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A DILUTION TEST FOR THE CONVERGENCE

OF SUBSERIES OF A MONOTONE SERIES

LASSE LESKELÄ AND MIKKO STENLUND

Abstract. Cauchy’s condensation test allows to determine the convergence of a monotone series
by looking at a weighted subseries that only involves terms of the original series indexed by the
powers of two. It is natural to ask whether the converse is also true: Is it possible to determine
the convergence of an arbitrary subseries of a monotone series by looking at a suitably weighted
version of the original series? In this note we show that the answer is affirmative and introduce
a new convergence test particularly designed for this purpose.

1. Cauchy–Schlömilch condensation test

Consider a series which is monotone in the sense that its terms satisfy a1 � a2 �
· · · � 0. Cauchy’s condensation test (e.g. [3, Theorem 2.3]) states that a monotone
series ∑n�1 an converges if and only if

∑
k�0

2ka2k = a1 +2a2 +4a4 +16a16 + · · ·

converges, thereby allowing to determine the convergence of a monotone series by only
looking at its terms indexed by the powers of two. Schlömilch’s extension (e.g. [3,
Theorem 2.4]) allows to replace the powers of two by a more general subsequence
s(1) < s(2) < s(3) < · · · of the positive integers, assuming that the forward differences

Δs(k) = s(k+1)− s(k) (1.1)

do not grow too fast. We will present a short proof of Schlömilch’s classical result, to
highlight its structural similarity to our new test in Section 2.

THEOREM 1.1. (Schlömilch) For any monotone series ∑n�1 an and subsequence
of the integers such that for some c > 0 ,

Δs(k+1)
Δs(k)

� c for all k � 1 , (1.2)

the series ∑n�1 an converges if and only if ∑k�1 as(k) Δs(k) converges.
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Proof. Because the terms of ∑n�1 an are nonincreasing, we see that

as(k+1)Δs(k) � as(k) + · · ·+as(k+1)−1 � as(k)Δs(k) (1.3)

for all k � 1. Inequalities (1.3) combined with assumption (1.2) imply that

c−1as(k+1)Δs(k+1) � as(k) + · · ·+as(k+1)−1 � as(k)Δs(k).

By summing the above display over k we now find that

c−1 ∑
k�2

as(k)Δs(k) � ∑
n�s(1)

an � ∑
k�1

as(k)Δs(k),

so that all three series above either converge or diverge together. �

2. Dilution test

The Cauchy–Schlömilch condensation test is designed for determining the con-
vergence of a monotone series by looking at a weighted subseries of the original series.
We will now reverse this line of thought and prove a converse to these results, which al-
lows to determine the convergence of a subseries of a monotone series using a weighted
version of the original series. Suitable weights can be defined in terms of the forward
differences (1.1) and the counting function

S(n) = #{k : s(k) � n}
of a sequence s(1) < s(2) < · · · . It is interesting to note that the growth condition of
the forward differences in Theorem 1.1 is not needed below. The weights Δs(S(n)) in
Theorem 2.1 measure the distance between points of the subsequence nearest to n ; see
Figure 1.
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Figure 1: The weight Δs(S(n)) .

THEOREM 2.1. For any monotone series ∑n�1 an and any infinite subsequence
of the integers, the subseries ∑k�1 as(k) converges if and only if

∑
n�s(1)

an

Δs(S(n))
< ∞. (2.1)
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Proof. The monotonicity of the series implies the validity of (1.3). After dividing
the terms in (1.3) by Δs(k) , we find that

as(k+1) �
as(k)

Δs(k)
+ · · ·+ as(k+1)−1

Δs(k)
� as(k). (2.2)

Because S(n) indexes the last member of the sequence s(1) < s(2) < · · · not exceed-
ing n , it follows that S(n) = k for all n such that s(k) � n � s(k + 1)− 1. This is
why (2.2) may be rephrased as

as(k+1) �
s(k+1)−1

∑
n=s(k)

an

Δs(S(n))
� as(k).

After summing the above display over k , we find that

∑
k�2

as(k) � ∑
n�s(1)

an

Δs(S(n))
� ∑

k�1

as(k),

which shows that all series above either converge or diverge together. �

3. Thinning out a divergent series into a convergent one

Given a divergent monotone series ∑n�1 an , one may ask whether it can be made
convergent by deleting some of its terms. If limn→∞ an > 0, this is obviously not pos-
sible, while if limn→∞ an = 0 this can always be done by selecting terms of the series
along a sparse enough subsequence. Indeed, in this case the series may even be thinned
out to sum to an arbitrary positive real number (Banerjee and Lahiri [1]).

For a divergent monotone series ∑n�1 an such that an → 0, a more specific ques-
tion is to quantify a sufficient degree or sparsity required for the thinning subsequence.
The following corollary of Theorem 2.1 presents a sufficient condition.

THEOREM 3.1. Consider a monotone divergent series ∑n�1 an such that ∑n�1 ap
n

converges for some p > 1 . A sufficient condition for the convergence of the subseries
∑k�1 as(k) is that

∑
k�1

s(k)−1/p < ∞. (3.1)

Proof. Observe that the series (2.1) in Theorem 2.1 can be written as ∑k�1 Ak ,
where

Ak =
1

Δs(k)

s(k+1)−1

∑
n=s(k)

an

is the average of the terms as(k), . . . ,as(k+1)−1 . Because all these terms are less than or
equal to the terms a1, . . . ,as(k) , we see that Ak is bounded from above by the average

Bk =
1

s(k)

s(k)

∑
n=1

an.
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Jensen’s inequality implies that

Bp
k � 1

s(k)

s(k)

∑
n=1

ap
n � 1

s(k)

∞

∑
n=1

ap
n ,

so that

∑
n�s(1)

an

Δs(S(n))
= ∑

k�1

Ak � ∑
k�1

Bk �
(

∞

∑
n=1

ap
n

)1/p

∑
k�1

s(k)−1/p.

The now claim follows as a consequence of Theorem 2.1. �

4. Sparse subseries of the harmonic series

This section illustrates how Theorem 3.1 can be applied to find convergent sub-
series of the harmonic series, the archetype of a divergent series (see [3, Section 3]
for a lively discussion). Kempner [5] has shown that, rather surprisingly, we obtain a
convergent series by deleting from the harmonic series all terms whose decimal rep-
resentation contains the digit ‘9’ (see [6] and references therein for refinements). The
following corollary of Theorem 3.1 shows that the harmonic series converges over any
polynomially sparse subsequence. A subsequence of the integers is called polynomi-
ally sparse if its density among the first n positive integers decreases fast enough as n
grows, according to

S(n)/n � cn−α (4.1)

for some c > 0 and α ∈ (0,1) . A simple counting argument (e.g. Behforooz [2]) may
be used to verify that Kempner’s no-‘9’ fulfills (4.1) with c = 10 and α = 1− log9

log10 .

THEOREM 4.1. The harmonic series ∑n�1
1
n converges over any polynomially

sparse subsequence.

Proof. Fix an integer k � 1, and let c and α be such that (4.1) holds for all n .
The definition of the counting function implies that s(k) � n + 1 for all integers n
such that S(n) < k , and in particular for all integers n such that n < (k/c)β , where
β = 1/(1−α) . By letting n be the largest integer strictly less than (k/c)β , we see that
s(k) � (k/c)β . Therefore, condition (3.1) of Theorem 3.1 is valid for any p ∈ (1,β ) .
The claim now follows by Theorem 3.1, because ∑n�1 n−p converges for p > 1. �

Note that in general, the harmonic series may diverge over a subsequence which is
sparse (in the sense that S(n)/n→ 0) but not polynomially sparse. A classical example
is the harmonic series over the prime numbers, which diverges (e.g. [4, Sec. 2.6]),
whereas the density of the prime numbers decreases to zero according to S(n)/n ∼
(logn)−1 (e.g. [4, Sec. 1.8]).
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5. Concluding remark

Many nonmonotone series ∑n�1 an encountered in applications admit a monotone
majorant ∑n�1 bn . In this case, the dilution test can be applied to subseries of the majo-
rant series; if ∑k�1 bs(k) converges, then so does the corresponding subseries ∑k�1 as(k)
of the original nonmonotone series.
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