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APPLICATIONS OF JS-PRESIC FIXED POINT THEOREM
TO A SYSTEM OF NONLINEAR FRACTIONAL INTEGRAL
EQUATIONS VIA MEASURE OF NONCOMPACTNESS

ANUPAM DAS AND MALLIKA SARMAH

(Communicated by D. Suragan)

Abstract. This paper presents an extension of the well-known fixed point theorem of Darbo in a
Banach space. Using the Presi¢ type fixed point theorem, which is a generalization of Darbo’s
fixed point theorem, we investigate the existence of solutions of a system of nonlinear fractional
integral equations. Additionally, a suitable example has been given to illustrate the applicability
of our findings.

1. Introduction

In several real-world applications across various domains, integral equations are
highly beneficial. The measure of noncompactness (MNC) is essential to many fields
of research and engineering due to its many uses. An essential component of fixed
point (FP) theory is MNC. Many researchers studied the idea of MNC after Kuratowski
and Hausdorff’s generalization in order to derive important expansions of the theory
of compact operators. The main area of expertise is applying MNC to ensure that the
mappings fulfill the particular inequalities. To help the reader grasp our situations and
objective, we provide some context. We go over the basic FP problem in a BS (Banach
space) ¢ using some assumptions from Schauder [2].

THEOREM 1.1. [10] In a BS, a continuous operator T : S — S admits at least
one FP for a convex, nonempty and compact subset S.

It is the Brouwer FPT (fixed point theorem) generalization.

This paper’s format will be as follows: We start by going over some fundamental
concepts and terminology associated with FP theory. The FPT is then demonstrated
using a newly defined contraction and MNC. Finally, using our results, we examine the
existence of solutions of a system of nonlinear FIE.

Using MNC in BS, the authors used Presié type extension of Darbo FPT to inves-
tigate the existence of solution for a system of functional integral equations (FIES) in
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[16]. Additionally, an example is being explored for numerical verification. The au-
thors of [ 18] examined the solvability of FIES in BS using MNC and Petryshyn’s FPT .
They also investigated the general class of functional equations, which include several
integral equations. The authors of [15] examine the existence of solutions to infinite
systems of differential equations (ISDE) of second-order in the space [, using MNC
and a Darbo-type FPT. The authors of [17] work on existence results for an ISDE of
order n in the spaces ¢o and /; with boundary conditions using a method related to
MNC. In [13], the authors showed that there is a solution for an infinite system of non-
linear integral equations in the BS /,,, p > 1 using a technique associated with MNC and
the generalized Meir-Keeler FPT. In [12], the authors investigated whether nonlinear
integral equations have any solutions. They also offered an iterative method to solve
the nonlinear integral equations with high accuracy. Finally, they gave an upper bound
of error and established the convergence condition.

Inspired by these research works, we are going to generalize a Presi¢ type FPT
from Darbo FPT, and we look into the existence of solutions of a system of nonlinear
FIE.

2. Preliminaries

We collect some basic symbols, definitions that are required for the paper as fol-
lows. Suppose conv(I) and I (for all nonempty set I) denotes the smallest convex,

closed set contammg I and the closure of I respectively.
Moreover V o U represents the set of bounded, nonempty subsets of A and
the set of 7 1ncluding all relatively compact and nonempty sets respectively. %, =
[0,00); % = (—o0,0), and N denotes the natural numbers set.

DEFINITION 2.1. [2] Amap G:V ,, — %, isa MNC in ./, if

4. G(comv(E)) =G (E),
5. 6(BEi+ (1-B)B) <o (B + (1-B)G(Ea), for fefo1],
6. The set E., = ﬂ;"zll::,, is non empty, if {E,} is a sequence of closed sets with

E,1 CE,in Vs and lim G (E,) =0, n€N.
’ Nn—o0

THEOREM 2.2. [16] Asgume A be a BS, and a NBCCS (nonempty, bounded,
closed, convex subset) ® of . Amap T:D — D, which is continuous and compact
admits atleast a FP.
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_ THEOREM 2.3. [16] Fora BS j_f, consider a NBCCS S. Assume a map T:S—
S, which is continuous and 3 b € [0,1), with

6(1(2)) < bG(2),
for 2 CS, and G is the MNC in the space . Atleast a FP is then admitted by T.

According to the well-established BCMP (Banach contraction mapping principle)
[5],if ©:3 — J is a map to itself, for a CMS (complete metric space) (J,0) in such a
way that

d(00,06) < wd(0,8),

forall ¥,é € J, then 3 a unique B with = (:)(fi), where 1 > w > 0. Numerous gen-
eralizations of this idea have surfaced in recent years. Presi¢ developed the following
result.

THEOREM 2.4. [16] Fora CMS (3,0), consider amap © : I* — 1. Assume that
d(@('lj] ) 627 [EE) 6")76(627 637 [EE) 6n+l)) < Zzzly_kd(ﬁk7 13k+1)7

forall ¥;,0s,..., 0541 €3 where 0 < Y1V < 1, n is a positive integer, and v, > 0.
Then © admits a unique FP ﬁ

Moreover, the sequence U, defined as Up+x = O(Up, Uyt 1, - -+, Optx—1), converges

to fh for all arbitrary points Uy, Uy, ..., Uy € 3.

Theorem 2.4 coincides with the Banach contraction principle, if we consider
n=1.

The aforementioned theorem was generalized as follows by Pregi¢ and Cirié:

THEOREM 2.5. [16] Fora CMS (3,0), consider amap © : I* — . Assume that
d(O(01,02,...,0,),0(02,03,...,0,1)) < W max{d(Vy, Vpr1) 1 k € [1,1]},
forall Uy,0,,...,0ps1 € where 1 >w > 0. Then © admits a fixed point E el

Moreover, the sequence U, defined as U1y = O(0p, Uy 1, - - -, Optx—1), COnverges
to B, for all arbitrary points Uy, Vs, ..., Uit € 3.

Ifforall p,ied p#£1,
d(©(p,p,...,p),06(1,1,....1)) <d(p,I).

Then © admits a unique FP é el
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3. Main result

DEFINITION 3.1. [8] Consider that B be a family of continuous map A: %, —
4 such that A(p) > p, A(0) =0, for p € Z4\ {0}.
As an example, we can consider A (j) =Ap, forall pe %, A > 1.

DEFINITION 3.2. [8] Consider S be a family of non-decreasing, continuous maps
9I<@+ —M@Jr with 9(p~) > p, ﬁE%Jr.
As an example, we can consider .7 (p) = up, forall p e Z,, u>1.

DEFINITION 3.3. [8] Consider K be a family of monotonic increasing maps @ :
‘@Jr — %Jr with

lim @ () = 0.

k—soc0

forall p > 0. ~ ~
As an example, we can consider @ (p) = {p, forall pe Z,, 0< { < 1.

'THEOREM 3.4. Consider 2 be a NBCCS of a BS A and a continuous operator
©:2 — P with
A7(s0@)))<a(ed) 3.1)
where 3C 9, AeB, 7 € S, (S K and G is a MNC in 2. Then there exists atleast
a fixed point admitted by © on 9.

Proof. Consider {7} with % = conv (0 (#_1)) and %)= 2, k > 1.

If for some k € N, G(¥) =0, then ¥; is relatively compact. By Theorem 2.2,
we get that © admits a FP. Hence for all k > 0, assume G (7;) > 0. Clearly {#} is
a sequence of NBCCS with

Now we have

A7 (60he))) = A(7 (& (com(@ (1))
~A(Z (5@ )
<o ()
<1§2(~(7/k71)>

(3.2)
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Now from the definition (3.1) of A, we have,
7(60hm) <A(Z7(6040))) (33)
Using equation (3.2) and (3.3), we get
Z(60h)) <& (G)) (3.4)
Now by definition (3.3) we get
9(@(%{“)) =0, as k— oo.
Thus, we have
lim &(741) = lim G(%) =0,

Let %, = N (%, so we get an element ., of kerG (%), which is NBCCS and
invariant under ®. Hence from Theorem 2.2, ©® hasa FP. O

COROLLARY 3.5. Consider 9 be a NBCCS of a BS J and a continuous oper-
ator © : 9 — P so that

6(6(3)) <Ag(3),

for31C 2, A€ (0,1), and G is a MNC in . Then there exists atleast a FP admitted
by ® on 2.

Proof. Putting A (p) =wp, 7 (p) =hp, and @ (p) =7Fp, ¥ p>0, F <1, and
h,w > 1 in equation (3.1) of Theorem 3.4, we get the result shown above. [J

THEOREM 3.6. Consider 2 be a NBCCS of a BS A and a continuous operator
~ =n =
0:9 — P sothat

A(ﬁ(d(@)(ﬁl XD x... xjn)>>> <a(max{c(d),..6(E)}). G

1.,%,....9,. €2, AeB, T €S, (OIS K and G is a MNC in . Then there
exists atleast a Presic¢ type FP admitted by © on 2.

Proof. For 517527...,§’n €9, define a map 0:7" -9 as
0 (b)) = (68l ) nd (Buann)):

Clearly O is continuous and all conditions of theorem satisfies by ©.
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Moreover G (J) :max{(}(jl) vy G (T0) } isamnc [16], 3c 2", 3,,5,....3,

’ —n
For a nonempty subset 1 C 7, we have

_(G((:)(jlxj2x'” x3n) s, @i x T x... xjn)>>>

(

:/{<§<max{(~}<(:)(j1xjgx... xjn)),...,é((:)(j1><jz><... xjn)>}>>
(
(

Hence from Theorem 3.4, © has atleast a FP, which implies that atleast a Presic¢
type FP admitted by ® on 2. [

COROLLARY 3.7. Consider 9 be a NBCCS of a BS A and a continuous oper-
~ —n —
ator © 1 9 — P so that

6(6 (3 x L. x2) ) <A(max{&(),....6(3)}), (3.6)

jl,jz,...,j,, CPD rE (0,1), and G is a MNC in . Then there exists atleast a
Presic¢ type FP admitted by © on 2.

Proof. Putting A (p) =wp, 7 (p)=hp, and & (p) = #p, forall h,3 >0, F< 1,

and w > 1 in equation (3.5) of Theorem 3.6, we obtain the result shown above. [l

4. Applications

We apply our findings to investigate the existence of solution the following non-

linear FIE in the space BC(Z.):

@)

31(6) =E(6) + g S A(6.9.5 (6(6)). 52 (6(6)) ... 3, (6 (&) ) o

2(6) =2(6) + 1 0‘°A(a3713,j1 (0(0)), 2 (0(®)),...,3, (6 () ) v
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where J;,3,,...,3, €BC(Z.); 6 € Xy; U, € [0,5], B>0.

AlsoE: Ry — R, N B X B x B" — X and 0 : B, — .. are continuous
functions, and I'(,) denotes Euler’s gamma function.

Consider

Homy = {ii € BC(%+) : ||| < Mo},

for a constant 97y > 0.

Here ||it|| = sup{|&t(®)|: & > 0} denotes the norm in the space BC(Z).

Also define Q//Zgg’(Y, K) = sup{|Y(it;) — Y(iiz)| : it1, 02 € [0, 5], |it — iia| < K} as
the modulus of continuity of a function Y € BC(%4).

Consider .7Z%(3,K) = sup{.Z?(Y,k): Y € 1},

M (3) = lim A7 (3, 5),

Kk—0

and

Mo(3) =

o —

lim ///N(')@(j).

B —

Assume
(@) ={Y(@d):Yed},
and for fixed ® € Z,

diam3 (#) = sup{|J; (&) — T (#)] : 1,35 € I},

The MNC in the space BC(#- ) defined as [3]

() = Mo(3) + lim supdiamd (@) .

() —°

In order to examine the solutions of the system of equation (4.1), we now make
the following assumptions.

(1) E: %, — Z is a continuous map satisfying,

[1]

(@) —E(dn)| < |01 —dnl,
for @y, € Z..

(i) A: Py X Z+ X Z" — X is a continuous map satisfying,

‘A<(1’)1,1')17171,172,---,17n> —A<(f)2,132,§17§2,~~,§n>
< @) — | + |01 — Vo] + max {|it1 — &1, |2 — &l |ty — Gal }

for @y, n, V1,0, € #+, and uy, iy, .., in,81,8,...,5 € BC(Z4).
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for each J;,7,,...,3, € BC(#.); and O : Z, — Z. is a continuous function.

Also
‘A<ﬂ')1,137j1 (6(d1)),22(0 ()., (0 () )’ < A(d1)H(V),

with lim [ A(d;)H(¥)d0 =0, for two continuous function A,H and @y, €
(,()1 —00

R+, I, D,..., 3y €BC(R+).

(iv) 3 aMy>0, foreach J1,0,...,3,€BC(Z,); GeRy; U,d€[0,PB), B>0,
and 0,47, 2 are as defined above satisfying

= o

j+ﬁ/0“’max{i((w>>,|:‘12<A<oa>)|7.~,|3n (éw’)))l}d‘”r(a)
<M.

9

THEOREM 4.1. If conditions (i)—(iv) holds and % <, {€(0,1). Then the
system of equations (4.1) has atleast a solution in BC(%+.).

Proof. First we define the function © : BC(%) x ... x BC(%,.) — BC(Z%,.), for
an arbitrary fixed @ > 0 as

6 (jhjz,...,in) (@)

=E(6)+ F(lo’c) /OwA<a’),137j1 (0(6)), % (0(6).... 3, (0(9)) ) dv

Now, we prove that the operator @ maps from (Hgy, )" into Hap, .
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For @ > 0, we have
|®(j1,j2,...,j,,) (@)
_ Lo ) A
a(me/o A(6,9,21(0(6)),% (6(6)) ... 5 (0(6)) ) a0
<|E(w)+'ﬁ/ow{A(a’),v 3 (0()),2 (6()), .,jn(é(w)))
—A(a’),ﬁ,o,o,...,o)+A(a§,6,o,o,...,o>}d6
</+ﬁ/owmax{31 (0() 1,132 (0 (@) ].....|3, <é<w>)|}dﬂ+%é
< Mo.

~ - . _
Thus, © maps from (Hgy,) into Hay,
Now, we prove that O is a continuous map. Assume (i1, it2,

: 7”7")7(@17@27“‘7@71)
€ (Ham,) with [[iy —G1f| + [l — &l + ... + it

. — &l < K, for arbitrary fix K > 0.
Then we have for all @ € %,
Oy, iz, ..., i) (& ) @(91,€2, +6n) (@) |
_ 1 A A o
<|2(@) W/ A(6,9,0 (0(6)) 72 (0(6)) ..., 0 (0(6)) ) 46— = (@)
1 @ . A . A A
@ h A(a),mgl (0(0)),% (0(d)),....% (6(w))>dv

Here ||it; — §1||—|—Hu2—g2||+ i — Gl

< K.
So,as Kk — 0, \@(uhuz, i) (0) — @(@ 62y Gn) (@) — 0.
Thus, © is continuous.

Next, for fixed @ > 0, and a sequence {@,} such that @, — @ as n — e=. We can
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select @, > @ without losing generality. Then

N
/[L]
£
|
(11
E

|
R U A= A
< ‘ﬂ)n—(l)‘-i-m/(; {|a),,—a)|+max{31 (6 ((Un))—jl (6 ((1)))|7

AL = A = A = A . K
T(0(62) =T (0() |s-.s [0 (8 (60) T (0(6)) |}}dv !
Thus, |® (jl,j2 ..... jn) (i) — O (jl,jz ..... jn) (@)] — 0, as n— oo,

Next, assume @, @, € [0, %] with |, — @] < K, 0<%, and (3y,Ds,..., .)€
jl X ... xjn, Then
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1 (07 — A
<l —d ’ o T (B
| o w1|+—r(a)/0 {Ian w1|+maX{ 1(6(c))

+ K |, — 0y |

Ia) 2
o B .
S |2 = B[ + s |dz — i

(a)

<o w1|+£\a§2 ot
I'(a)
+% max{Dl (0 (dn)) =31 (0(d1)) 1,132 (6 (dn)) — 3 (6 () |
13, (0(@) 3,8 (6) || + g lan

Thus
(8 (%, 8)) <€ max{//zo(jl),//zo B) ... Ao (jn)}.
And

dian{® (3. 3:...3) (@)
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Thus
%(6(3.5%...3))
SN ACI IS SnAY +limsude°°diam{@ (03,3 (@) }
< max{ﬁo(jl),//zo (). il (jn)}
+¢ max{diam 51 (0(0)),diam 32 (0(®)) ..., diam 3, (6 (&)) }
< max{%(jl),%(jg),...,%(jn)}.

Therefore, by Corollary 3.7, © has a Presi¢ type fixed point. Thus in BC(%, ), the
system of equations (4.1) admits atleast one solution and we are finished. [

EXAMPLE 4.2. Assume the following FIE with 9ty =6, K= 5,

i ()

o+

5(6) = b+ iy g (a’)—i—ﬁ—i—

3, (6) = &+ O,;, (a’)+1§+ 31(6(&’)))+32(B(d)))+...+3n(6(a'))))d’o’
for 0,0 € [0,1].
Consider max{|j1 (6(0))],132(0(@))1,-..,13n (6 (@) |} <e @,
Now for @, € [0,1], E satisfies,
|2 (1) —E(dn) | = |1 — dn].

Next, for @y, d,, V1,0, € [0,1], and uy,uz,...,un,61,8,...,6, € BC(Z4),

A<a’)17617’217ﬁ27~”7ﬁn> —A(@2,627¢1,§2,...,¢n>

L, At 4w, . G+&+. +é

= |+ 01+ — o |
n n
. . , , | . .
< wl—m|+|vl—vzl+;{|u1—g1\+\uz—gz|+...+\un—§n\}
< |y — @a| +[01 — Vo| +max {|ity — G, |2 — &, -, |y — Gl }
Also,

A =sup{|E(®)|: ® € [0,1]}
=sup{|®| : ® € [0,1]}
<1
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9= sup{'A(a’m,o,o,...,o) ' L6, € [0, 1]}

:sup{’a')—i-13| :@,66[0,1]}

Next

with lim fowl e Me U dy =0.

W] —°
Also,
- 1 9] ~ o N N . o~
A5G /0 max ¢ |31 (6(6))1.1%2 (0(0) |+++-+[3 (8(6)) | d + -5 2
1 . [0}
<1+ we ¥ + 2.
3) r(3)
20
<1+ -we +?
<6.

Since all the assumptions of Theorem 4.1 are satisfied. Hence, we get that the
system of equations (4.2) has atleast one solution in the space BC(#+.).
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