable on X̃ × I . Moreover, we have
(v0,s(v0)) = 0 and 

 s (v0,s(v0)) �= 0. By the Implicit Function Theorem, there exist

an open neighborhood V ⊂ X̃ of v0 and a unique  : V → R which is continuously
differentiable such that

(v, (v)) = 0, ∀v ∈V.

By the uniqueness of s and  , we deduce that s =  on V , so s is continuously
differentiable on V and in particular at v0 . Since v0 is arbitrary, then s is continuously
differentiable on X̃ .

Next, consider the functional Ĵ0 defined on X̃ by

Ĵ0(v) =
1
2
s2(v)+ |s(v)|

∫
R

a(t)G(v(t))dt−|s(v)|
∫

R
b(t)H(v(t))dt

for v ∈ X̃ . We deduce from Lemmas 3.3, 3.4 that Ĵ0(v) = J̃0(s(v),v) on S . From
system v(s(v)) = 0, we deduce that for all v ∈ S

Ĵ0(v) =
(

1
2
− 1


)
s2(v)+

(
1

− 1


)
|s(v)|

∫
R

a(t)G(v(t))dt.

Since 1 <  � max{2,} <  , b � 0 and G � 0, then Ĵ0 is bounded from below on S
as the sum of two non-negative terms. Let (vn) ⊂ S be such that Ĵ0(vn) → infv∈S Ĵ0(v) .
Since (vn) is bounded, then up to a subsequence, we can assume that vn ⇀ v weakly in
X . By Lemma 2.2, we can assume after going to a subsequence, that vn → v in both
L2(R) and L(R) . By Lemmas 3.3, 3.4, Ĵ0 is continuous on X̃ , then Ĵ0(vn) → Ĵ0(v) .
Thus Ĵ0 attains its minimum on S at a point v with ‖v‖ � 1. It remains to prove that
v ∈ S . Indeed, by using system v(s(v)) = 0, we get for all v ∈ S and  ∈ [0,1]

d
d

(Ĵ0( v))

=
d
d

[1
2
s2( v)+ |s( v)|

∫
R

a(t)G( v(t))dt−|s( v)|
∫

R
b(t)H( v(t))dt

]
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= s( v)
d
d

(s( v))+ |s( v)|−2 s( v)
d
d

(s( v))
∫

R
a(t)G( v(t))dt

−  |s( v)|−2 s( v)
d
d

(s( v))
∫

R
b(t)H( v(t))dt

+ |s( v)|
∫

R
a(t)G( v(t)) · v(t)dt

−|s( v)|
∫

R
b(t)H( v(t)) · v(t)dt

= s( v)
d
d

(s( v))
[
1+ |s( v)|−2

∫
R

a(t)G( v(t))dt

−  |s( v)|−2
∫

R
b(t)H( v(t))dt

]
+

|s( v)|


∫
R

a(t)G( v(t))dt− 
|s( v)|



∫
R

b(t)H( v(t))dt

=
|s( v)|2



[
 |s( v)|−2

∫
R

a(t)G( v(t))dt−  |s( v)|−2
∫

R
b(t)H( v(t))dt

]
= −|s( v)|2


< 0.

Thus, Ĵ0( v) decreases with respect to  ∈ [0,1] and reaches its minimum at  = 1.
This implies that Ĵ0 attains its minimum on S at v ∈ S . According to the spherical
fibering method, we obtain that ±s(v)v are two solutions of problem (FHS) . �

Given that Ĵ0 is an even function, bounded from below, weakly continuous, and
of class C1 on S , the Lusternik-Schnirelmann theory (as discussed in [12]) ensures that
Ĵ0 has a sequence of conditionally critical points (vn)n∈N ⊂ S such that Ĵ0(vn) → +
as n →  . By applying Lemma 2.3, we deduce that when h = 0, the system (FHS)
possesses a sequence of distinct solutions (±un)n∈N , where un = s(vn)vn and J0(vn)→
+ as n →  .

4. Proof of Theorem 1.2

In the nonsymmetric case h �= 0, the energy functional Jh : X → R is defined by

Jh(u) =
1
2

∫
R

[ |−D
t u(t)|2 +L(t)u(t) ·u(t)

]
dt−

∫
R
W (t,u(t))dt−

∫
R

h(t) ·u(t)dt

=
1
2
‖u‖2 +

∫
R

a(t)G(u(t))dt−
∫

R
b(t)H(u(t))dt−

∫
R

h(t) ·u(t)dt

= J0(u)−
∫

R
h(t) ·u(t)dt

for u ∈ X . According to the spherical fibering method, we look for critical points
u ∈ X of the functional Jh of the type

u = sv where s ∈ R, v ∈ X , ‖v‖ = 1.
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So, the energy functional Jh extended to R×X becomes:

J̃h(s,v) = J̃0(s,v)− s
∫

R
h(t) · v(t)dt

=
s2

2
‖v‖2 + |s|

∫
R

a(t)G(v(t))dt

−|s|
∫

R
b(t)H(v(t))dt− s

∫
R

h(t) · v(t)dt

for (s,v) ∈ R×X , and its restriction to R×S is

J̃h(s,v) =
s2

2
+ |s|

∫
R

a(t)G(v(t))dt−|s|
∫

R
b(t)H(v(t))dt− s

∫
R

h(t) · v(t)dt

for (s,v) ∈ R×S . The bifurcation system  J̃0
 s (s,v) = 0 involves

s+ |s|−2 s
∫

R
a(t)G(v(t))dt−  |s|−2 s

∫
R

b(t)H(v(t))dt =
∫

R
h(t) · v(t)dt. (4.1)

Let v : R → R be the function defined by

v(s) = s+ |s|−2 s
∫

R
a(t)G(v(t))dt−  |s|−2 s

∫
R

b(t)H(v(t))dt.

LEMMA 4.1. For every v ∈ S , the function v is odd, and it has a local minimum
mv and a local maximum Mv such that Mv = −mv .

Proof. By derivation, we have

 ′
v(s) = 1+(−1) |s|−3 s

∫
R

a(t)G(v(t))dt− (−1) |s|−3 s
∫

R
b(t)H(v(t))dt.

Since 1 <  <  , then we have lims→ ′
v(s) = − and

lim
s→0+

 ′
v(s) =

⎧⎪⎪⎨⎪⎪⎩
+, if 1 <  < 2

1+(−1)
∫
R a(t)G(v(t))dt, if  = 2

1, if  > 2.

It results that the function  ′
v possesses at least two zeros. On the other hand, we have

 ′′
v (s) = (−1)(−2) |s|−4 s

∫
R

a(t)G(v(t))dt

−(−1)(−2) |s|−4 s
∫

R
b(t)H(v(t))dt.

If 1 <  � 2, we have  ′′
v (s) < 0 if s > 0. Moreover if  > 2, it is clear that

 ′′
v (s) = 0 → s(v) =

(
(−1)(−2)

∫
R a(t)G(v(t))dt

(−1)(−2)
∫
R b(t)H(v(t))dt

) 1
−

.

In both cases,  ′
v has precisely two zeros at ±s(v) . Similarly to Lemma 3.4, we can

demonstrate that s(v) is continuously differentiable on X̃ = L2(R)∩ L(R) . Since
lims →  ′

v(s) = − and v is an odd function, v must have a local minimum mv

and a local maximum Mv , where Mv = −mv . �
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LEMMA 4.2. If ‖h‖L ′ < (−2)
[
(−1)−12(−1)

 MbMH

]− 1
−2

, where  ′ is

the conjugate exponent of  , then system

v(s) =
∫

R
h(t) · v(t)dt

has three distinct solutions.

Proof. Set

v(s) = s−  |s|−2 s
∫

R
b(t)H(v(t))dt.

We have v � v and direct calculations show that, denoting by Mv the local maxi-
mum of v , it is

Mv = v

([
(−1)

∫
R

b(t)H(v(t))dt
]− 1

−2
)

= (−2)
[
(−1)−1

∫
R

b(t)H(v(t))dt
]− 1

−2 .
(4.2)

Note that Hölder’s inequality implies∣∣∣∣∫
R

h(t) · v(t)dt

∣∣∣∣(∫
R

b(t)H(v(t))dt
) 1

−2

� ‖h‖L ′ ‖v‖L
(
MbMH ‖v‖L

) 1
−2

� ‖h‖L ′
(
MbMH

2(−1)


) 1
−2 .

If we take ‖h‖L ′ < (−2)
[
(−1)−12(−1)

 MbMH

]− 1
−2

, then Hölder’s inequal-

ity implies

sup
v∈S

[∣∣∣∣∫
R

h(t) · v(t)dt

∣∣∣∣(∫
R

b(t)H(v(t))dt
) 1

−2
]

< (−2)
[
(−1)(−1)] 1

−2 . (4.3)

Since Mv � Mv , then (4.2), (4.3) imply∣∣∣∣∫
R

h(t) · v(t)dt

∣∣∣∣ < Mv � Mv

which implies that system (4.1) has three distinct solutions. �
Given the bifurcation system (4.1) with three distinct solutions si(v) , i = 1,2,3,

we consider the three induced functionals

Ĵh,i(v) =
1
2
|si(v)|2 + |si(v)|

∫
R

a(t)G(v(t))dt−|si(v)|
∫

R
b(t)H(v(t))dt

− si(v)
∫

R
h(t) · v(t)dt
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which are defined and distinct on B \ {0} , where B = {v ∈ X/‖v‖ � 1} . Using
Hölder’s inequality and the properties of the bifurcation system (4.1), we obtain

Ĵh,i(v) = Ĵ0,i(v)− si

∫
R

h(t) · v(t)dt

�
(

1
2
− 1


)
s2
i (v)+

(
1− 



)
|si(v)|

∫
R

a(t)G(v(t))dt

+
(

1

−1

)
 ‖h‖L ′ |si(v)| .

Since max{2,}<  , it follows that Ĵh,i is bounded from below. By applying Lemmas
3.3 and 3.4, we know that Ĵh,i is continuously differentiable on the space X̃ = L2(R)∩
L(R) . Combining this with Lemma 2.2, we conclude that Ĵh,i is weakly continuous
on the space X . Therefore, Ĵh,i attains its minimum on the set S at some point vi ∈ B
where si(vi) �= 0. What remains to be shown is that vi ∈ S . Indeed, by utilizing equation
(4.1), we can demonstrate for any v ∈ S and  ∈ [0,1] that

d
d

(Ĵh,i( v)) =
d
d

[1
2
s2
i ( v)+ |si( v)|

∫
R

a(t)G( v(t))dt

−|si( v)|
∫

R
b(t)H( v(t))dt− si( v)

∫
R

h(t) · v(t)dt
]

= si( v)
d
d

(si( v))+ |si( v)|−2 si( v)
d
d

(si( v))
∫

R
a(t)G( v(t))dt

− |si( v)|−2 si( v)
d
d

(si( v))
∫

R
b(t)H( v(t))dt

+ |si( v)|
∫

R
a(t)G( v(t)) · v(t)dt

−|si( v)|
∫

R
b(t)H( v(t)) · v(t)dt

−si( v)
∫

R
h(t) · v(t)dt− d

d
(si( v))

∫
R

h(t) · v(t)dt

=
d
d

(si( v))
[
si( v)+ |si( v)|−2 si( v)

∫
R

a(t)G( v(t))dt

− |si( v)|−2 si( v)
∫

R
b(t)H( v(t))dt−

∫
R

h(t) · v(t)dt
]

+
|si( v)|



∫
R

a(t)G( v(t))dt− |si( v)|


∫
R

b(t)H( v(t))dt

−si( v)
∫

R
h(t) · v(t)dt

= 
|si( v)|



∫
R

a(t)G( v(t))dt

− |si( v)|


∫
R

b(t)H( v(t))dt− si( v)
∫

R
h(t) · v(t)dt
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=
si( v)


[
 |si( v)|−2 si( v)

∫
R

a(t)G( v(t))dt

− |si( v)|−2 si( v)
∫

R
b(t)H( v(t))dt−

∫
R

h(t) · v(t)dt
]

= −|si( v)|2


< 0.

As  varies over [0,1] , Ĵh,i( v) decreases, reaching its minimum when  = 1. This
minimum occurs at vi ∈ S , indicating that Ĵh,i achieves its minimum on S at vi . Ac-
cording to the spherical fibering method, the solutions ±si(vi)v represent three solu-
tions of problem (FHS) .
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