LINKING AND EXISTENCE RESULT FOR THE FRACTIONAL p-LAPLACIAN PROBLEMS INVOLVING SINGULAR NONLINEARITY

MOHAMED LOUCHAICH

(Communicated by R. Ashurov)

Abstract. The purpose of the work is to investigate whether solutions exist for a certain class of fractional non-linear equations that are non-local and feature both singular and subcritical nonlinearities. The equation is given as follow

$$(\mathscr{P}_{\lambda}) \ \begin{cases} (-\Delta_{p})^{s}u = \lambda |u|^{p-2}u + \frac{\eta}{u^{\delta}} + \beta(x)|u|^{q-2}u & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^{N} \backslash \Omega. \end{cases}$$

Here Ω is a bounded domain of \mathbb{R}^N with $N\geqslant 2$ and Lipschitz boundary $\partial\Omega$, $\lambda,\eta>0$ are two a real parameters, $(-\Delta_p)^s$ represents the fractional p-Laplacian operator with $s\in(0,1)$ and p>1 satisfies sp< N, $q\in(p,p_s^*)$. $\beta:\Omega\to\mathbb{R}$ is a bounded function, δ is a positive real number, satisfying $\delta\in(0,1)$. The study makes use of variational methods to prove that solutions exist. The author uses some abstract linking theorem based on the \mathscr{Z}_2 -cohomological index to determine the critical points of a suitable functional that is related to the equation. The paper shows that the equation has at least one nontrivial solution for any positive value of the parameter λ .

1. Introduction

This work is concerned with the existence of weak solutions of the following non-local problem:

$$\label{eq:lambda_equation} (\mathscr{P}_{\lambda}) \ \begin{cases} (-\Delta_p)^s u = \lambda |u|^{p-2} u + \frac{\eta}{u^{\delta}} + \beta(x) |u|^{q-2} u & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^N \setminus \Omega, \end{cases}$$

where Ω is a smooth bounded subset of \mathbb{R}^N , N > 1, with Lipschitz boundary $\partial \Omega$, $\lambda, \eta > 0$ are two a real parameters, $\delta \in (0,1)$, $q \in (p,p_s^*)$, $\beta : \Omega \to \mathbb{R}$ is a bounded function such that there exist $\beta_0, \beta_\infty > 0$ such that $\beta_0 \leq \beta(x) \leq \beta_\infty$ a.e. $x \in \Omega$. Here

Keywords and phrases: Fractional p-Laplacian, fractional Sobolev space, variational methods, linking over cones, cohomological index.

Mathematics subject classification (2020): 35D30, 35J60, 35J75, 35R11, 46E35.

 $(-\Delta_p)^s$, $s \in (0,1)$ is the fractional *p*-Laplacian operator defined for every smooth function $\varphi \in C_0^\infty(\mathbb{R}^N)$ by

$$(-\Delta_p)^s \varphi(x) = 2 \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N \setminus B_{\varepsilon}(x)} \frac{|\varphi(x) - \varphi(y)|^{p-2} (\varphi(x) - \varphi(y))}{|x - y|^{N+sp}} \, dy, \quad x \in \mathbb{R}^N,$$

where $B_{\varepsilon}(x)$ denotes the ball in \mathbb{R}^N of radius $\varepsilon > 0$ at the center $x \in \mathbb{R}^N$. When p = 2, $(-\Delta)_p^s$ reduces to the fractional Laplacian operator $(-\Delta)^s$ which (up to normalization factors) may be defined as

$$(-\Delta)^{s} \varphi(x) = -\frac{1}{2} \int_{\mathbb{R}^{N}} \frac{\varphi(x+y) + \varphi(x-y) - 2\varphi(y)}{|y|^{N+2s}} dy,$$

for $x \in \mathbb{R}^N$ (see [6] and references therein for further details on the fractional Laplacian and on the fractional Sobolev space $H^s(\mathbb{R}^N)$). In this case, our problem becomes as follows

$$\begin{cases} (-\Delta)^{s} u = \lambda u + \frac{\eta}{u^{\delta}} + \beta(x) |u|^{q-2} u & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^{N} \setminus \Omega. \end{cases}$$
 (1.1)

We call that $\lambda \in \mathbb{R}$ is an eigenvalue of $(-\Delta_p)^s$ in Ω if the problem

$$\begin{cases} (-\Delta_p)^s u = \lambda |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^N \setminus \Omega, \end{cases}$$
 (1.2)

has a nontrivial weak solution. Define

$$\sigma_{s,p} = \{ \lambda \in \mathbb{R} : \lambda \text{ is an eigenvalue} \}.$$
 (1.3)

The eigenvalue problem (1.2) was first introduced by Lindgren and Lindqvist in [16] and considered by several authors afterwards, we cite for example [12, 15]. For all $\lambda \in \sigma_{s,p}$, the set of λ -eigenfunctions is called λ -eigenspace. Clearly, $\sigma_{s,p} \subset \mathbb{R}+$ and all eigenspaces are star-shaped sets, as both sides of (1.2) are (p-1)-homogeneous. Next, we recall some properties of $\sigma_{s,p}$ (see [16]).

- $\sigma_{s,p}$ is closed set,
- $\lambda_1 = \min \sigma_{s,p} > 0$ is simple, isolated, and has an associated eigenfunction e_1 that is positive in Ω ,
- for all $\lambda \in \sigma_{s,p}$ with $\lambda > \lambda_1$, any λ -eigenfunction e_{λ} is sign-changing in Ω ,
- if Ω is a ball, then any positive (resp. negative) λ_1 -eigenfunction is radially symmetric and radially decreasing (resp. increasing).

In literature, when $\eta=0$ and $\lambda\in(0,\lambda_1)$, elliptic equations of type (\mathscr{P}_{λ}) have been extensively studied by many authors; see for exemple [2–4, 10, 13, 18, 20, 21, 25]

and references therein. When $\lambda \geqslant \lambda_1$, $\eta = 0$ and p = 2, Servadei discussed problem (1.1) via the Linking Theorem; see [22] for more details, see also [23,24] in the case $q = 2_s^*$. The classical proof is based on the fact that each eigenvalue λ_n , $n \in \mathbb{N}$ of the fractional Laplacian $(-\Delta)^s$ induces a suitable direct sum decomposition of the space $H_0^s(\Omega)$; see ([21], section 3). These arguments do not extend to the fractional p-Laplacian, which is a nonlinear operator and hence lacks linear eigenspaces. However, a linking argument over cones, rather than over linear subspaces, has been firstly developed in the local case, namely s = 1, by Fan and Li (see [7]) for λ near to λ_1 and by Degiovanni and Lancelotti (see [5]) for any $\lambda > 0$.

Later, in [14], Iannizzotto et al. considered the following problem

$$\begin{cases} (-\Delta_p)^s u = \lambda |u|^{p-2} u + f(x, u) & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^N \setminus \Omega. \end{cases}$$
 (1.4)

By the help of Morse theory and the spectral properties of the operator $(-\Delta)_p^s$, they proved the existence of a nonzero solution for problem (1.4) for all $\lambda \in \mathbb{R}$. They treated, respectively, the cases where f is p-superlinear, p-sublinear or asymptotically p-linear. Using the same tools, the authors in [13] extended the above results to

$$f(x,u) = \lambda h(x)|u|^{p-2}u + k(x)|u|^{r-2}u + g(x,u),$$

where h and k are two measurable functions belong to a class of singular weights (for more details see [13]).

Motivated by the papers mentioned above, we aim to investigate the existence of solutions for the problem (\mathscr{P}_{λ}) for any $\lambda>0$ using variational techniques and critical point theory. To present the main findings, we introduce some notation. Let us define the space

$$X = \left\{ u \in L^p(\mathbb{R}^N) \mid \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} \, dx \, dy < \infty \right\},\,$$

endowed with the norm

$$||u||_X = |u|_{L^p(\mathbb{R}^N)} + \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} dx dy.$$

We also define the space

$$X_0 = \Big\{ u \in X \text{ satisfying } u(x) = 0 \text{ a.e. } x \text{ in } \mathbb{R}^N \setminus \Omega \Big\},$$

where Ω is a given domain. According to Theorem A.3 in [17], the space X_0 is a separable and reflexive Banach space, which can be equipped with the norm

$$||u|| = \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} dx dy\right)^{\frac{1}{p}}, \ \forall u \in X_0.$$

Given that Ω is a bounded smooth domain, it is well-known that the embedding $X_0 \hookrightarrow L^{\nu}(\Omega)$ holds continuously for $\nu \in [1, p_s^{\star}]$ and compactly for $\nu \in [1, p_s^{\star}]$, where $p_s^{\star} = [1, p_s^{\star}]$

 $\frac{Np}{N-sp}$ (refer to [6], Theorems 6.5, 7.1). Moreover, there exists a positive constant C_v such that the following inequality holds:

$$|u|_{L^{\nu}(\Omega)} \leqslant C_{\nu} ||u||, \quad \forall u \in X_0. \tag{1.5}$$

DEFINITION 1.1. We say that $u_{\lambda} \in X_0$ is a weak solution of problem (\mathscr{P}_{λ}) if $u_{\lambda} > 0$ and for any $\phi \in X_0$, we have

$$\begin{split} & \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(u)|^{p-2} (u(x) - u(y)) (\phi(x) - \phi(y))}{|x - y|^{N+sp}} \, dx \, dy \\ &= \lambda \int_{\Omega} (u^+)^{p-2} u \phi \, dx + \int_{\Omega} \frac{\eta \phi}{(u^+)^{\delta}} \, dx + \int_{\Omega} \beta(x) (u^+)^{q-2} u \phi \, dx \end{split}$$

where $u^+ = \max\{u, 0\}$.

To obtain weak solutions for problem (\mathscr{P}_{λ}) , we will employ variational techniques. Specifically, we will seek critical points of the Euler-Lagrange functional associated with problem (\mathscr{P}_{λ}) , which is represented by:

$$\mathscr{F}(u) = \mathscr{I}_{\lambda}(u) - \mathscr{J}_{\eta}(u), \tag{1.6}$$

where

$$\mathscr{I}_{\lambda}(u) = \frac{1}{p} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} dx dy - \frac{\lambda}{p} \int_{\Omega} (u^+)^p dx,$$

and

$$\mathscr{J}_{\eta}(u) = \frac{\eta}{1-\delta} \int_{\Omega} (u^+)^{1-\delta} dx + \frac{1}{q} \int_{\Omega} \beta(x) (u^+)^q dx.$$

Our main result can be summarized as follows:

THEOREM 1.2. Let Ω be an open bounded subset of \mathbb{R}^N with Lipschitz boundary, $s \in (0,1)$ with sp < N. Assume that $q \in (p,p_s^*)$. Then, for any $\lambda > 0$, there exists $\eta_0 > 0$ such that if $\eta \in (0,\eta_0)$, problem (\mathscr{P}_{λ}) admits a nontrivial positive weak solution $u_{\lambda} \in X_0$ with $\mathscr{F}(u_{\lambda}) > 0$.

The rest of this paper is organized as follows. In section 2, we recall some notations, definitions and some useful lemmas. Section 3 is devoted to study the approximated problem, in section 4, we prove our main result.

2. Preliminaries

We briefly recall the definition of \mathbb{Z}_2 -cohomological index by Fadell and Rabinowitz [8]. For any closed, symmetric subset E of a Banach space X, let $\overline{E} = E/\mathbb{Z}_2$ be the quotient space (in which u and -u are identified), and let $\varphi : \overline{E} \to \mathbb{R}P^{\infty}$ be the classifying map of \overline{E} , which induces a homomorphism $\varphi^* : H^*(\mathbb{R}P^{\infty}) \to H^*(\overline{E})$ of the Alexander-Spanier cohomology rings with coefficients in \mathbb{Z}_2 . We may identify

 $H^{\star}(\mathbb{R}P^{\infty})$ with the polynomial ring $\mathbb{Z}_2[\omega]$. The cohomological index of E is defined by

$$\begin{cases} i(E) = \sup\{n \in \mathbb{N}: \ \varphi^{\star}(\omega^n) \neq 0\} \ \text{if} \ E \neq \emptyset, \\ 0 \qquad \qquad \text{if} \ E = \emptyset. \end{cases}$$

Now we define the sequence (λ_n) . For any $u \in X_0$, define

$$S_0 = \{ u \in X_0 : \int_{\Omega} |u|^p dx = 1 \}.$$

We denote by \mathscr{A} the family of all nonempty, closed, symmetric subsets of S_0 and for all $n \in \mathbb{N}$ we set

$$\mathscr{A}_n = \{ M \in \mathscr{A} : i(M) \geqslant n \},$$

and

$$\lambda_n = \inf_{M \in \mathcal{A}_n} \sup_{u \in M} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} \, dx \, dy. \tag{2.1}$$

Then, $\lambda_1 < \lambda_2 \le \lambda_3 \le \dots \to +\infty$ is a sequence of eigenvalues of problem (1.2), (see ([15], Proposition 2.2). For each λ_n , we define the following cones

$$C_n^- = \left\{ u \in X_0 : \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} \, dx \, dy \leqslant \lambda_n \int_{\Omega} |u|^p \, dx \right\},\tag{2.2}$$

and

$$C_n^+ = \left\{ u \in X_0 : \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} \, dx \, dy \geqslant \lambda_{n+1} \int_{\Omega} |u|^p \, dx \right\}. \tag{2.3}$$

Now, we recall some notions on linking sets and Alexander-Spanier cohomology, referring to [5].

DEFINITION 2.1. Let D, S, A, and B be four subsets of a metric space X with $S \subseteq D$ and $B \subseteq A$. We say that (D,S) links (A,B), if $S \cap A = B \cap D = \emptyset$ and, for every deformation $\eta : D \times [0,1] \to X \setminus B$ with $\eta(S \times [0,1]) \cap A = \emptyset$, we have that $\eta(D \times \{1\}) \cap A \neq \emptyset$.

To show the existence of critical points, we shall use the following result (see Theorem 2.2 [5].

LEMMA 2.2. Let X be a complete Finsler manifold of class C^1 and let $\mathscr{F}: X \to \mathbb{R}$ be a function of class C^1 . Let D, S, A, and B be four subsets of X, with $S \subseteq D$ and $B \subseteq A$, such that (D,S) links (A,B) and

$$\sup_{S} \mathscr{F} < \inf_{A} \mathscr{F}, \quad \sup_{D} \mathscr{F} < \inf_{B} \mathscr{F}$$

we agree that $\sup\{\emptyset\} = -\infty$ and $\inf\{\emptyset\} = +\infty$. Define

$$c = \inf_{\eta \in \mathcal{N}} \sup \mathscr{F}(\eta(D \times \{1\})),$$

where \mathcal{N} is the set of deformation $\eta: D \times [0,1] \to X \setminus B$ with $\eta(S \times [0,1]) \cap A = \emptyset$. Then, we have

$$\inf_{A} \mathscr{F} \leqslant c \leqslant \sup_{D} \mathscr{F}.$$

Moreover, if \mathscr{F} satisfies the Palais-Smale condition at level c, then c is a critical value of \mathscr{F} .

DEFINITION 2.3. Let D, S, A, and B be four subsets of X, with $S \subseteq D$ and $B \subseteq A$, let n be a nonnegative integer and let \mathbb{K} be a field. We say that (D,S) links (A,B) cohomologically in dimension n over \mathbb{K} if $S \cap A = B \cap D = \emptyset$ and the restriction homomorphism $H^n(X \setminus B, X \setminus A; \mathbb{K}) \to H^n(D,S; \mathbb{K})$ is not identically zero.

LEMMA 2.4. ([11], Theorem 2.8) Let X be a real normed space and let C_- and C_+ be two cones such that C_+ is closed in X, $C_- \cap C_+ = \{0\}$ and such that $(X,C_- \setminus \{0\})$ links C_+ cohomologically in dimension n over \mathbb{K} . Let r_- , $r_+ > 0$ and let

$$D_{-} = \{u \in C_{-} : ||u|| \leqslant r_{-}\}, \quad D_{+} = \{u \in C_{+} : ||u|| \leqslant r_{+}\}.$$

Then, the following assertions hold

- (1) (D_-, S_-) links C_+ cohomologically in dimension n over \mathbb{K} ,
- (2) (D_-, S_-) links (D_+, S_+) cohomologically in dimension n over \mathbb{K} .

Moreover, let $e \in X$ with $-e \notin C_-$, and

$$M = \{u + te : u \in C_-, t \geqslant 0, ||u + te|| \leqslant r_-\},$$

$$N = \{u + te : u \in C_-, t \geqslant 0, ||u + te|| = r_-\},\$$

and assume that $r_- > r_+$. Then, the following assertions hold

- (3) $(M, D_- \cup N)$ links S_+ cohomologically in dimension n+1 over \mathbb{K} ,
- (4) $D_- \cup N$ links (D_+, S_+) cohomologically in dimension n over \mathbb{K} .

In particular, in each (1)–(4), there is a geometry of the type described in Definition 2.1.

COROLLARY 2.5. ([5], Corollary 2.9) Let X be a real normed space and let C_- and C_+ be two symmetric cones in X such that C_+ is closed in X, $C_- \cap C_+ = \{0\}$ and such that

$$i(C_- \setminus \{0\}) = i(X \setminus C_+) < \infty.$$

Then the assertions (1)-(4) of Lemma 2.4 hold for $n = i(C_- \setminus \{0\})$ and $\mathbb{K} = \mathbb{Z}_2$.

Going back to the definitions of C_n^- and C_n^+ , this is the transcription of Theorem 3.2 in [5] in our situation, yielding the following result.

LEMMA 2.6. Let $n \ge 1$ be such that $\lambda_n < \lambda_{n+1}$, then we have

$$i(C_n^- \setminus \{0\}) = i(X \setminus C_n^+) = n.$$

Finally, in order to use Lemma 2.2, the crucial tool is

LEMMA 2.7. ([5], Proposition 2.4) If (D,S) links (A,B) cohomologically (in some dimension), then (D,S) links (A,B).

3. Auxiliary problem

Classic variational methods cannot be applied to problem (\mathscr{P}_{λ}) since its functional \mathscr{F} is not C^1 in X_0 due to a singular term $u \mapsto \eta(u^+)^{-\delta}$. So, to obtain a nontrivial weak solution for problem (\mathscr{P}_{λ}) , we shall consider a modified problem $(\mathscr{P}_{\varepsilon})$, $\varepsilon \in (0,1)$, which is given by

$$(\mathscr{P}_{\varepsilon}) \begin{cases} (-\Delta_{p})^{s} u = \lambda |u|^{p-2} u + \frac{\eta}{(u+\varepsilon)^{\delta}} + \beta(x) |u|^{q-2} u & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^{N} \setminus \Omega. \end{cases}$$

$$(3.1)$$

We associate an energy functional $\mathscr{F}_{\varepsilon}$ with problem $(\mathscr{P}_{\varepsilon})$, defined as:

$$\begin{split} \mathscr{F}_{\varepsilon}(u) &= \frac{1}{p} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} \, dx \, dy - \frac{\lambda}{p} \int_{\Omega} (u^+)^p \, dx \\ &- \frac{\eta}{1 - \delta} \int_{\Omega} ((u^+ + \varepsilon)^{1 - \delta} - \varepsilon^{1 - \delta}) \, dx - \frac{1}{q} \int_{\Omega} \beta(x) (u^+)^q \, dx. \end{split}$$

It can be shown that $\mathscr{F}_{\varepsilon}$ is of C^1 in X_0 . Furthermore, for any $u, \phi \in X_0$, the derivative of $\mathscr{F}_{\varepsilon}$ is given by:

$$(\mathscr{F}'_{\varepsilon}(u) \cdot \phi) = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(u)|^{p-2} (u(x) - u(y)) (\phi(x) - \phi(y))}{|x - y|^{N+sp}} dx dy -\lambda \int_{\Omega} (u^{+})^{p-1} \phi dx - \int_{\Omega} \frac{\eta \phi}{(u + \varepsilon)^{\delta}} dx + \int_{\Omega} \beta(x) (u^{+})^{q-1} \phi dx.$$
 (3.2)

Therefore, by considering problem $(\mathscr{P}_{\varepsilon})$ and the associated energy functional $\mathscr{F}_{\varepsilon}$, we can apply variational methods to find nontrivial weak solutions, which correspond to critical points of $\mathscr{F}_{\varepsilon}$.

3.1. Compactness structure

In this subsection, we discuss the compactness structure of the functional $\mathscr{F}_{\varepsilon}$ using the Palais-Smale condition. We recall that a functional $\mathscr{F}_{\varepsilon}$ satisfies the Palais-Smale condition at level $c_{\varepsilon} \in \mathbb{R}$ if any sequence $(u_n)_{n \in \mathbb{N}} \subset X_0$ satisfies

$$\mathscr{F}_{\varepsilon}(u_n) \to c_{\varepsilon}$$
 and $\mathscr{F}'_{\varepsilon}(u_n) \to 0$ in X_0^{\star} as $n \to +\infty$,

admits a convergent subsequence in X_0 .

LEMMA 3.1. ([4], Lemma 2.3) The operator $\mathcal{L}_s^p: X_0 \to X_0^{\star}$ defined by

$$(\mathscr{L}_{s}^{p}(u)\cdot v) = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(u)|^{p-2}(u(x) - v(y))(v(x) - v(y))}{|x - y|^{N+sp}} \, dx \, dy,$$

satisfies the (S+) property. That is for every sequence $(u_n)_{n\in\mathbb{N}}$ such that if u_n converges weakly to some u in X_0 and satisfies

$$\lim_{n\to+\infty} (\mathscr{L}_s^p(u_n)\cdot u_n-u)\to 0,$$

then u_n converges strongly to u in X_0 .

LEMMA 3.2. Assume that $q \in (p, p_s^*)$. Then for any $\lambda > 0$, $\eta > 0$, $\mathscr{F}_{\varepsilon}$ satisfies the Palais-Smale condition at any level $c_{\varepsilon} \in \mathbb{R}$.

Proof. Let $\eta > 0$, $\lambda \in \mathbb{R}$, $c_{\varepsilon} \in \mathbb{R}$ and let $(u_n)_{n \in \mathbb{N}}$ be a sequence in X_0 be such that

$$\mathscr{F}_{\varepsilon}(u_n) \to c_{\varepsilon} \text{ and } \mathscr{F}'_{\varepsilon}(u_n) \to 0 \text{ in } X_0^{\star},$$
 (3.3)

as $n \to +\infty$. Firstly, let us show that $(u_n)_{n \in \mathbb{N}}$ is bounded in X_0 . Indeed, due to the fact that

$$(u^{+} + \varepsilon)^{1-\delta} - \varepsilon^{1-\delta} \leqslant (u^{+})^{1-\delta}, \tag{3.4}$$

we obtain

$$\begin{split} c_{\varepsilon} + o_{n}(1) &= \mathscr{F}_{\varepsilon}(u_{n}) - \frac{1}{p} (\mathscr{F}'_{\varepsilon}(u_{n}) \cdot u_{n}) \\ &= \left(\frac{1}{p} - \frac{1}{q}\right) \int_{\Omega} \beta(x) (u_{n}^{+})^{q} dx - \frac{\eta}{1 - \delta} \int_{\Omega} ((u_{n}^{+} + \varepsilon)^{1 - \delta} - \varepsilon^{1 - \delta}) dx \\ &+ \frac{\eta}{p} \int_{\Omega} (u_{n}^{+} + \varepsilon)^{-\delta} u_{n} dx \\ &\geqslant \left(\frac{1}{p} - \frac{1}{q}\right) \int_{\Omega} \beta(x) (u_{n}^{+})^{q} dx - \frac{\eta}{1 - \delta} \int_{\Omega} (u_{n}^{+})^{1 - \delta} dx \\ &- \frac{\eta}{p} \int_{\Omega} (u_{n}^{+} + \varepsilon)^{-\delta} u_{n}^{+} dx \\ &\geqslant \left(\frac{1}{p} - \frac{1}{q}\right) \int_{\Omega} \beta_{0} (u_{n}^{+})^{q} dx - \eta \left(\frac{1}{1 - \delta} + \frac{1}{p}\right) \int_{\Omega} (u_{n}^{+})^{1 - \delta} dx \\ &\geqslant \left(\frac{1}{p} - \frac{1}{q}\right) \beta_{0} |u_{n}^{+}|_{L^{q}(\Omega)}^{q} - \eta \left(\frac{1}{1 - \delta} + \frac{1}{p}\right) |\Omega|^{\frac{q + \delta - 1}{q}} |u_{n}^{+}|_{L^{q}(\Omega)}^{1 - \delta}, \end{split}$$

as $n \to +\infty$. Consequently, $(u_n^+)_{n \in \mathbb{N}}$ is bounded sequence in $L^q(\Omega)$ and q > p gives the boundedness of $(u_n^+)_{n \in \mathbb{N}}$ in $L^p(\Omega)$. As a consequence, we obtain

$$c_{\varepsilon} + o(1) = \mathscr{F}_{\varepsilon}(u_{n}) - \frac{1}{q} (\mathscr{F}'_{\varepsilon}(u_{n}) \cdot u_{n})$$

$$= \left(\frac{1}{p} - \frac{1}{q}\right) \|u_{n}\|^{p} - \lambda \left(\frac{1}{p} - \frac{1}{q}\right) |u_{n}^{+}|_{L^{p}(\Omega)}^{p} - \frac{\eta}{1 - \delta} \int_{\Omega} (u_{n}^{+} + \varepsilon)^{1 - \delta} - \varepsilon^{1 - \delta} dx$$

$$+ \frac{\eta}{q} \int_{\Omega} (u_{n}^{+} + \varepsilon)^{-\delta} u_{n} dx$$

$$\geq \left(\frac{1}{p} - \frac{1}{q}\right) \|u_{n}\|^{p} - \lambda \left(\frac{1}{p} - \frac{1}{q}\right) |u_{n}^{+}|_{L^{p}(\Omega)}^{p} - \eta \left(\frac{1}{1 - \delta} + \frac{1}{p}\right) |\Omega|^{\frac{p + \delta - 1}{p}} |u_{n}^{+}|_{L^{p}(\Omega)}^{1 - \delta}$$

$$\geq \left(\frac{1}{p} - \frac{1}{q}\right) \|u_{n}\|^{p} - \lambda C_{1} - \eta C_{2},$$

where $C_1, C_2 > 0$. This latter with the fact that p < q imply the boundedness of $(u_n)_{n \in \mathbb{N}}$ in X_0 . Since X_0 is reflexive space, there exists a function $u \in X_0$ such that, up to a subsequence, (still denoted by $(u_n)_{n \in \mathbb{N}}$), $u_n \to u$ weakly in X_0 , strongly in $L^{\alpha}(\Omega)$ for any $\alpha \in [1, p_s^*)$, and almost everywhere in Ω . Additionally, there exists $h \in L^1(\Omega)$, h > 0 such that

$$|u_n| \leq h$$
, a.e. in Ω .

From the inequality

$$\frac{u_n - u}{(u_n^+ + \varepsilon)^{\delta}} \leqslant \varepsilon^{-\delta} |u + h|,$$

we can apply the dominated convergence theorem to obtain

$$\lim_{n \to +\infty} \int_{\Omega} \frac{u_n - u}{(u_n^+ + \varepsilon)^{\delta}} dx = 0.$$
 (3.5)

Furthermore, utilizing Hölder's inequality, we get

$$\left| \int_{\Omega} (u_n^+)^{p-1} (u_n - u) \, dx \right| \le \left(\int_{\Omega} |u_n|^p \, dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} |u_n - u|^p \, dx \right)^{\frac{1}{p}}$$

$$\le |u_n|_{L^p(\Omega)}^{p-1} |u_n - u|_{L^p(\Omega)},$$

$$\left| \int_{\Omega} \beta(x) (u_n^+)^{q-1} (u_n - u) dx \right| \leq \beta_{\infty} \left(\int_{\Omega} |u_n|^q dx \right)^{\frac{q-1}{q}} \left(\int_{\Omega} |u_n - u|^q dx \right)^{\frac{1}{q}}$$
$$\leq \beta_{\infty} |u_n|_{L^q(\Omega)}^{q-1} |u_n - u|_{L^q(\Omega)}.$$

Therefore, we obtain

$$\lim_{n \to +\infty} \int_{\Omega} (u_n^+)^{p-1} (u_n - u) \ dx = 0,$$

$$\lim_{n \to +\infty} \int_{\Omega} \beta(x) (u_n^+)^{q-1} (u_n - u) \ dx = 0.$$

This latters with equations (3.3), and (3.5), we get

$$\begin{split} o_n(1) &= (\mathscr{F}'_{\varepsilon}(u) \cdot u_n - u) \\ &= (\mathscr{L}^p_{s}(u_n) \cdot u_n - u) - \lambda \int_{\Omega} (u_n^+)^{p-1} (u_n - u) \, dx - \eta \int_{\Omega} \frac{u_n - u}{(u_n^+ + \varepsilon)^{\delta}} \, dx \\ &- \int_{\Omega} \beta(x) (u_n^+)^{q-1} (u_n - u) \, dx \\ &= (\mathscr{L}^p_{s}(u_n) \cdot u_n - u) + o_n(1). \end{split}$$

Since the operator \mathcal{L}_s^p satisfy the (S+) propriety, it yields that $u_n \to u$ strongly in X_0 . The proof of Lemma 3.2 is complete. \square

3.2. Case $\lambda \in (0, \lambda_1)$: Mountain Pass type solution

In this subsection, we show that problem $(\mathscr{P}_{\varepsilon})$ admits a nontrivial weak solution for any $\lambda \in (0,\lambda_1)$ by using the Mountain Pass Theorem of Ambrosetti-Rabinowitz in [1]. Firstly, we start by proving the necessary geometric features of the functional $\mathscr{F}_{\varepsilon}$.

LEMMA 3.3. Assume that q > p and $\lambda \in (0, \lambda_1)$. Then, there exists $\mu_0 > 0$, $\rho_{\varepsilon}, \gamma_{\varepsilon} > 0$ such that for any $\mu \in (0, \mu_0)$, $u \in X_0 \cap B_{\rho_{\varepsilon}}$, it results that $\mathscr{F}_{\varepsilon}(u) = \gamma_{\varepsilon} > 0$.

Proof. Let $u \in X_0$. By the use of inequality (3.4) we get

$$\frac{1}{1-\delta} \int_{\Omega} (u^{+} + \varepsilon)^{1-\delta} - \varepsilon^{1-\delta} dx \leqslant \frac{1}{1-\delta} \int_{\Omega} (u^{+})^{1-\delta} dx$$

$$\leqslant \frac{1}{1-\delta} |\Omega|^{\frac{q+\delta-1}{q}} |u|_{L^{q}(\Omega)}^{1-\delta}$$

$$\leqslant \frac{1}{1-\delta} |\Omega|^{\frac{q+\delta-1}{q}} C_{q}^{1-\delta} ||u||^{1-\delta}$$

$$= c_{\delta,q} ||u||^{1-\delta}, \tag{3.6}$$

where $c_{\delta,q}=rac{C_q^{1-\delta}}{1-\delta}|\Omega|^{rac{q+\delta-1}{q}}$. From this, we obtain

$$\begin{split} \mathscr{F}_{\varepsilon}(u) &= \frac{1}{p} \|u\|^p - \frac{\lambda}{p} |u^+|_{L^p(\Omega)}^p - \frac{\eta}{1 - \delta} \int_{\Omega} ((u^+ + \varepsilon)^{1 - \delta} - \varepsilon^{1 - \delta}) \ dx \\ &\quad - \frac{1}{q} \int_{\Omega} \beta(x) (u^+)^q \ dx \\ &\geqslant \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1} \right) \|u\|^p - \eta c_{\delta, q} \|u\|^{1 - \delta} - \frac{C_q^q \beta_{\infty}}{q} \|u\|^q \\ &= \|u\|^p \left(\frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1} \right) - \frac{C_q^q \beta_{\infty}}{q} \|u\|^{q - p} \right) - \eta c_{\delta, q} \|u\|^{1 - \delta}. \end{split}$$

Define

$$h_{\lambda}(t) = t^{p} \left(\frac{1}{p} \left(1 - \frac{\lambda}{\lambda_{1}} \right) - \frac{C_{q}^{q} \beta_{\infty}}{q} t^{q-p} \right), \ t \geqslant 0.$$

Since $\lambda < \lambda_1$ and p < q. Then, there exists $\rho_{\varepsilon} \in (0,1)$ such that

$$h_{\lambda}(\rho_{\varepsilon}) = \max_{t>0} h_{\lambda}(t) > 0.$$

Now, taking $||u|| = \rho_{\varepsilon}$ and $\eta_0 = \frac{1}{2} c_{\delta, q}^{-1} \rho_{\varepsilon}^{\delta - 1} h_{\lambda}(\rho_{\varepsilon})$. Then, if $\eta < \eta_0$, we obtain

$$\mathscr{F}_{\varepsilon}(u) \geqslant \frac{h_{\lambda}(\rho_{\varepsilon})}{2} = \gamma_{\varepsilon} > 0.$$

Hence, Lemma 3.3 is proved. \Box

LEMMA 3.4. There exists $e \in X_0$ such that $||e|| > \rho_{\lambda}$ and $\mathscr{F}_{\varepsilon}(e) < \gamma_{\varepsilon}$, where ρ_{ε} and γ_{ε} are given in Lemma 3.3.

Proof. Let $\varphi \in X_0$, $\varphi \geqslant 0$ be such that $\|\varphi\| = 1$ and let $\zeta > 0$. Then, we have

$$\begin{split} \mathscr{F}_{\varepsilon}(\zeta\varphi) &= \frac{\zeta^p}{p} \|\varphi\|^p - \frac{\lambda \, \zeta^p}{p} |\varphi|_{L^p(\Omega)}^p - \frac{\eta}{1-\delta} \int_{\Omega} ((\zeta\varphi + \varepsilon)^{1-\delta} - \varepsilon^{1-\delta}) \, dx \\ &- \frac{\zeta^q}{q} \int_{\Omega} \beta(x) \varphi^q \, dx \\ &\leq \frac{\zeta^p}{p} (1-\lambda |\varphi|_{L^p(\Omega)}^p) + \frac{\eta}{1-\delta} \left(\frac{\zeta^{1-\gamma}}{2} \int_{\Omega} \varphi^{1-\delta} \, dx + \varepsilon^{1-\delta} |\Omega| \right) \\ &- \frac{\zeta^q}{q} \beta_0 \int_{\Omega} \varphi^q \, dx. \end{split}$$

Since $q > p > 1 - \delta$, passing to the limit as $\zeta \to +\infty$, we obtain $\mathscr{F}_{\varepsilon}(\zeta \varphi) \to -\infty$, so that the assertion follows taking $e = \zeta \varphi$, with ζ sufficiently large. According to Lemma 3.2, Lemma 3.3 and Lemma 3.4, the functional $\mathscr{F}_{\varepsilon}$ satisfies all the assumptions of the Mountain Pass Theorem. Then, there exists $u_{\varepsilon} \in X_0$ a critical point of the functional $\mathscr{F}_{\varepsilon}$ such that

$$\mathscr{F}_{\varepsilon}(u_{\varepsilon}) \geqslant \gamma_{\varepsilon} > 0 = \mathscr{F}_{\varepsilon}(0),$$

so that $u_{\varepsilon} \neq 0$.

3.3. Case $\lambda \geqslant \lambda_1$: Linking type solution

Let $(\lambda_n)_{n\in\mathbb{N}}$ be the sequence of eigenvalues given in (2.1). Since this sequence is divergent, there exists $n\geqslant 1$ such that $\lambda_n\leqslant \lambda<\lambda_{n+1}$. Defining C_n^- and C_n^+ as in (2.2) and (2.3). It is easy to see that C_n^- and C_n^+ are two symmetric closed cones in X_0 with $C_n^-\cap C_n^+=\{0\}$. Moreover, by Lemma 2.6, it holds that

$$i(C_n^- \setminus \{0\}) = i(X \setminus C_n^+) = n.$$

Let $u \in C_n^+$. By using assertion (3.6), we have

$$\begin{split} \mathscr{F}_{\varepsilon}(u) &= \frac{1}{p} \|u\|^p - \frac{\lambda}{p} |u^+|_{L^p(\Omega)}^p - \frac{\eta}{1-\delta} \int_{\Omega} ((u^+ + \varepsilon)^{1-\delta} - \varepsilon^{1-\delta}) \ dx \\ &\quad - \frac{1}{q} \int_{\Omega} \beta(x) (u^+)^q \ dx \\ &\geqslant \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_{n+1}}\right) \|u\|^p - \eta c_{\delta,q} \|u\|^{1-\delta} - \frac{C_q^q \beta_{\infty}}{q} \|u\|^q \\ &= \|u\|^p \left(\frac{1}{p} \left(1 - \frac{\lambda}{\lambda_{n+1}}\right) - \frac{C_q^q \beta_{\infty}}{q} \|u\|^{q-p}\right) - \eta c_{\delta,q} \|u\|^{1-\delta}. \end{split}$$

Here $c_{\delta,q}=\frac{1}{1-\delta}|\Omega|^{\frac{q+\delta-1}{q}}C_q^{1-\delta}$. Let $h_\lambda(t)=t^p\Big(\frac{1}{p}(1-\frac{\lambda}{\lambda_{n+1}})-\frac{1}{q}C_q^q\beta_\infty t^{q-p}\Big),\ t\geqslant 0$. Since $\lambda<\lambda_{n+1}$ and p<q, then, there exists $r_\varepsilon^+\in(0,1)$ such that

$$h_{\lambda}(r_{\varepsilon}^{+}) = \max_{t>0} h_{\lambda}(t) > 0.$$

Now, taking $||u|| = r_{\varepsilon}^+$, $\eta_0 = \frac{1}{2} c_{\delta,q}^{-1}(r_{\varepsilon}^+)^{\delta-1} h_{\lambda}(r_{\varepsilon}^+)$. Then, if $\eta < \eta_0$, we obtain

$$\mathscr{F}_{\varepsilon}(u) \geqslant \frac{h_{\lambda}(r_{\varepsilon}^{+})}{2} = \gamma > 0.$$

On the other hand, let $u \in C_n^-$, $e \in X_0 \setminus C_n^-$ and t > 0. Since $\lambda \in [\lambda_n, \lambda_{n+1})$, then, using (3.4), we obtain

$$\begin{split} \mathscr{F}_{\varepsilon}(u+te) &= \frac{1}{p} \|u+te\|^p - \frac{\lambda}{p} |u+te|^p_{L^p(\Omega)} - \frac{1}{q} \int_{\Omega} \beta(x) [(u+te)^+]^q \, dx \\ &- \frac{\eta}{1-\delta} \int_{\Omega} \left(((u+te)^+ + \varepsilon)^{1-\delta} - \varepsilon^{1-\delta} \right) \, dx \\ &\leqslant \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_n} \right) \|u+te\|^p - \frac{1}{q} \int_{\Omega} \beta(x) [(u+te)^+]^q \, dx \\ &+ \frac{\eta}{1-\delta} \int_{\Omega} [(u+te)^+]^{1-\delta} \, dx + \frac{\eta}{1-\delta} \varepsilon^{1-\delta} |\Omega| \\ &\leqslant -t^q \frac{\beta_0}{q} \int_{\Omega} \left[\left(\frac{u}{t} + e \right)^+ \right]^q \, dx + \frac{\eta t^{1-\delta}}{1-\delta} \int_{\Omega} \left(\left(\frac{u}{t} + e \right)^+ \right)^{1-\delta} \, dx \\ &+ \frac{\eta}{1-\delta} \varepsilon^{1-\delta} |\Omega|. \end{split}$$

This latter gives that $\mathscr{F}_{\varepsilon}(u+te) \to -\infty$ as $t \to +\infty$. Hence, there exists $r_{\varepsilon}^- > r_{\varepsilon}^+$ such that

$$w \in C_n^- + [\mathbb{R}^+ e], \text{ and } ||w|| \geqslant r_{\varepsilon}^- \Rightarrow \mathscr{J}_{\varepsilon}(w) < 0.$$

Defining D_- , S_+ , M and N as in Lemma 2.4. From Corollary 2.5, we have that $(M, D_- \cup N)$ links S_+ cohomologically in dimension n+1 over \mathbb{Z}_2 . In particular, $(M, D_- \cup N)$ links S_+ by Lemma 2.7. In addition, $\mathscr{F}_{\varepsilon}$ is bounded on M, $\mathscr{F}_{\varepsilon}(u) \leq 0$

for every $u \in D_- \cup N$ and $\mathscr{F}_{\varepsilon}(u) \geqslant \alpha_{\varepsilon} > 0$ for every $u \in S+$. By Lemma 3.2, $\mathscr{F}_{\varepsilon}$ satisfies the Palais-Smale condition at any level $c_{\varepsilon} \in \mathbb{R}$. Finally, by applying Lemma 2.2 with $S = D_- \cup N$, D = M, A = S+ and $B = \emptyset$, $\mathscr{F}_{\varepsilon}$ has a critical value $c_{\varepsilon} \geqslant \alpha_{\varepsilon}$, so that there exists a critical point u_{ε} with $\mathscr{F}_{\varepsilon}(u_{\varepsilon}) = c_{\varepsilon} > 0$. It follows that u_{ε} is a nontrivial weak solution of problem $(\mathscr{P}_{\varepsilon})$.

Now, to verify the positivity of the solution u_{ε} , we replace the test function ϕ in the equation (3.2) by $u_{\varepsilon}^- = \max\{-u_{\varepsilon}, 0\}$ and using the elementary inequality

$$(a-b)(a^{-}-b^{-}) \leq -(a^{-}-b^{-})^{2}$$

we obtain $||u_{\varepsilon}^-|| = 0$ implying that u_{ε} is a nonnegative function. By applying the maximum principle (Proposition 2.17, [19]), we conclude that u_{ε} is a positive solution for problem $(\mathscr{P}_{\varepsilon})$. This complete the proof. \square

4. Proof of our main result

In order to finish the proof our main result, we will show that problem (\mathscr{P}_{λ}) admits a nontrivial weak solution $u \in X_0$ as a limit of solutions of problem $(\mathscr{P}_{\varepsilon})$.

Let $\lambda > 0$, $\eta \in (0, \eta_0)$. Let (u_{ε}) , $\varepsilon \in (0, 1)$, be a family of positive solutions of problem $(\mathscr{P}_{\varepsilon})$. Then, using the fact that $(u_{\varepsilon} + \varepsilon)^{1-\delta} - \varepsilon^{1-\delta} \leqslant u_{\varepsilon}^{1-\delta}$, we obtain

$$\begin{split} c_{\varepsilon} + o_{\varepsilon}(1) &= \mathscr{F}_{\varepsilon}(u_{\varepsilon}) - \frac{1}{p} (\mathscr{F}'_{\varepsilon}(u_{\varepsilon}) \cdot u_{\varepsilon}) \\ &= \left(\frac{1}{p} - \frac{1}{q}\right) \int_{\Omega} \beta(x) u_{\varepsilon}^{q} \, dx - \frac{\eta}{1 - \delta} \int_{\Omega} ((u_{\varepsilon} + \varepsilon)^{1 - \delta} - \varepsilon^{1 - \delta}) \, dx \\ &+ \frac{\eta}{p} \int_{\Omega} (u_{\varepsilon} + \varepsilon)^{-\delta} u_{\varepsilon} \, dx \\ &\geqslant \left(\frac{1}{p} - \frac{1}{q}\right) \int_{\Omega} \beta(x) u_{\varepsilon}^{q} \, dx - \frac{\eta}{1 - \delta} \int_{\Omega} u_{\varepsilon}^{1 - \delta} \, dx - \frac{\eta}{p} \int_{\Omega} (u_{\varepsilon} + \varepsilon)^{-\delta} u_{\varepsilon} \, dx \\ &\geqslant \left(\frac{1}{p} - \frac{1}{q}\right) \int_{\Omega} \beta(x) u_{\varepsilon}^{q} \, dx - \eta \left(\frac{1}{1 - \delta} + \frac{1}{p}\right) \int_{\Omega} u_{\varepsilon}^{1 - \delta} \, dx \\ &\geqslant \left(\frac{1}{p} - \frac{1}{q}\right) \beta_{0} |u_{\varepsilon}|_{L^{q}(\Omega)}^{q} - \eta \left(\frac{1}{1 - \delta} + \frac{1}{p}\right) |\Omega|^{\frac{q + \delta - 1}{q}} |u_{\varepsilon}|_{L^{q}(\Omega)}^{1 - \delta}. \end{split}$$

Therefore, (u_{ε}) is bounded in $L^{q}(\Omega)$. Since q > p, then (u_{ε}) is bounded also in $L^{p}(\Omega)$ and as a consequence, we obtain

$$c_{\varepsilon} + o_{\varepsilon}(1) = \mathscr{F}_{\varepsilon}(u_{\varepsilon}) - \frac{1}{q} (\mathscr{F}'_{\lambda}(u_{\varepsilon}) \cdot u_{\varepsilon})$$

$$= \left(\frac{1}{p} - \frac{1}{q}\right) \|u_{\varepsilon}\|^{p} - \lambda \left(\frac{1}{p} - \frac{1}{q}\right) |u_{\varepsilon}|^{p}_{L^{p}(\Omega)}$$

$$- \frac{\eta}{1 - \delta} \int_{\Omega} ((u_{\varepsilon} + \varepsilon)^{1 - \delta} - \varepsilon^{1 - \delta}) dx + \frac{\eta}{q} \int_{\Omega} (u_{\varepsilon} + \varepsilon)^{-\delta} u_{\varepsilon} dx$$

$$\geq \left(\frac{1}{p} - \frac{1}{q}\right) \|u_{\varepsilon}\|^{p} - \lambda \left(\frac{1}{p} - \frac{1}{q}\right) |u_{\varepsilon}|_{L^{p}(\Omega)}^{p} - \eta \left(\frac{1}{1 - \delta} + \frac{1}{q}\right) |\Omega|^{\frac{p + \delta - 1}{p}} |u_{\varepsilon}|_{L^{p}(\Omega)}^{1 - \delta}$$

$$\geq \left(\frac{1}{p} - \frac{1}{q}\right) \|u_{\varepsilon}\|^{p} - \lambda C_{1} - \eta C_{2},$$

for some $C_1, C_2 > 0$. This latter with the fact that p < q imply the boundedness of (u_{ε}) in X_0 . Since X_0 is a reflexive space, there exists $u_{\lambda} \in X_0$ such that, up to a subsequence, (still denoted by (u_{ε})), $u_{\varepsilon} \to u_{\lambda}$ weakly in X_0 , strongly in $L^{\nu}(\Omega)$, $\nu \in [1, p_s^{\star})$, and a.e.in Ω , as $\varepsilon \to 0^+$. Since

$$0 \leqslant \frac{u_{\varepsilon}}{(u_{\varepsilon} + \varepsilon)^{\delta}} \leqslant u_{\varepsilon}^{1-\delta} \text{ a.e. in } \Omega.$$
 (4.1)

It follows that

$$\begin{split} \int_{\Omega} \frac{u_{\varepsilon}}{(u_{\varepsilon} + \varepsilon)^{\delta}} \; dx & \leq \int_{\Omega} u_{\varepsilon}^{1 - \delta} \; dx \\ & \leq \int_{\Omega} |u_{\varepsilon} - u_{\lambda}|^{1 - \delta} \; dx + \int_{\Omega} u_{\lambda}^{1 - \delta} \; dx \\ & \leq |\Omega|^{\frac{p + \delta - 1}{p}} |u_{\varepsilon} - u_{\lambda}|_{L^{p}(\Omega)}^{1 - \delta} + \int_{\Omega} u_{\lambda}^{1 - \delta} \; dx \\ & \leq \int_{\Omega} u_{\lambda}^{1 - \delta} \; dx + o_{\varepsilon}(1). \end{split}$$

That is

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} \frac{u_{\varepsilon}}{(u_{\varepsilon} + \varepsilon)^{\delta}} \, dx \leq \int_{\Omega} u_{\lambda}^{1 - \delta} \, dx. \tag{4.2}$$

Furthermore, since $\frac{u_{\varepsilon}}{(u_{\varepsilon}+\varepsilon)^{\delta}}$ converges to $u_{\lambda}^{1-\delta}$ a.e. in Ω , it follows by the Fatou's lemma that

$$\liminf_{\varepsilon \to 0^+} \int_{\Omega} \frac{u_{\varepsilon}}{(u_{\varepsilon} + \varepsilon)^{\delta}} dx \geqslant \int_{\Omega} u_{\lambda}^{1 - \delta} dx. \tag{4.3}$$

So, using (4.2) and (4.3), we deduce that

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} \frac{u_{\varepsilon}}{(u_{\varepsilon} + \varepsilon)^{\delta}} dx = \int_{\Omega} u_{\lambda}^{1-\delta} dx. \tag{4.4}$$

On the other hand, from (3.1), we have

$$\begin{cases} (-\Delta_p)^s u_{\varepsilon} = \lambda u_{\varepsilon}^{p-1} + \frac{\eta}{(u_{\varepsilon} + \varepsilon)^{\delta}} + \beta(x) u_{\varepsilon}^{q-1} \geqslant \frac{\eta}{(u_{\varepsilon} + \varepsilon)^{\delta}} \geqslant \frac{\eta}{2^{\delta}} & \text{if } u_{\varepsilon} \leqslant 1, \\ (-\Delta_p)^s u_{\varepsilon} = \lambda u_{\varepsilon}^{p-1} + \frac{\eta}{(u_{\varepsilon} + \varepsilon)^{\delta}} + \beta_0 u_{\varepsilon}^{q-1} \geqslant \lambda u_{\varepsilon}^{p-1} + \beta(x) u_{\varepsilon}^{q-1} \geqslant \lambda + \beta_0 & \text{if } u_{\varepsilon} \geqslant 1. \end{cases}$$

Therefore, we get

$$(-\Delta_p)^s u_{\varepsilon} \geqslant c_0 := \min\left\{\frac{\eta}{2^{\delta}}, \lambda + \beta_0\right\}.$$

Now, by the use of the maximum principle (see [19], Proposition 2.17), there exist a constant $m_0 > 0$ that is independent of ε and $\Omega_0 \subset \Omega$ such that

$$u_{\varepsilon}(x) \geqslant m_0 > 0$$
, a.e. $x \in \Omega_0$. (4.5)

Now, consider $\phi \in C_0^{\infty}(\Omega)$ such that $supp(\phi) = \Omega_0 \subset \Omega$. Then, from (4.5) we obtain

$$0 \leqslant \frac{\phi}{(u_{\varepsilon} + \varepsilon)^{\delta}} \leqslant \frac{\phi}{m_0^{\delta}}, \text{ a.e. in } \Omega.$$

Therefore, by the dominated convergence theorem we deduce that

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} \frac{\phi}{(u_{\varepsilon} + \varepsilon)^{\delta}} dx = \int_{\Omega} \frac{\phi}{u_{\lambda}^{\delta}} dx. \tag{4.6}$$

Since $\partial\Omega$ is continuous, the space $C_0^{\infty}(\Omega)$ is dense in X_0 (see [9], Theorem 6). Thus, by a standard density argument, equation (4.6) holds true for any $\phi \in X_0$. By combining (4.4) and (4.6) with the test function $\phi = u_{\lambda}$ we get

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} \frac{u_{\varepsilon} - u_{\lambda}}{(u_{\varepsilon} + \varepsilon)^{\delta}} dx = 0. \tag{4.7}$$

On the other hand, by the use of Hölder's inequality, we obtain

$$\left| \int_{\Omega} u_{\varepsilon}^{p-1} (u_{\varepsilon} - u_{\lambda}) dx \right| \leq \left(\int_{\Omega} |u_{\varepsilon}|^{p} dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} |u_{\varepsilon} - u_{\lambda}|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq |u_{\varepsilon}|_{L^{p}(\Omega)}^{p-1} |u_{\varepsilon} - u_{\lambda}|_{L^{p}(\Omega)},$$

$$\left| \int_{\Omega} \beta(x) u_{\varepsilon}^{q-1} (u_{\varepsilon} - u_{\lambda}) dx \right| \leq \beta_{\infty} \left(\int_{\Omega} |u_{\varepsilon}|^{q} dx \right)^{\frac{q-1}{q}} \left(\int_{\Omega} |u_{\varepsilon} - u_{\lambda}|^{q} dx \right)^{\frac{1}{q}}$$
$$\leq \beta_{\infty} |u_{\varepsilon}|_{L^{q}(\Omega)}^{q-1} |u_{\varepsilon} - u_{\lambda}|_{L^{q}(\Omega)},$$

Consequently, we get

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} u_{\varepsilon}^{p-1} (u_{\varepsilon} - u_{\lambda}) dx = 0 \tag{4.8}$$

$$\lim_{\varepsilon \to 0^+} \int_{\Omega} \beta(x) u_{\varepsilon}^{q-1} (u_{\varepsilon} - u_{\lambda}) dx = 0.$$
 (4.9)

Combining equations (4.8)–(4.9) with (4.7) we get

$$\begin{split} o_{\varepsilon}(1) &= (\mathscr{F}'_{\varepsilon}(u_{\varepsilon}) \cdot u_{\varepsilon} - u_{\lambda}) \\ &= (\mathscr{L}^{p}_{s}(u_{\varepsilon}) \cdot u_{\varepsilon} - u_{\lambda}) - \lambda \int_{\Omega} u_{\varepsilon}^{p-1}(u_{\varepsilon} - u_{\lambda}) \, dx - \eta \int_{\Omega} \frac{u_{\varepsilon} - u_{\lambda}}{(u_{\varepsilon} + \varepsilon)^{\delta}} \, dx \\ &- \int_{\Omega} \beta(x) u_{\varepsilon}^{q-1}(u_{\varepsilon} - u_{\lambda}) \, dx \\ &= (\mathscr{L}^{p}_{s}(u_{\varepsilon}) \cdot u_{\varepsilon} - u_{\lambda}) + o_{\varepsilon}(1). \end{split}$$

Since \mathscr{L}^p_s satisfies the (S+) property, we obtain $u_{\varepsilon} \to u_{\lambda}$ strongly in X_0 as $\varepsilon \to 0^+$. Thus, we get a nontrivial positive weak solution for problem (\mathscr{P}_{λ}) for any $\lambda > 0$. The proof of Theorem 1.2 is complete.

REFERENCES

- [1] A. AMBROSETTI, P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
- [2] V. Ambrosio, Nontrivial solutions for a fractional p-Laplacian problem via Rabier Theorem, Complex Variables and Elliptic Equations 2017, 62 (6): 838–847.
- [3] G. M. BISCI, V. RADULESCU, R. SERVADEI, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 2016.
- [4] A. DAOUAS, M. LOUCHAICH, On fractional p-Laplacian type equations with general nonlinearities, Turk. J. Math. (2021) 45: 2477–2491, doi:10.3906/mat-2010-100.
- [5] M. DEGIOVANNI, S. LANCELOTTI, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 907–919.
- [6] E. DI NEZZA, G. PALATUCCI, E. VALDINOCI, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., in press, available on line at http://arxiv.org/abs/1104.4345.
- [7] X. FAN, Z. LI, Linking and existence results for perturbations of the p-Laplacian, Nonlinear Anal. 42 (2000) 1413–1420.
- [8] E. R. FADELL, P. H. RABINOWITZ, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978) 139– 174.
- [9] A. FISCELLA, R. SERVADEI AND E. VALDINOCI, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 235–253.
- [10] Y. Fu, P. Pucci, Multiplicity existence for sublinear fractional Laplacian problems, Applicable Analysis 2017, 96 (9): 1497–1508.
- [11] M. FRIGON, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations 153 (1999), no. 1, 96–120.
- [12] G. FRANZINA, G. PALATUCCI, Fractional p-eigenvalues, Riv. Mat. Univ. Parma 5 (2014).
- [13] K. HO, K. PERERA, I. SIM, M. SQUASSINA, A note on fractional p-Laplacian problems with singular weights, Journal of Fixed Point Theory and Applications 2017, 19 (1): 157–173.
- [14] A. IANNIZZOTTO, S. LIU, K. PERERA, M. SQUASSINA, Existence results for fractional p-Laplacian problems via Morse theory, Advances in Calculus of Variations 2016, 9 (2): 101–125.
- [15] A. IANNIZZOTTO, M. SQUASSINA, Weyl-type laws for fractional p-eigenvalue problems, Asymptotic Anal. 88 (2014), 233–245.
- [16] E. LINDGREN, P. LINDQVIST, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), 795–826.
- [17] P. PUCCI, M. XIANG, B. ZHANG, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Advances in Nonlinear Analysis. (2016), 5.
- [18] H. QIU, M. XIANG, Existence of solutions for fractional p-Laplacian problems via Leray-Schauder's nonlinear alternative, Boundary Value Problems 2016, 1–8.
- [19] L. SILVESTRE, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67–112.
- [20] R. SERVADEI, E. VALDINOCI, Mountain Pass solutions for non-local elliptic operators, Journal of Mathematical Analysis and Applications 2012, 389 (2): 887–898.
- [21] R. SERVADEI, E. VALDINOCI, Variational methods for non-local operators of elliptic type, Discrete and Continuous Dynamical Systems 2013, 33 (5): 2105–2137.
- [22] R. SERVADEI, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, Contemp. Math. 2013, 595: 317–40.
- [23] R. SERVADEI, *The Yamabe equation in a non-local setting*, Advances in Nonlinear Analysis, vol. 2, no. 3, 2013, pp. 235–270, https://doi.org/10.1515/anona-2013-0008.

- [24] R. SERVADEI, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43, 251–267 (2014).
- [25] B. L. ZHANQ, G. M. BISCI, R. SERVADEI, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 2015, 28: 2247–2264.

(Received January 4, 2025)

Mohamed Louchaich
High school of sciences and technology
Sousse University
4011 Hammam Sousse, Tunisia
e-mail: mohamedlouchaiech@gmail.com