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Abstract. The purpose of the work is to investigate whether solutions exist for a certain class
of fractional non-linear equations that are non-local and feature both singular and subcritical
nonlinearities. The equation is given as follow

(P )

⎧⎪⎪⎨
⎪⎪⎩

(−p)su =  |u|p−2u+

u

+(x)|u|q−2u in ,

u > 0 in ,

u = 0 in R
N \.

Here  is a bounded domain of R
N with N � 2 and Lipschitz boundary  ,  , > 0 are

two a real parameters, (−p)s represents the fractional p -Laplacian operator with s ∈ (0,1)
and p > 1 satisfies sp < N , q ∈ (p, p�

s ) .  :  → R is a bounded function,  is a positive
real number, satisfying  ∈ (0,1) . The study makes use of variational methods to prove that
solutions exist. The author uses some abstract linking theorem based on the Z2 -cohomological
index to determine the critical points of a suitable functional that is related to the equation. The
paper shows that the equation has at least one nontrivial solution for any positive value of the
parameter  .

1. Introduction

This work is concerned with the existence of weak solutions of the following non-
local problem:

(P )

⎧⎪⎪⎨
⎪⎪⎩

(−p)su =  |u|p−2u+

u

+ (x)|u|q−2u in ,

u > 0 in ,

u = 0 in R
N \,

where  is a smooth bounded subset of R
N , N > 1, with Lipschitz boundary  ,

 , > 0 are two a real parameters,  ∈ (0,1) , q ∈ (p, p�
s ) ,  : → R is a bounded

function such that there exist 0, > 0 such that 0 �  (x) �  a.e. x ∈  . Here
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(−p)s , s ∈ (0,1) is the fractional p -Laplacian operator defined for every smooth
function  ∈C

0 (RN) by

(−p)s(x) = 2 lim
→0

∫
RN\B (x)

|(x)−(y)|p−2((x)−(y))
|x− y|N+sp dy, x ∈ R

N ,

where B(x) denotes the ball in R
N of radius  > 0 at the center x∈R

N . When p = 2,
(−)s

p reduces to the fractional Laplacian operator (−)s which (up to normalization
factors) may be defined as

(−)s(x) = −1
2

∫
RN

(x+ y)+(x− y)−2(y))
|y|N+2s dy,

for x ∈R
N (see [6] and references therein for further details on the fractional Laplacian

and on the fractional Sobolev space Hs(RN)). In this case, our problem becomes as
follows ⎧⎪⎪⎨

⎪⎪⎩
(−)su = u+


u

+ (x)|u|q−2u in ,

u > 0 in ,

u = 0 in R
N \.

(1.1)

We call that  ∈ R is an eigenvalue of (−p)s in  if the problem{
(−p)su =  |u|p−2u in ,

u = 0 in R
N \,

(1.2)

has a nontrivial weak solution. Define

s,p = { ∈ R :  is an eigenvalue}. (1.3)

The eigenvalue problem (1.2) was first introduced by Lindgren and Lindqvist in [16]
and considered by several authors afterwards, we cite for example [12, 15]. For all
 ∈ s,p , the set of  -eigenfunctions is called  -eigenspace. Clearly, s,p ⊂ R+ and
all eigenspaces are star-shaped sets, as both sides of (1.2) are (p− 1)-homogeneous.
Next, we recall some properties of s,p (see [16]).

• s,p is closed set,

• 1 = mins,p > 0 is simple, isolated, and has an associated eigenfunction e1 that
is positive in  ,

• for all  ∈ s,p with  > 1 , any  -eigenfunction e is sign-changing in  ,

• if  is a ball, then any positive (resp. negative) 1 -eigenfunction is radially
symmetric and radially decreasing (resp. increasing).

In literature, when  = 0 and  ∈ (0,1) , elliptic equations of type (P ) have
been extensively studied by many authors; see for exemple [2–4, 10, 13, 18, 20, 21, 25]
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and references therein. When  � 1 ,  = 0 and p = 2, Servadei discussed prob-
lem (1.1) via the Linking Theorem; see [22] for more details, see also [23, 24] in the
case q = 2�

s . The classical proof is based on the fact that each eigenvalue n , n ∈ N

of the fractional Laplacian (−)s induces a suitable direct sum decomposition of the
space Hs

0() ; see ([21], section 3). These arguments do not extend to the fractional
p-Laplacian, which is a nonlinear operator and hence lacks linear eigenspaces. How-
ever, a linking argument over cones, rather than over linear subspaces, has been firstly
developed in the local case, namely s = 1, by Fan and Li (see [7]) for  near to 1 and
by Degiovanni and Lancelotti (see [5]) for any  > 0.

Later, in [14], Iannizzotto et al. considered the following problem{
(−p)su =  |u|p−2u+ f (x,u) in ,
u = 0 in R

N \.
(1.4)

By the help of Morse theory and the spectral properties of the operator (−)s
p , they

proved the existence of a nonzero solution for problem (1.4) for all  ∈ R . They
treated, respectively, the cases where f is p -superlinear, p -sublinear or asymptotically
p -linear. Using the same tools, the authors in [13] extended the above results to

f (x,u) = h(x)|u|p−2u+ k(x)|u|r−2u+g(x,u),

where h and k are two measurable functions belong to a class of singular weights (for
more details see [13]).

Motivated by the papers mentioned above, we aim to investigate the existence of
solutions for the problem (P ) for any  > 0 using variational techniques and critical
point theory. To present the main findings, we introduce some notation. Let us define
the space

X =
{

u ∈ Lp(RN) |
∫

R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy < 

}
,

endowed with the norm

‖u‖X = |u|Lp(RN ) +
∫

R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy.

We also define the space

X0 =
{

u ∈ X satisfying u(x) = 0 a.e. x in R
N \

}
,

where  is a given domain. According to Theorem A.3 in [17], the space X0 is a
separable and reflexive Banach space, which can be equipped with the norm

‖u‖ =
(∫

R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy

) 1
p
, ∀u ∈ X0.

Given that  is a bounded smooth domain, it is well-known that the embedding X0 ↪→
L () holds continuously for  ∈ [1, p�

s ] and compactly for  ∈ [1, p�
s ) , where p�

s =
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Np
N−sp (refer to [6], Theorems 6.5, 7.1). Moreover, there exists a positive constant C
such that the following inequality holds:

|u|L () � C‖u‖, ∀u ∈ X0. (1.5)

DEFINITION 1.1. We say that u ∈ X0 is a weak solution of problem (P ) if
u > 0 and for any  ∈ X0 , we have

∫
R2N

|u(x)−u(u)|p−2(u(x)−u(y))((x)−(y))
|x− y|N+sp dx dy

= 
∫

(u+)p−2u dx+

∫



(u+)

dx+
∫

 (x)(u+)q−2u dx

where u+ = max{u,0} .

To obtain weak solutions for problem (P ) , we will employ variational tech-
niques. Specifically, we will seek critical points of the Euler-Lagrange functional asso-
ciated with problem (P ) , which is represented by:

F (u) = I (u)−J(u), (1.6)

where

I (u) =
1
p

∫
R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy− 

p

∫

(u+)p dx,

and

J(u) =


1− 

∫

(u+)1− dx+

1
q

∫

 (x)(u+)q dx.

Our main result can be summarized as follows:

THEOREM 1.2. Let  be an open bounded subset of R
N with Lipschitz boundary,

s∈ (0,1) with sp < N . Assume that q∈ (p, p�
s ) . Then, for any  > 0 , there exists 0 >

0 such that if  ∈ (0,0) , problem (P ) admits a nontrivial positive weak solution
u ∈ X0 with F (u ) > 0 .

The rest of this paper is organized as follows. In section 2, we recall some nota-
tions, definitions and some useful lemmas. Section 3 is devoted to study the approxi-
mated problem, in section 4, we prove our main result.

2. Preliminaries

We briefly recall the definition of Z2 -cohomological index by Fadell and Rabi-
nowitz [8]. For any closed, symmetric subset E of a Banach space X , let E = E/Z2

be the quotient space (in which u and −u are identified), and let  : E → RP be
the classifying map of E , which induces a homomorphism � : H�(RP) → H�(E)
of the Alexander-Spanier cohomology rings with coefficients in Z2 . We may identify
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H�(RP) with the polynomial ring Z2[ ] . The cohomological index of E is defined
by {

i(E) = sup{n ∈ N : �(n) �= 0} if E �= /0,
0 if E = /0.

Now we define the sequence (n) . For any u ∈ X0 , define

S0 = {u ∈ X0 :
∫

|u|p dx = 1}.

We denote by A the family of all nonempty, closed, symmetric subsets of S0 and for
all n ∈ N we set

An = {M ∈ A : i(M) � n},
and

n = inf
M∈An

sup
u∈M

∫
R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy. (2.1)

Then, 1 < 2 � 3 � . . . → + is a sequence of eigenvalues of problem (1.2), (see
([15], Proposition 2.2). For each n , we define the following cones

C−
n =

{
u ∈ X0 :

∫
R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy � n

∫

|u|p dx

}
, (2.2)

and

C+
n =

{
u ∈ X0 :

∫
R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy � n+1

∫

|u|p dx

}
. (2.3)

Now, we recall some notions on linking sets and Alexander-Spanier cohomology, re-
ferring to [5].

DEFINITION 2.1. Let D , S , A , and B be four subsets of a metric space X with
S ⊆ D and B ⊆ A . We say that (D,S) links (A,B) , if S∩A = B∩D = /0 and, for
every deformation  : D× [0,1] → X \ B with (S× [0,1])∩ A = /0 , we have that
(D×{1})∩A �= /0 .

To show the existence of critical points, we shall use the following result (see
Theorem 2.2 [5].

LEMMA 2.2. Let X be a complete Finsler manifold of class C1 and let F : X →
R be a function of class C1 . Let D, S , A, and B be four subsets of X , with S ⊆ D and
B ⊆ A, such that (D,S) links (A,B) and

sup
S

F < inf
A

F , sup
D

F < inf
B

F

we agree that sup{ /0} = − and inf{ /0} = + . Define

c = inf
∈N

supF ((D×{1})),



328 M. LOUCHAICH

where N is the set of deformation  : D× [0,1] → X \B with (S× [0,1])∩A = /0 .
Then, we have

inf
A

F � c � sup
D

F .

Moreover, if F satisfies the Palais-Smale condition at level c , then c is a critical value
of F .

DEFINITION 2.3. Let D , S , A , and B be four subsets of X , with S ⊆ D and
B ⊆ A , let n be a nonnegative integer and let K be a field. We say that (D,S) links
(A,B) cohomologically in dimension n over K if S∩A = B∩D = /0 and the restriction
homomorphism Hn(X \B,X \A;K)→ Hn(D,S;K) is not identically zero.

LEMMA 2.4. ([11], Theorem 2.8) Let X be a real normed space and let C−
and C+ be two cones such that C+ is closed in X , C− ∩ C+ = {0} and such that
(X ,C− \{0}) links C+ cohomologically in dimension n over K . Let r− , r+ > 0 and
let

D− = {u ∈C− : ‖u‖ � r−}, D+ = {u ∈C+ : ‖u‖ � r+}.
Then, the following assertions hold

(1) (D−,S−) links C+ cohomologically in dimension n over K ,

(2) (D−,S−) links (D+,S+) cohomologically in dimension n over K .

Moreover, let e ∈ X with −e /∈C− , and

M = {u+ te : u ∈C−, t � 0, ‖u+ te‖� r−},

N = {u+ te : u ∈C−, t � 0, ‖u+ te‖= r−},
and assume that r− > r+ . Then, the following assertions hold

(3) (M,D− ∪N) links S+ cohomologically in dimension n+1 over K ,

(4) D−∪N links (D+,S+) cohomologically in dimension n over K .

In particular, in each (1)–(4) , there is a geometry of the type described in Definition
2.1.

COROLLARY 2.5. ([5], Corollary 2.9) Let X be a real normed space and let C−
and C+ be two symmetric cones in X such that C+ is closed in X , C−∩C+ = {0} and
such that

i(C− \{0}) = i(X \C+) < .

Then the assertions (1)–(4) of Lemma 2.4 hold for n = i(C− \{0}) and K = Z2 .

Going back to the definitions of C−
n and C+

n , this is the transcription of Theorem
3.2 in [5] in our situation, yielding the following result.
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LEMMA 2.6. Let n � 1 be such that n < n+1 , then we have

i(C−
n \ {0}) = i(X \C+

n ) = n.

Finally, in order to use Lemma 2.2, the crucial tool is

LEMMA 2.7. ([5], Proposition 2.4) If (D,S) links (A,B) cohomologically (in
some dimension), then (D,S) links (A,B) .

3. Auxiliary problem

Classic variational methods cannot be applied to problem (P ) since its func-
tional F is not C1 in X0 due to a singular term u �→ (u+)− . So, to obtain a non-
trivial weak solution for problem (P ) , we shall consider a modified problem (P ) ,
 ∈ (0,1) , which is given by

(P )

⎧⎪⎪⎨
⎪⎪⎩

(−p)su =  |u|p−2u+


(u+ )
+ (x)|u|q−2u in ,

u > 0 in ,

u = 0 in R
N \.

(3.1)

We associate an energy functional F with problem (P ) , defined as:

F (u) =
1
p

∫
R2N

|u(x)−u(y)|p
|x− y|N+sp dx dy− 

p

∫

(u+)p dx

− 
1− 

∫

((u+ + )1− − 1− ) dx− 1

q

∫

 (x)(u+)q dx.

It can be shown that F is of C1 in X0 . Furthermore, for any u, ∈ X0 , the derivative
of F is given by:

(F ′
 (u) ·) =

∫
R2N

|u(x)−u(u)|p−2(u(x)−u(y))((x)−(y))
|x− y|N+sp dx dy

−
∫

(u+)p−1 dx−

∫



(u+ )

dx+
∫

 (x)(u+)q−1 dx. (3.2)

Therefore, by considering problem (P) and the associated energy functional F , we
can apply variational methods to find nontrivial weak solutions, which correspond to
critical points of F .

3.1. Compactness structure

In this subsection, we discuss the compactness structure of the functional F us-
ing the Palais-Smale condition. We recall that a functional F satisfies the Palais-
Smale condition at level c ∈ R if any sequence (un)n∈N ⊂ X0 satisfies

F (un) → c and F ′
 (un) → 0 in X�

0 as n → +,

admits a convergent subsequence in X0 .
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LEMMA 3.1. ([4], Lemma 2.3) The operator L p
s : X0 → X�

0 defined by

(L p
s (u) · v) =

∫
R2N

|u(x)−u(u)|p−2(u(x)− v(y))(v(x)− v(y))
|x− y|N+sp dx dy,

satisfies the (S+) property. That is for every sequence (un)n∈N such that if un con-
verges weakly to some u in X0 and satisfies

lim
n→+

(L p
s (un) ·un−u)→ 0,

then un converges strongly to u in X0 .

LEMMA 3.2. Assume that q ∈ (p, p�
s ) . Then for any  > 0 ,  > 0 , F satisfies

the Palais-Smale condition at any level c ∈ R .

Proof. Let  > 0,  ∈ R , c ∈ R and let (un)n∈N be a sequence in X0 be such
that

F(un) → c and F ′
 (un) → 0 in X�

0 , (3.3)

as n → + . Firstly, let us show that (un)n∈N is bounded in X0 . Indeed, due to the fact
that

(u+ + )1− − 1− � (u+)1− , (3.4)

we obtain

c +on(1) = F(un)− 1
p
(F ′

 (un) ·un)

=
( 1

p
− 1

q

)∫

 (x)(u+

n )q dx− 
1− 

∫

((u+

n + )1− − 1− ) dx

+

p

∫

(u+

n + )−un dx

�
( 1

p
− 1

q

)∫

 (x)(u+

n )q dx− 
1− 

∫

(u+

n )1− dx

−
p

∫

(u+

n + )−u+
n dx

�
( 1

p
− 1

q

)∫

0(u+

n )q dx−
( 1

1− 
+

1
p

)∫

(u+

n )1− dx

�
( 1

p
− 1

q

)
0|u+

n |qLq() −
( 1

1− 
+

1
p

)
|| q+−1

q |u+
n |1−Lq(),
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as n → + . Consequently, (u+
n )n∈N is bounded sequence in Lq() and q > p gives

the boundedness of (u+
n )n∈N in Lp() . As a consequence, we obtain

c +o(1) = F (un)− 1
q
(F ′

(un) ·un)

=
( 1

p
− 1

q

)
‖un‖p−

(1
p
− 1

q

)
|u+

n |pLp()−


1− 

∫

(u+

n + )1− − 1− dx

+

q

∫

(u+

n + )−un dx

�
( 1

p
− 1

q

)
‖un‖p−

(1
p
− 1

q

)
|u+

n |pLp()−
( 1

1− 
+

1
p

)
|| p+−1

p |u+
n |1−Lp()

�
( 1

p
− 1

q

)
‖un‖p−C1−C2,

where C1,C2 > 0. This latter with the fact that p < q imply the boundedness of (un)n∈N

in X0 . Since X0 is reflexive space, there exists a function u ∈ X0 such that, up to a
subsequence, (still denoted by (un)n∈N ), un → u weakly in X0 , strongly in L() for
any  ∈ [1, p�

s ) , and almost everywhere in  . Additionally, there exists h ∈ L1() ,
h > 0 such that

|un| � h, a.e. in .

From the inequality
un−u

(u+
n + )

� − |u+h|,

we can apply the dominated convergence theorem to obtain

lim
n→+

∫


un−u

(u+
n + )

dx = 0. (3.5)

Furthermore, utilizing Hölder’s inequality, we get

∣∣∣∫

(u+

n )p−1(un−u) dx
∣∣∣ �

(∫

|un|p dx

) p−1
p

(∫

|un−u|p dx

) 1
p

� |un|p−1
Lp()|un−u|Lp(),

∣∣∣∫

 (x)(u+

n )q−1(un−u)dx
∣∣∣ � 

(∫

|un|q dx

) q−1
q

(∫

|un−u|q dx

) 1
q

� |un|q−1
Lq()|un−u|Lq().

Therefore, we obtain

lim
n→+

∫

(u+

n )p−1(un−u) dx = 0,

lim
n→+

∫

 (x)(u+

n )q−1(un−u) dx = 0.
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This latters with equations (3.3), and (3.5), we get

on(1) = (F ′
 (u) ·un−u)

= (L p
s (un) ·un−u)−

∫

(u+

n )p−1(un−u) dx−
∫


un−u

(u+
n + )

dx

−
∫

 (x)(u+

n )q−1(un−u) dx

= (L p
s (un) ·un−u)+on(1).

Since the operator L p
s satisfy the (S+) propriety, it yields that un → u strongly in X0 .

The proof of Lemma 3.2 is complete. �

3.2. Case  ∈ (0,1): Mountain Pass type solution

In this subsection, we show that problem (P) admits a nontrivial weak solution
for any  ∈ (0,1) by using the Mountain Pass Theorem of Ambrosetti-Rabinowitz
in [1]. Firstly, we start by proving the necessary geometric features of the functional
F .

LEMMA 3.3. Assume that q > p and  ∈ (0,1) . Then, there exists 0 > 0 ,
 , > 0 such that for any  ∈ (0,0) , u ∈ X0∩B , it results that F(u) =  > 0 .

Proof. Let u ∈ X0 . By the use of inequality (3.4) we get

1
1− 

∫

(u+ + )1− − 1− dx � 1

1− 

∫

(u+)1− dx

� 1
1− 

|| q+−1
q |u|1−Lq()

� 1
1− 

|| q+−1
q C1−

q ‖u‖1−

= c ,q‖u‖1− , (3.6)

where c ,q =
C1−

q
1− || q+−1

q . From this, we obtain

F (u) =
1
p
‖u‖p− 

p
|u+|pLp()−


1− 

∫

((u+ + )1− − 1−) dx

− 1
q

∫

 (x)(u+)q dx

� 1
p

(
1− 

1

)
‖u‖p−c ,q‖u‖1− − Cq

q
q

‖u‖q

= ‖u‖p
( 1

p

(
1− 

1

)
− Cq

q
q

‖u‖q−p
)
−c ,q‖u‖1− .
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Define

h (t) = t p
( 1

p

(
1− 

1

)
− Cq

q
q

tq−p
)
, t � 0.

Since  < 1 and p < q . Then, there exists  ∈ (0,1) such that

h ( ) = max
t>0

h (t) > 0.

Now, taking ‖u‖ =  and 0 = 1
2c−1

 ,q
−1
 h () . Then, if  < 0 , we obtain

F(u) � h ()
2

=  > 0.

Hence, Lemma 3.3 is proved. �

LEMMA 3.4. There exists e ∈ X0 such that ‖e‖ >  and F(e) <  , where 
and  are given in Lemma 3.3.

Proof. Let  ∈ X0 ,  � 0 be such that ‖‖ = 1 and let  > 0. Then, we have

F() =
 p

p
‖‖p−  p

p
| |pLp() −


1− 

∫

(( + )1− − 1− ) dx

−  q

q

∫

 (x)q dx

�  p

p
(1− | |pLp())+


1− 

( 1−

2

∫

1− dx+ 1− ||

)

−  q

q
0

∫

q dx.

Since q > p > 1−  , passing to the limit as  → + , we obtain F () → − ,
so that the assertion follows taking e =  , with  sufficiently large. According to
Lemma 3.2, Lemma 3.3 and Lemma 3.4, the functional F satisfies all the assump-
tions of the Mountain Pass Theorem. Then, there exists u ∈ X0 a critical point of the
functional F such that

F(u) �  > 0 = F(0),

so that u �= 0.

3.3. Case  � 1 : Linking type solution

Let (n)n∈N be the sequence of eigenvalues given in (2.1). Since this sequence is
divergent, there exists n � 1 such that n �  < n+1 . Defining C−

n and C+
n as in (2.2)

and (2.3). It is easy to see that C−
n and C+

n are two symmetric closed cones in X0 with
C−

n ∩C+
n = {0} . Moreover, by Lemma 2.6, it holds that

i(C−
n \ {0}) = i(X \C+

n ) = n.
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Let u ∈C+
n . By using assertion (3.6), we have

F (u) =
1
p
‖u‖p− 

p
|u+|pLp()−


1− 

∫

((u+ + )1− − 1−) dx

− 1
q

∫

 (x)(u+)q dx

� 1
p

(
1− 

n+1

)
‖u‖p−c ,q‖u‖1− − Cq

q
q

‖u‖q

= ‖u‖p
( 1

p

(
1− 

n+1

)
− Cq

q
q

‖u‖q−p
)
−c ,q‖u‖1− .

Here c ,q = 1
1− || q+−1

q C1−
q . Let h (t) = t p

(
1
p(1− 

n+1
)− 1

qC
q
qtq−p

)
, t � 0.

Since  < n+1 and p < q , then, there exists r+
 ∈ (0,1) such that

h (r+
 ) = max

t>0
h (t) > 0.

Now, taking ‖u‖ = r+
 , 0 = 1

2c−1
 ,q(r

+
 )−1h (r+

 ) . Then, if  < 0 , we obtain

F (u) � h (r+
 )

2
=  > 0.

On the other hand, let u ∈C−
n , e ∈ X0 \C−

n and t > 0. Since  ∈ [n,n+1) , then,
using (3.4), we obtain

F (u+ te) =
1
p
‖u+ te‖p− 

p
|u+ te|pLp() −

1
q

∫

 (x)[(u+ te)+]q dx

− 
1− 

∫


(
((u+ te)+ + )1− − 1−) dx

� 1
p

(
1− 

n

)
‖u+ te‖p− 1

q

∫

 (x)[(u+ te)+]q dx

+


1− 

∫

[(u+ te)+]1− dx+


1− 

1− ||

� −tq
0

q

∫


[(u
t

+ e)+
]q

dx+
t1−

1− 

∫


((u
t

+ e
)+)1−

dx

+


1− 
1− ||.

This latter gives that F (u+ te) →− as t → + . Hence, there exists r− > r+
 such

that
w ∈C−

n +[R+e], and ‖w‖ � r− ⇒ J (w) < 0.

Defining D− , S+ , M and N as in Lemma 2.4. From Corollary 2.5, we have that
(M,D− ∪N) links S+ cohomologically in dimension n + 1 over Z2 . In particular,
(M,D− ∪N) links S+ by Lemma 2.7. In addition, F is bounded on M , F (u) � 0
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for every u ∈ D− ∪N and F (u) �  > 0 for every u ∈ S+ . By Lemma 3.2, F
satisfies the Palais-Smale condition at any level c ∈ R . Finally, by applying Lemma
2.2 with S = D− ∪N , D = M , A = S+ and B = /0 , F has a critical value c �  ,
so that there exists a critical point u with F (u) = c > 0. It follows that u is a
nontrivial weak solution of problem (P ) .

Now, to verify the positivity of the solution u , we replace the test function  in
the equation (3.2) by u− = max{−u ,0} and using the elementary inequality

(a−b)(a−−b−) � −(a−−b−)2,

we obtain ‖u− ‖ = 0 implying that u is a nonnegative function. By applying the
maximum principle (Proposition 2.17, [19]), we conclude that u is a positive solution
for problem (P ) . This complete the proof. �

4. Proof of our main result

In order to finish the proof our main result, we will show that problem (P )
admits a nontrivial weak solution u ∈ X0 as a limit of solutions of problem (P ) .

Let  > 0,  ∈ (0,0) . Let (u) ,  ∈ (0,1) , be a family of positive solutions of
problem (P) . Then, using the fact that (u + )1− − 1− � u1−

 , we obtain

c +o(1) = F(u)− 1
p
(F ′

 (u) ·u)

=
(1

p
− 1

q

)∫

 (x)uq

 dx− 
1− 

∫

((u + )1− − 1− ) dx

+

p

∫

(u + )−u dx

�
(1

p
− 1

q

)∫

 (x)uq

 dx− 
1− 

∫


u1−
 dx− 

p

∫

(u + )−u dx

�
(1

p
− 1

q

)∫

 (x)uq

 dx−
( 1

1− 
+

1
p

)∫


u1−
 dx

�
(1

p
− 1

q

)
0|u |qLq()−

( 1
1− 

+
1
p

)
|| q+−1

q |u |1−Lq().

Therefore, (u) is bounded in Lq() . Since q > p , then (u) is bounded also in Lp()
and as a consequence, we obtain

c +o(1) = F (u)− 1
q
(F ′

 (u) ·u)

=
( 1

p
− 1

q

)
‖u‖p−

(1
p
− 1

q

)
|u |pLp()

− 
1− 

∫

((u + )1− − 1−) dx+


q

∫

(u + )−u dx
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�
( 1

p
− 1

q

)
‖u‖p−

(1
p
− 1

q

)
|u |pLp()−

( 1
1− 

+
1
q

)
|| p+−1

p |u |1−Lp()

�
( 1

p
− 1

q

)
‖u‖p−C1−C2,

for some C1,C2 > 0. This latter with the fact that p < q imply the boundedness of (u)
in X0 . Since X0 is a reflexive space, there exists u ∈X0 such that, up to a subsequence,
(still denoted by (u)), u → u weakly in X0 , strongly in L () ,  ∈ [1, p�

s ) , and
a.e.in  , as  → 0+ . Since

0 � u
(u + )

� u1−
 a.e. in . (4.1)

It follows that ∫


u
(u + )

dx �
∫


u1−
 dx

�
∫

|u −u |1− dx+

∫


u1−
 dx

� || p+−1
p |u −u |1−Lp() +

∫


u1−
 dx

�
∫


u1−
 dx+o(1).

That is

lim
→0+

∫


u
(u + )

dx �
∫


u1−
 dx. (4.2)

Furthermore, since
u

(u + )
converges to u1−

 a.e. in  , it follows by the Fatou’s

lemma that

liminf
→0+

∫


u
(u + )

dx �
∫


u1−
 dx. (4.3)

So, using (4.2) and (4.3), we deduce that

lim
→0+

∫


u
(u + )

dx =
∫


u1−
 dx. (4.4)

On the other hand, from (3.1), we have

⎧⎪⎨
⎪⎩

(−p)su = up−1
 +


(u + )

+ (x)uq−1
 � 

(u + )
� 

2
if u � 1,

(−p)su = up−1
 +


(u + )

+0u
q−1
 � up−1

 + (x)uq−1
 �  +0 if u � 1.

Therefore, we get

(−p)su � c0 := min
{ 

2
, +0

}
.
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Now, by the use of the maximum principle (see [19], Proposition 2.17), there exist a
constant m0 > 0 that is independent of  and 0 ⊂ such that

u(x) � m0 > 0, a.e. x ∈0. (4.5)

Now, consider  ∈C
0 () such that supp() = 0 ⊂ . Then, from (4.5) we obtain

0 � 
(u + )

� 
m

0

, a.e. in .

Therefore, by the dominated convergence theorem we deduce that

lim
→0+

∫



(u + )

dx =
∫



u

dx. (4.6)

Since  is continuous, the space C
0 () is dense in X0 (see [9], Theorem 6). Thus,

by a standard density argument, equation (4.6) holds true for any  ∈X0 . By combining
(4.4) and (4.6) with the test function  = u we get

lim
→0+

∫


u −u
(u + )

dx = 0. (4.7)

On the other hand, by the use of Hölder’s inequality, we obtain∣∣∣∫


up−1
 (u −u )dx

∣∣∣ �
(∫


|u |p dx

) p−1
p

(∫

|u −u |p dx

) 1
p

� |u |p−1
Lp()|u −u |Lp(),

∣∣∣∫

 (x)uq−1

 (u −u )dx
∣∣∣ � 

(∫

|u |q dx

) q−1
q

(∫

|u −u |q dx

) 1
q

� |u |q−1
Lq()|u −u |Lq(),

Consequently, we get

lim
→0+

∫


up−1
 (u −u )dx = 0 (4.8)

lim
→0+

∫

 (x)uq−1

 (u −u )dx = 0. (4.9)

Combining equations (4.8)–(4.9) with (4.7) we get

o(1) = (F ′
 (u) ·u −u )

= (L p
s (u).u −u )−

∫


up−1
 (u −u ) dx−

∫


u −u
(u + )

dx

−
∫

 (x)uq−1

 (u −u ) dx

= (L p
s (u) ·u −u )+o(1).

Since L p
s satisfies the (S+) property, we obtain u → u strongly in X0 as  → 0+ .

Thus, we get a nontrivial positive weak solution for problem (P ) for any  > 0. The
proof of Theorem 1.2 is complete.
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