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LINKING AND EXISTENCE RESULT FOR THE FRACTIONAL
p-LAPLACIAN PROBLEMS INVOLVING SINGULAR NONLINEARITY

MOHAMED LOUCHAICH

(Communicated by R. Ashurov)

Abstract. The purpose of the work is to investigate whether solutions exist for a certain class
of fractional non-linear equations that are non-local and feature both singular and subcritical
nonlinearities. The equation is given as follow

(=Ap)u = Alul2u+ 2L+ Bt %u in @,
u
(Z2) §u>0 inQ,

u=0 in RV\Q.
Here Q is a bounded domain of R with N > 2 and Lipschitz boundary dQ, A,n >0 are
two a real parameters, (—A,)* represents the fractional p-Laplacian operator with s € (0,1)
and p > 1 satisfies sp <N, g€ (p,p}). B:Q — R is a bounded function, § is a positive
real number, satisfying & € (0,1). The study makes use of variational methods to prove that
solutions exist. The author uses some abstract linking theorem based on the 25 -cohomological
index to determine the critical points of a suitable functional that is related to the equation. The
paper shows that the equation has at least one nontrivial solution for any positive value of the
parameter A .

1. Introduction

This work is concerned with the existence of weak solutions of the following non-
local problem:

5 - n - :
(=Ap)u=Alul? 2u—|—u—5—|—B(x)|u|‘1 2y in Q,
(Z1) Su>0 in Q,
«=0 in RN\ Q,

where Q is a smooth bounded subset of RY, N > 1, with Lipschitz boundary dQ,
A,m >0 are two a real parameters, 0 € (0,1), g € (p,p}), B : Q — R is a bounded
function such that there exist f, B > 0 such that By < f(x) < P a.e. x € Q. Here
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(—Ap)*, s €(0,1) is the fractional p-Laplacian operator defined for every smooth
function ¢ € C7(RY) by

(—Ap)s(p(x)=21im \(p(x)—(p(y)\l’_z((p(x)—(p(y))

dy, xeRV,
£—0 RN\BE(X) |x_y|N+.\'p Y

where B (x) denotes the ball in RV of radius € > 0 at the center x € RV . When p =2,
(—A)j, reduces to the fractional Laplacian operator (—A)* which (up to normalization
factors) may be defined as

L ety +el—y)—20()
2 JrN |y|N+2s

(=8 ox) = dy,

for x € RN (see [6] and references therein for further details on the fractional Laplacian
and on the fractional Sobolev space H*(R")). In this case, our problem becomes as
follows

(—A)\u=Au+ 3—5 +B(x)|u)9%u in Q,

u>0 in Q, (1.1)

u=0 in RV\Q.

We call that A € R is an eigenvalue of (—A,)* in Q if the problem

(—=Ap)u=AlulP2u %n Q;V (12)
u=20 in RV\ Q
has a nontrivial weak solution. Define
Osp = {A € R: A is an eigenvalue}. (1.3)

The eigenvalue problem (1.2) was first introduced by Lindgren and Lindqvist in [16]
and considered by several authors afterwards, we cite for example [12, 15]. For all
A € o;,p, the set of A -eigenfunctions is called A -eigenspace. Clearly, o, , C R+ and
all eigenspaces are star-shaped sets, as both sides of (1.2) are (p — 1)-homogeneous.
Next, we recall some properties of o, (see [16]).

e Oy, is closed set,

e A1 =minoy, > 0 is simple, isolated, and has an associated eigenfunction e; that
is positive in Q,

o forall A € g, ), with A > A;, any A -eigenfunction e, is sign-changingin Q,

e if Q is a ball, then any positive (resp. negative) A;-eigenfunction is radially
symmetric and radially decreasing (resp. increasing).

In literature, when n =0 and A € (0,4;), elliptic equations of type (<)) have
been extensively studied by many authors; see for exemple [2—4, 10, 13, 18, 20,21, 25]
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and references therein. When A > A;, 1 =0 and p = 2, Servadei discussed prob-
lem (1.1) via the Linking Theorem; see [22] for more details, see also [23,24] in the
case g = 2}. The classical proof is based on the fact that each eigenvalue A,, n € N
of the fractional Laplacian (—A)* induces a suitable direct sum decomposition of the
space H('}'(Q); see ([21], section 3). These arguments do not extend to the fractional
p-Laplacian, which is a nonlinear operator and hence lacks linear eigenspaces. How-
ever, a linking argument over cones, rather than over linear subspaces, has been firstly
developed in the local case, namely s = 1, by Fan and Li (see [7]) for A nearto A; and
by Degiovanni and Lancelotti (see [5]) for any A > 0.
Later, in [14], Tannizzotto et al. considered the following problem

(=Ap)u=AlulP2u+ f(x,u) inQ,
Y (1.4)
u=0 in RV\ Q.
By the help of Morse theory and the spectral properties of the operator (—A);,, they
proved the existence of a nonzero solution for problem (1.4) for all A € R. They
treated, respectively, the cases where f is p-superlinear, p-sublinear or asymptotically
p-linear. Using the same tools, the authors in [13] extended the above results to

F ) = k(o) a2+ k() ]2+ g (x, ),

where / and k are two measurable functions belong to a class of singular weights (for
more details see [13]).

Motivated by the papers mentioned above, we aim to investigate the existence of
solutions for the problem (47, ) for any A > 0 using variational techniques and critical
point theory. To present the main findings, we introduce some notation. Let us define
the space

ey [ @) ()P )
X_{ueL(R M o ey drdy <o},

endowed with the norm

ju(x) — u(y)|

P
Jullx = el + [, T vy

We also define the space
Xy = {u € X satisfying u(x) =0 a.e. x in RN\Q},

where Q is a given domain. According to Theorem A.3 in [17], the space Xy is a
separable and reflexive Banach space, which can be equipped with the norm

|u(x) —u(y)|” >
Ju|| = (/m 7‘)6_)]‘1\,“1, dxdy)’ , Yu € Xp.

Given that Q is a bounded smooth domain, it is well-known that the embedding Xy —
LV(Q) holds continuously for v € [1, p}] and compactly for v € [1,p}), where p} =
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NNT’;F (refer to [6], Theorems 6.5, 7.1). Moreover, there exists a positive constant Cy,

such that the following inequality holds:
lulzvi@) < Cvllull,  Vu € Xo. (1.5)

DEFINITION 1.1. We say that u; € X is a weak solution of problem (%)) if
uy >0 and for any ¢ € Xp, we have

[, ) =) —))00) 000 .
R2N

jox — y[Ntsp

—)L/ P2u¢dx+/ ne d+/[3 Y12y dx

where u™ = max{u,0}.

To obtain weak solutions for problem (&7, ), we will employ variational tech-
niques. Specifically, we will seek critical points of the Euler-Lagrange functional asso-
ciated with problem (27, ), which is represented by:

F (u) = f;t(u) — /ﬂ (u)7 (1.6)
where : () o y
—— [Hx) — u\y)I” = \p
I (u) /2N ey 5P dx dy /(u )P dx,
and

In(u) = 1—5/ 15d—|—/ﬁ )9 dx.

Our main result can be summarized as follows:

THEOREM 1.2. Let Q be an open bounded subset of RN with Lipschitz boundary,
s € (0,1) with sp <N. Assume that q € (p,p}). Then, for any A >0, there exists 1y >
0 such that if n € (0,n0), problem (22;) admits a nontrivial positive weak solution
uy € Xo with ﬂ(u,l) > 0.

The rest of this paper is organized as follows. In section 2, we recall some nota-
tions, definitions and some useful lemmas. Section 3 is devoted to study the approxi-
mated problem, in section 4, we prove our main result.

2. Preliminaries

We briefly recall the definition of Z;-cohomological index by Fadell and Rabi-
nowitz [8]. For any closed, symmetric subset E of a Banach space X, let E = E/Z,
be the quotient space (in which u and —u are identified), and let ¢ : E — RP> be
the classifying map of E, which induces a homomorphism ¢* : H*(RP~) — H*(E)
of the Alexander-Spanier cohomology rings with coefficients in Z,. We may identify
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H*(RP”) with the polynomial ring Z,[w]. The cohomological index of E is defined
by

i(E)=sup{neN: ¢*(0") #0} if E#0,
0 if E=0.

Now we define the sequence (A,). For any u € Xj, define

So={ueXp: / |ul? dx = 1}.
Q

We denote by <7 the family of all nonempty, closed, symmetric subsets of Sy and for
all n € N we set
dy={M e o/ : i(M) > n},

and

- |u(x) —u(y)[”
.= inf _ . 2.1
A Mlg,o/n 32]\8~/RZN |x — y|N+.\~p dx dy 2.1

Then, A < A; < A3 <... — oo is a sequence of eigenvalues of problem (1.2), (see
([15], Proposition 2.2). For each A, , we define the following cones

e [ @) )
Cn = {MEXO. RZNW dxdyé)tn/gw\ dx}, (2.2)
" )~ uy)l”
T ) u(x) —uly p }
c _{uexo. [ ey dxdy>/ln+1/g\u| dx}. 2.3)

Now, we recall some notions on linking sets and Alexander-Spanier cohomology, re-
ferring to [5].

DEFINITION 2.1. Let D, S, A, and B be four subsets of a metric space X with
SCD and BCA. We say that (D,S) links (A,B), if SNA=BND =0 and, for
every deformation 1 : D x [0,1] — X \ B with n(S x [0,1]) N A = 0, we have that
nDx{1})NA#0.

To show the existence of critical points, we shall use the following result (see
Theorem 2.2 [5].

LEMMA 2.2. Let X be a complete Finsler manifold of class C' and let F : X —
R be a function of class C'. Let D, S, A, and B be four subsets of X, with S C D and
B C A, such that (D,S) links (A,B) and

sup.Z <inf.#, sup.Z <infF
s A D B

we agree that sup{Q} = —eco and inf{Q} = +eo. Define

c= nigg/supﬁ(n(D x{1})),
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where N is the set of deformation n : D x [0,1] — X \ B with n(S x [0,1])NA = 0.
Then, we have

inf. 7 <c<supF.
A D

Morveover, if F satisfies the Palais-Smale condition at level c, then c is a critical value
of F.

DEFINITION 2.3. Let D, S, A, and B be four subsets of X, with § C D and
B C A, let n be a nonnegative integer and let K be a field. We say that (D,S) links
(A, B) cohomologically in dimension n over K if SNA = BND = 0 and the restriction
homomorphism H"(X \ B,X \ A;K) — H"(D,S;K) is not identically zero.

LEMMA 2.4. ([11], Theorem 2.8) Let X be a real normed space and let C_
and C+ be two cones such that Cy is closed in X, C_N Cy = {0} and such that
(X,C_\{0}) links C+ cohomologically in dimension n over K. Let r_, ry >0 and
let

D_={uecC_:|jul<r-}, Di={uecCi:lul|<ri}

Then, the following assertions hold
(1) (D—,S-) links Cy cohomologically in dimension n over K,
(2) (D—-,S-) links (D+,S+) cohomologically in dimension n over K.
Moreover; let e € X with —e ¢ C_, and
M={u+te: uecC_,t>0, ||lutre| <r_},
N={u+te: ucC_,t>0, [utte]|=r_},
and assume that r— > ry. Then, the following assertions hold
(3) (M,D_UN) links S; cohomologically in dimension n+ 1 over K,
(4) D_UN links (D+,S+) cohomologically in dimension n over K.

In particular, in each (1)—(4), there is a geometry of the type described in Definition
2.1.

COROLLARY 2.5. ([5], Corollary 2.9) Let X be a real normed space and let C_
and Cy be two symmetric cones in X such that Cy is closed in X, C_NCy = {0} and
such that

(€ \{0) = i(X\C.) < =
Then the assertions (1)—(4) of Lemma 2.4 hold for n =i(C_\ {0}) and K =17,.

Going back to the definitions of C, and C,, this is the transcription of Theorem
3.2 in [5] in our situation, yielding the following result.
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LEMMA 2.6. Let n > 1 be such that A, < A,1, then we have

i(C, \{0}) =i(X\C)) =n.

Finally, in order to use Lemma 2.2, the crucial tool is

LEMMA 2.7. ([5], Proposition 2.4) If (D,S) links (A,B) cohomologically (in
some dimension), then (D,S) links (A,B).

3. Auxiliary problem

Classic variational methods cannot be applied to problem (27;) since its func-
tional .% is not C' in X, due to a singular term u — 1 (u") 9. So, to obtain a non-
trivial weak solution for problem (&7, ), we shall consider a modified problem (),

€ (0,1), which is given by

(8 u= At s 4 B in 9
(Ze) u>0 1in Q, G.D
u=0 in RV\Q.

We associate an energy functional .%, with problem (), defined as:

95(14):1/]1% dedy—%/g(zﬁ)p dx

pJrn |x—y|NFsp

—% (ut+e)'0—¢'~ dx——/ﬁ ) dx.
-0 Jo

It can be shown that .%, is of C! in Xj. Furthermore, for any u, ¢ € Xy, the derivative
of .Z; is given by:

u(x) — u(u)|P2(u(x) —u X)—
(i) = [, M=l |()C<_;|N+g>><¢<> 0D 4 ay

—)L/Q(u+)p_1(]) dx—/ u+8 +/B )l dx. (3.2

Therefore, by considering problem (&) and the associated energy functional .%, , we
can apply variational methods to find nontrivial weak solutions, which correspond to
critical points of .7, .

3.1. Compactness structure

In this subsection, we discuss the compactness structure of the functional .%; us-
ing the Palais-Smale condition. We recall that a functional .7, satisfies the Palais-
Smale condition at level ¢, € R if any sequence (u,),en C Xo satisfies

Fe(uy) — ce and F/(uy) — 0 in X5 as n — oo,

admits a convergent subsequence in Xy .
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LEMMA 3.1. (4], Lemma 2.3) The operator £ : Xo — X defined by

u(x) — u(u)|P~2(u(x) — v v(x)—v
("%p(”)'v):/w| (%) —u(u)|? |)(C_(}?|N+x1(¢y))( (x) —v(y) dx dy,

satisfies the (S+) property. That is for every sequence (up)nen such that if u, con-
verges weakly to some u in Xy and satisfies

lim (L7 (uy)-up—u) — 0,

n—-+oo

then u, converges strongly to u in Xy.

LEMMA 3.2. Assume that q € (p,p}). Then forany A >0, n >0, .Z; satisfies
the Palais-Smale condition at any level c; € R.

Proof. Let n >0, A €R, ¢, € R and let (u,),en be a sequence in X; be such
that

Fe(uy) — ce and Fl(u,) — 0 in X§, (3.3)

as n — oo, Firstly, let us show that (u,),cn is bounded in Xj. Indeed, due to the fact
that

(u+—|—8)175—8175 < (u+)176, (3.4)
we obtain
ceton(1) = Feln) = ~(FL(un) )
1 1
E S q ' _el=
; q)/QB(x)( dx 1_5/ u +e)! 5) dx

+ﬂ/(u,f+8)*5un dx

> (5 ) LB ar— s [ i)' as

_n (ui +e)” u,J[dx
P JQ
(%—é) [ oty ax—n (5 ) [0 ax
> (})—é)ﬁoluﬂﬁq(g)—n(ﬁ Il))|9 Loy
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as n — +oo. Consequently, (i, ),cn is bounded sequence in LI(Q) and ¢ > p gives
the boundedness of (i, ),cn in LP(L). As a consequence, we obtain

1 1 1 1 n _ _
= (2= V|l =A(= =) e, — /+ -5 _ 18 4

o L ) L e e AR B

—|—ﬂ (u + &) Ou, dx

qJjQ

1 1 1 1 1 1 po-1

R P_ Z_ ) ytP _ - +1-0
2( q)HM"H A<p q>|u” LP(Q) n<1_5+p>‘§2| : |u”‘LP(Q)

1 1
> (== ) lul”=Ac1 = nca,
P q

where C1,C, > 0. This latter with the fact that p < ¢ imply the boundedness of (#,),en
in Xp. Since X is reflexive space, there exists a function u € X such that, up to a
subsequence, (still denoted by (u,),en ), un — u weakly in X, strongly in L*(Q) for
any o € [1,p}), and almost everywhere in Q. Additionally, there exists 1 € L'(Q),
h > 0 such that

lun| < h, ae.in Q.
From the inequality

Uy — U =5
(u_:lwgg |u—|—h|,
n

we can apply the dominated convergence theorem to obtain

) Uy, —u
lim —— dx=0. 3.5
n—te Jo (uyf + €)% )

Furthermore, utilizing Holder’s inequality, we get
p—1

‘/Q(uf{)l’—l(un—u) dx) < (/Q‘Mp dx>T(/Q\un—u\P dx)é

-1
< |un‘€p(g) |y — u|LI’(Q)7

)/Qﬁ(x)(u,j)q*(un—u)dx‘<ﬁw(/g|un|q dx)q"l(/g|un—u|qu)‘l’

-1
< ﬁw|un\zq(g) |tn — u|9(2)-

Therefore, we obtain
lim [ ()7 (uy —u) dx=0,
n——+oo Q

lim /Qﬁ()c)(u,f)’ﬁ1 (uy, —u) dx=0.

n— oo
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This latters with equations (3.3), and (3.5), we get
on(1) = (fé(u)-u —u)
= (Z? n— ) /l/ Ny —u) dx — /7udx
(L (un " o Gt o)
/ B (x) (1) (e, — u) dx

= (L (un) - un —u) + on(1).
Since the operator .%! satisfy the (S+) propriety, it yields that u, — u strongly in Xo.
The proof of Lemma 3.2 is complete. [
3.2. Case A € (0,4;): Mountain Pass type solution

In this subsection, we show that problem (;) admits a nontrivial weak solution
for any A € (0,A;) by using the Mountain Pass Theorem of Ambrosetti-Rabinowitz

in [1]. Firstly, we start by proving the necessary geometric features of the functional
ﬁg .

LEMMA 3.3. Assume that ¢ > p and A € (0,A1). Then, there exists Uy > 0,
Pe,Ye > 0 such that for any u € (0,Uo), u € Xo N By, , it results that Fe(u) =ye > 0.

Proof. Let u € Xy. By the use of inequality (3.4) we get

1 + 1-6 _ g1-6 l/+1—5
1—6/Q(u +€) dx<1_6 (™)' 7% dx

, (3.6)

where ¢5 , = 1 5 \Q| . From this, we obtain

1 A n _ -
ﬁe(u)ZEHMHP—;\uJFIZ Q)—IT/((zﬁJrs)l O _gl=9) gx

0 Ja
L By

> (1= ) P - nes,

= e (3 (1= ) = FE2 g ) e .

CiB-
-5 _
ull! —
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Define

1 A Ci B

h; (t) = tp(— <1 - —) - iﬂ"’), t>0.
p Al q

Since A < A; and p < ¢g. Then, there exists pe € (0,1) such that

hy, (pg) = maxh;, (Z) > 0.
>0

Now, taking ||u|| = pr and 1o = %cg_Zpg‘lh;L (pe) - Then, if n < 1o, we obtain

h
Fo(uys 2P

Hence, Lemma 3.3 is proved.

LEMMA 3.4. There exists e € Xo such that ||e|| > p; and F¢(e) < Ve, where pe
and Ye are given in Lemma 3.3.

Proof. Let @ € Xy, @ >0 be such that ||@|| =1 and let { > 0. Then, we have

&’ AgP n -5 1-8
Fe(Co) =2 ol = Z ol — o [(Co+e) e dx
gq
—= | B(x)¢?dx
q Jo
% n (g =5 _s
<7(1—A|¢|Z(Q))+T<T/Q(Pl dx+ ¢! |Q\>
O [
Q

Since ¢ > p > 1 — 0, passing to the limit as { — oo, we obtain F;({Q) — —oo,
so that the assertion follows taking ¢ = {¢, with { sufficiently large. According to
Lemma 3.2, Lemma 3.3 and Lemma 3.4, the functional .%, satisfies all the assump-
tions of the Mountain Pass Theorem. Then, there exists u, € Xy a critical point of the
functional .%, such that

Fe(ue) 2 ve > 0= 7(0),

so that ug # 0.

3.3. Case A > A;: Linking type solution

Let (An)nen be the sequence of eigenvalues given in (2.1). Since this sequence is
divergent, there exists n > 1 such that A, <A < A,,;. Defining C, and C; asin (2.2)
and (2.3). It is easy to see that C, and C, are two symmetric closed cones in X with
C, NC,; = {0}. Moreover, by Lemma 2.6, it holds that

(G \{0}) =i(X\C)) =n.
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Let u € C;F . By using assertion (3.6), we have

1 A n - .
ﬁe(u)ZEHMHp—;\uJFIZ, Q)—T/((u++£)l O _gl=9) dx

0 Ja
[ By as

1 A _s Cip.
>~ (1= 7= )l = e lull '~ = == ]
p n+1 q

= e (3 (1= 2=) = 2o 7) -y 2

Here ¢5, = 7

-1
CI=8. Let hy () = t”( (1- 72 — LClpate P) 1> 0.
Since A < 4,41 and p < g, then, there exists r§ € (0,1) such that

h(r) = maxhy (1) > 0.

Now, taking ||ul| =S, no = 2c(Sq( )31, (rF). Then, if n < 1o, we obtain
h +
Fe(u) > /1(2”8):)/>0'

On the other hand, let u € C,; , e € Xo\C,, and ¢ > 0. Since A € [A,,A,41), then,
using (3.4), we obtain

1 A 1
z _ 2 r_ 2 P 1 +1q
Fe(utte) = p||u—|—teH p\u—l—te\”(g) q/gzﬁ(x)[(u—i—te) 19 dx

__n
1-6Jg

1 A 1
< ;(1—Tn)||u+tewwp—a/gﬁu)[(uwe)*]q dx

n +11-6 n 1-6
1 1 Q
+1 5/[(u+te) ] dx+l 58 |Q|
1—

B (e ] ane T (Sre))
n

+m£1_8|9‘.

(((u—l—te)Jr —1-8)175 — 8176) dx

This latter gives that . %, (u+te) — —oo as t — +oo. Hence, there exists r;, > ri such
that

weC, +[RYe|, and ||w| >r; = Ze(w)<0

Defining D_, S+, M and N as in Lemma 2.4. From Corollary 2.5, we have that
(M,D_UN) links S+ cohomologically in dimension n+ 1 over Z,. In particular,
(M,D_UN) links S+ by Lemma 2.7. In addition, .%; is bounded on M, % (u) <0
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for every u € D_UN and % (u) > o > 0 for every u € S+. By Lemma 3.2, %,
satisfies the Palais-Smale condition at any level ¢, € R. Finally, by applying Lemma
22with S=D_UN, D=M, A=S+ and B=0, .%; has a critical value c; > o,
so that there exists a critical point ue with %, (ugz) = ¢ > 0. It follows that u. is a
nontrivial weak solution of problem ().

Now, to verify the positivity of the solution u,, we replace the test function ¢ in
the equation (3.2) by u, = max{—ue,0} and using the elementary inequality

(a—b)(a —b )< —(a —b")?,
we obtain ||u, || = 0 implying that u, is a nonnegative function. By applying the
maximum principle (Proposition 2.17, [19]), we conclude that u, is a positive solution
for problem (2% ). This complete the proof. [

4. Proof of our main result

In order to finish the proof our main result, we will show that problem ()
admits a nontrivial weak solution u € Xj as a limit of solutions of problem ().

Let A >0, n€(0,1m0). Let (ug), € € (0,1), be a family of positive solutions of
problem (). Then, using the fact that (s 4 €)'~ — £!~% <ul=9 we obtain

Ce+08(1):ﬁe(ue)—l(§ (ue) ug)

(1) [t [
n/ ue+€)” ugdx
L) i [ i G
1-6
11 s

—— = /B T dx — ”<—1—6+E>/g”8 dx

1 1 1 q+8-1
>(;—5>BO| a‘Lq n(m"‘;)\g 7

Therefore, (1) is boundedin L9(Q). Since g > p, then (u,) is bounded also in LP(Q2)
and as a consequence, we obtain

cetoe(1) = Felue) - é(%i(ue) )

= (2= DYl =2 (5= D el
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1 1 1 1 1 1 pté—1
- e R 1-5
2(17 q)HlfieH A(p q>|u£|uz(g) n<1_5+q>‘§2| Iz |u£‘LP(Q)
11
> (=== uell? = ACi—nCa,
p q

for some Cj,C, > 0. This latter with the fact that p < ¢ imply the boundedness of ()
in Xy . Since X is a reflexive space, there exists u,; € Xy such that, up to a subsequence,
(still denoted by (ug)), ug — uy weakly in Xo, strongly in LY(Q), v € [1,p}), and
a.e.in Q, as € — 0T. Since

Ue

€

It follows that

Ug 1-6
7dx</u dx
/gz(ug+8)5 “af
</ lug —uy |' 0 d)c—|—/u}f‘S dx
Q Q

JARSY _ _
er’m—mm@+éﬁ5m
< [ ul7O dx+og(1)
X o A € .

That is
. Uge
lim

— __d g/ﬁLﬁd. 4.2
£—0t Q(M£+£)5 X Qul X 4.2)

Furthermore, since ﬁ converges to u/lf‘s a.e. in Q, it follows by the Fatou’s
lemma that
.. Ug 1-6
liminf 7dx>/u dx. 4.3
e—0 Jo (ue+€)° 7 Jo t (+3)

So, using (4.2) and (4.3), we deduce that

. Ug 1-8
lim ————wi:/ dx. 44
e Jo (e +€)° x= [t dx (4.4)

On the other hand, from (3.1), we have

n n

_ _ ! g1 n o

( AP)SMS _A’uﬁ + (u£+8)6 +ﬁ('x)u8 2 (ug_"_g)a 2 25 1fu8 < 17

G@szkﬁ”+afiﬁ+%d”>Aﬁ*+ﬁWd”>x+% ifue > 1.
€

Therefore, we get
s (1
(=Ap)ue =co:= mm{z—s,k +ﬁ0}.
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Now, by the use of the maximum principle (see [19], Proposition 2.17), there exist a
constant mg > 0 that is independent of € and Qy C Q such that

ug(x) = my >0, ae. xe Q. 4.5)
Now, consider ¢ € Cy’(Q) such that supp(¢) = Qo C Q. Then, from (4.5) we obtain
o

— < -, ae.in Q.
= (ue +€)° \mg’

Therefore, by the dominated convergence theorem we deduce that

lim / Lﬁ dx = 3 dx. (4.6)
e—0tJQ (ue +€) Q ”/l

Since d€Q is continuous, the space Cj'(Q) is dense in Xy (see [9], Theorem 6). Thus,
by a standard density argument, equation (4.6) holds true for any ¢ € Xp. By combining
(4.4) and (4.6) with the test function ¢ = uy; we get

. I/lg - I/ll
lim ——=dx=0. 4.7
en0+ Jo (ue +¢€)° * @7

On the other hand, by the use of Holder’s inequality, we obtain

p—1 1
‘/ ul ™ (e —uy) dx / |uel? dx ! </ |ue —uy|P dx)p
Q Q

< \Me|uz(g)\ue —uy | (@)

‘/Qﬁ(x)ug_l(ug—u,l)dx‘ <Boo</g|u£|q dx)qu(/ng—uﬂq dx)é

—1
< Boolute| 7 gy lue — al1a()

Consequently, we get

lim ué’_l(ug —uy)dx=0 (4.8)
e—0tJQ
lim / B)ul " (ug — uy )dx = 0. 4.9)
e—0"JQ

Combining equations (4.8)—(4.9) with (4.7) we get
0e(1) = (Fe(ue) - ue —uy)
:(ﬁp(ug).ug—ul)—/l/ué’_ e—uy) dx— n/
Q ue + £

— [ Bt (e —z) ax
(f (”e) Ug _”A) +08(1)

Since £} satisfies the (S+) property, we obtain ue — u; strongly in Xy as € — 0.
Thus, we get a nontrivial positive weak solution for problem (£?;) for any A > 0. The
proof of Theorem 1.2 is complete.
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