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GENERALIZED STIELTJES FUNCTIONS AND THEIR EXACT ORDER

D. KARP AND E. PRILEPKINA

Abstract. The paper surveys the basic properties of generalized Stieltjes functions including
some new ones. We introduce the notion of the exact Stieltjes order and give a criterion of
exactness along with simple sufficient conditions and some prototypical examples. The paper
includes an appendix, where we define the left sided Riemann-Liouville and the right sided
Kober-Erdélyi fractional integrals of measures supported on half axis and give inversion formulas
for them.

1. Introduction

The generalized Stieltjes transform of a non-negative measure μ supported on
[0,∞) is defined by ∫

[0,∞)

μ(du)
(u+ z)α ,

where α > 0 and we always choose the branch of the power function which is positive
on the positive half-axis. The measure is assumed to produce a convergent integral for
each z ∈ C\(−∞,0] thus generating a function holomorphic in C\(−∞,−r] , where
r = inf{x : x ∈ supp(μ)} . Functions representable by the above integral plus a non-
negative constant are known as generalized Stieltjes functions [31, 33], [36, Section 8],
[35, Chapter VIII].

The case α = 1 has been thoroughly studied by many authors beginning with the
classical work of Stieltjes [32] followed by Krein (see [19] and references therein),
Widder [36, 35], Hirsch [11], Berg [3] and many others. Among the most important
tools facilitating such study are the complex inversion formula due to Stieltjes [32, 35],
the complex variable characterization found by Krein (see Theorem 13 below) and the
real inversion formulas of Widder [36, 35]. When the measure μ has compact support,
the Stieltjes functions are also known as Markov functions studied by Chebyshev and
Markov in connection with continued fractions. The deep connection of the Stieltjes
and Markov functions with continued fractions and Padé approximation is investigated
in the monographs [2, 8]. See also the survey paper [10]. Connection with Bernstein
functions and various other similar classes can be found in the carefully written recent
monograph [29].
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For general α > 0 much less is known. A complex inversion formula in this case
has been found by Sumner [33] and later rediscovered by Schwarz [30]. It was amended
by several other complex inversion formulas by Byrne and Love in [6]. These authors
also found several real inversion formulas in [21, 22]. A simple real variable characteri-
zation has been discovered recently by Sokal [31] generalizing the corresponding result
of Widder. The asymptotic expansion of generalized Stieltjes transforms of slowly
decaying functions has been studied by López and Ferreira in [20], factorization as it-
erative Laplace transforms - by Yürekli [37], closely related classes on half plane have
been investigated by Jerbashian [13]. An interesting connection to entire functions has
been discovered in a recent work of Pedersen [24].

In this paper we collect a number of facts about generalized Stieltjes functions.
Most of them are scattered in the literature, those we could not find are furnished with
detailed proofs. Some of them may be new. In the last section we introduce the notion
of the exact Stieltjes order, which is the ”natural” exponent defined for each generalized
Stieltjes function. We give a criterion of exactness and its two practical corollaries. We
also added an appendix, where we define the left sided Riemann-Liouville and the
right sided Kober-Erdélyi fractional integrals of measures supported on [0,∞] (the one
point compactification of [0,∞) - see details below) and give inversion formulas for
them. Our study of the generalized Stieltjes transforms carried out in this paper has
been largely motivated by the applications to the theory of hypergeometric functions
presented in our recent work [15]. See [14] for an extended version of this paper.

2. Definition and real variable properties

Define Sα , α > 0, to be the class of functions representable by the integral

f (z) =
∫

(0,∞)

μα(du)
(u+ z)α + μ∞ +

μ0

zα , (1)

where 0 � μ0,μ∞ < ∞ and μα runs over the set of non-negative measures supported
on [0,∞) such that ∫

[0,∞)

μα(dt)
(1+ t)α < ∞. (2)

This condition guarantees the finiteness of the integral (1) for all z ∈ C\(−∞,0] . The
classical Stieltjes cone S corresponds to the case α = 1, i.e. S = S1 , see [3, formula
(1)], [31, formula (2)] or [29, formula (2.1)].

If we define [0,∞] to be the one point compactification of [0,∞) formula (1) may
be rewritten as

f (z) =
∫

[0,∞]

(
u+1
u+ z

)α
μ̃α(du), (3)

where

μ̃α =
μα(du)
(1+u)α + μ0δ0 + μ∞δ∞,
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is a finite measure on the compact interval [0,∞] . Here δa stands for the Dirac measure
with mass 1 concentrated in a . This explains the notation μ∞ for the non-negative
constant in (1). The set of measures supported on [0,∞] and satisfying (2) will be de-
noted by Mα . The majority of references on the classical and generalized Stieltjes
functions use formula (1) (or its particular case α = 1) to define them. See, for in-
stance, [3, 11, 6, 21, 22, 29, 31, 35, 37]. However, the literature on Padé approximation
frequently defines the Stieltjes functions by α = 1 case of the following formula

f (z) =
∫

(0,∞)

ρα(dt)
(1+ tz)α + ρ0 +

ρ∞

zα . (4)

Define the map Nα on Mα by

[Nα μ ](A) :=
∫

1/A

t−α μ(dt) =
∫
A

uα μ∗(du) for each Borel set A ⊂ (0,∞), (5)

where μ∗ is the image measure of μ under the map t → 1/t and by definition [Nα μ ]({∞})=
μ({0}) , [Nα μ ]({0}) = μ({∞}) . The following lemma shows that (1) and (4) define
the same class of functions.

LEMMA 1. Suppose f ∈ Sα . Then there exists a non-negative measure ρα satis-
fying ∫

[0,∞)

ρα(dt)
(1+ t)α < ∞ (6)

such that (4) holds and ρα = Nα μα .

Proof. Just make the change variable t = 1/u in (1) and (2). �

It is also easy to verify that Nα is an involution on Mα : NαNα μ = μ for each
μ ∈ Mα . Definition (4) is a natural extension of the definition of Stieltjes functions
used in [2, formula(5.1)] and [10, formula (1)]. In some situations this representation
leads to simpler expressions for hypergeometric functions. We will work with both
representations (1) and (4). If we define the finite measure

ρ̃α =
ρα(du)
(1+u)α + ρ0δ0 + ρ∞δ∞

on the compact interval [0,∞] , then ρ̃α and μ̃α from (3) are related by ρ̃α(A) =
μ̃α(1/A) for each Borel set A ⊂ [0,∞] .

We will denote by Fμ : [0,∞)→ [0,∞) the left-continuous distribution function of
the measure μ ∈ Mα : Fμ(x) = μ([0,x)) normalized by Fμ(0) = 0.

The Stieltjes cone S possesses a number of nice stability properties which can be
found in [3]. The majority of these properties do not carry over to Sα , α �= 1. On the
other hand, here we have some new effects related to transition from Sα to Sβ , β �= α
and certain stability properties of the class S∞ :=∪α>0Sα . Below we list the basic facts
about these classes.
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THEOREM 1. If f ∈ Sα then g(z) := z−α f (1/z) also belongs to Sα and their
representing measures are related by μg = Nα μ f .

Proof. Indeed, using definition (4) we get:

z−α f (1/z) = z−α
∫

(0,∞)

zα ρα(dt)
(z+ t)α + z−αρ0 + ρ∞ =

∫
(0,∞)

ρα(dt)
(z+ t)α + z−α ρ0 + ρ∞

which is precisely the representation (1). Since ρα ∈ Mα is arbitrary, the claim fol-
lows. �

The next important result is due to Sokal [31]:

THEOREM 2. (Sokal, [31]) A function f defined on (0,∞) has holomorphic ex-
tension f ∈ Sα if and only if

Fα
n,k(x) := (−1)nDk(xn+k+α−1Dn f (x)) � 0 (7)

for all integers n,k � 0 and all x > 0 . Here D = d/dx .

REMARK 1. Differentiating (1) under the integral sign we see that f ∈ Sα implies
− f ′ ∈ Sα+1 , so that (−1)n f (n) ∈ S∞ for all integers n � 0 once f ∈ S∞ .

THEOREM 3. If α < β then Sα ⊂ Sβ . Moreover, each f ∈ Sα defined by (1) can
be written as

f (z) =
∫

(0,∞)

μβ (dy)
(y+ z)β + μ∞, (8)

where μβ ∈ Mβ and

μβ (dy) =
Γ(β )dy

Γ(α)Γ(β −α)

∫
[0,y)

μα(du)
(y−u)α+1−β . (9)

Conversely, given μβ ∈ Mβ which represents f ∈ Sα we can recover μα from

Fμα (y) =
Γ(α)

Γ(β )Γ(α −β +n+1)

(
d
dy

)n ∫
[0,y)

μβ (du)
(y−u)β−α−n

(10)

with n = [β −α] and μα({∞}) = μβ ({∞}) .

REMARK 2. The inclusion Sα ⊂ Sβ has also been given in [31]. Formula (9)
generalizes [35, Chapter VIII, Corollary 3a.1, p.330] which in our notation connects
the measures μ1 and μ2 . The transformation μα → μβ defined in (9) is the left-
sided Riemann-Liouville fractional integral. Its precise definition and inversion are
investigated in the Appendix.
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Proof. Since

1
(u+ z)α =

Γ(β )
Γ(α)Γ(β −α)

∫
(0,∞)

tβ−α−1dt

(z+u+ t)β , (11)

we have ∫
[0,∞)

μα(du)
(u+ z)α =

Γ(β )
Γ(α)Γ(β −α)

∫
[0,∞)

μα(du)
∫

(0,∞)

tβ−α−1dt

(z+u+ t)β

∣∣∣∣
y=u+t

=
Γ(β )

Γ(α)Γ(β −α)

∫
[0,∞)

μα(du)
∫

(u,∞)

(y−u)β−α−1dy

(z+ y)β

=
Γ(β )

Γ(α)Γ(β −α)

∫
(0,∞)

dy

(z+ y)β

∫
[0,y)

(y−u)β−α−1μα(du)

=
∫

[0,∞)

μβ (dy)
(z+ y)β , (12)

where μβ (dy) is defined by (9). Also setting z = 1 we see by Tonelli’s theorem and
condition (2) that the measure μβ belongs to Mβ . One can check that μβ ({0}) = 0
regardless of μα({0}) by computing the limit limy→0 Fμβ (y) = 0. This allows us to
remove zero from the domain of integration in (8). This proves (8) and the inclusion
Sα ⊂ Sβ .

The proof of (10) is similar to the standard proof of the inversion formula for the
Riemann-Liouville fractional integral [27, Theorem 2.4]. Denote η = β −α , n = [η ] ,
and substitute (9) into the integral on the right hand side of (10):∫

[0,y)

μβ (du)
(y−u)η−n =

1
Γ(η)

∫
[0,y)

du
(y−u)η−n

∫
[0,u)

μα(dt)
(u− t)1−η

=
1

Γ(η)

∫
[0,y)

μα(dt)
∫

(t,yh)

du
(u− t)1−η(y−u)η−n

=
Γ(1−η +n)

n!

∫
[0,y)

(y− t)nμα(dt)

= Γ(1−η +n)
∫

[0,y)

dt1

∫
[0,t1)

dt2 · · ·
∫

[0,tn−1)

Fμα (tn)dtn.

Since Fμα (tn) is non-decreasing it is locally Lebesgue integrable which implies that
the function on the right belongs to ACn[0,R] (the function and n−1 its derivative are
absolutely continuous) for any R > 0. Hence, we can recover Fμα by n -fold differen-
tiation yielding (10). �
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THEOREM 4. Each f ∈ Sα defined by (4) can also be written as

f (z) =
∫

(0,∞)

ρβ (dx)
(1+ xz)β + ρ0,

where ρβ ∈ Mβ and

ρβ (dx) =
Γ(β )xα−1dx

Γ(α)Γ(β −α)

{ ∫
(x,∞)

u1−β ρα(du)
(u− x)α−β+1

+ ρ∞

}
. (13)

Conversely, given ρβ ∈ Mβ which represents f ∈ Sα we can recover ρα from

Fρα (y) = ρ0 +
Γ(α)

Γ(β )Γ(α −β +n+1)
×{

α
∫

(0,y)

xα−1dx

(
−x2 d

dx

)n

xβ−α−n
∫

(x,∞)

ρβ (ds)
sα+n(s− x)β−α−n

− yα
(
−y2 d

dy

)n

yβ−α−n
∫

(y,∞)

ρβ (ds)
sα+n(s− y)β−α−n

}
(14)

with n = [β −α] and ρα({∞}) = [Γ(β −α)Γ(α +1)/Γ(β )] lim
y→∞

y−αFρβ (y) .

REMARK 3. The transformation ρα → ρβ defined in (13) is the right-sided Kober-
Erdélyi fractional integral. Its precise definition and inversion are investigated in the
Appendix.

Proof. To demonstrate (13) we employ the connection formula ρ∗
β (dy)= y−β μβ (dy) ,

where ρ∗
β is the image of ρβ under y→ y−1 . We have (A = Γ(β )/[Γ(α)Γ(β −α)] for

brevity)

yβ ρ∗
β (dy) = μβ (dy) = Ady

∫
(0,y)

μα(du)
(y−u)α+1−β + μ0Ayβ−α−1dy

= Ady
∫

(1/y,∞)

tα+1−β μ∗
α(dt)

(yt −1)α+1−β +Aρ∞yβ−α−1dy

= Ayβ−α−1dy
∫

(1/y,∞)

t1−β ρα(dt)
(t −1/y)α+1−β +Aρ∞yβ−α−1dy.

Dividing by yβ and making substitution y = 1/x , dy = −dx/x2 we arrive at (13). The
inversion formula (14) is Theorem A2 in the Appendix. �

The following result is also due to Sokal [31, formulas (10a) and (10b)].
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THEOREM 5.
⋂

α>0 Sα = {non-negative constants} .

This result suggests the following definition:

S0 := {non-negative constants}.

Recall that a function f : (0,∞) → R is said to be completely monotonic if f has
derivatives of all orders and satisfies (−1)n f (n)(x) � 0, for all x > 0 and n = 0,1, . . .
We denote the set of completely monotonic functions by CM . The following result
was pointed out to us by Christian Berg and is also hinted at in [31].

THEOREM 6. S∞ = CM , where the closure is taken with respect to pointwise
convergence on (0,∞) .

Proof. The inclusion S∞ ⊂ CM follows from the fact that each f ∈ ⋃α>0 Sα
is completely monotonic combined with closedness of CM under pointwise con-
vergence [29, Corollary 1.6]. To prove the reverse inclusion recall that according to
Bernstein’s theorem (see [35, Chapter IV, Theorem 12b] or [29, Theorem 1.4]) each
completely monotonic function is the Laplace transform of a nonnegative measure:

f (x) = L (σ ;x) :=
∫

[0,∞)

e−xtσ(dt). (15)

Since f (x) is non-increasing the sequence f (1/n) is non-decreasing. Hence, two cases
are possible: 1) f (1/n) is bounded by a constant or 2) limn→∞ f (1/n) = +∞ . De-
fine an :=

√
n in the first case and an := f (1/n) in the second. Define the following

sequence of functions:

fn(x) =
∫

[0,∞)

(
1+

xt
a2

n

)−a2
n

e−
t
n σ(dt).

Obviously,

fn(x) �
∫

[0,∞)

e−
t
n σ(dt) = f (1/n),

so that the integral defining fn(x) exists. Moreover,

fn(x) =
∫

[0,∞)

σn(du)
(1+ xu)a2

n
,

where σn(du) = a2
ne

−a2
nu

n σ(du) . Clearly, fn ∈⋃α>0 Sα . Next, we have

fn(x)− f (x) =
∫

[0,∞)

((
1+

xt
a2

n

)−a2
n

− e−xt

)
e−

t
n σ(dt)+ f (x+1/n)− f (x). (16)
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It is verified by straightforward calculus that∣∣∣∣∣
(

1+
xt
a2

n

)−a2
n

− e−xt

∣∣∣∣∣� e−1

a2
n

.

It follows from (16) that

| fn(x)− f (x)| � e−1

a2
n

f (1/n)+ | f (x+1/n)− f (x)|.

Due to the definition of an and continuity of f (x) we conclude that limn→∞ fn(x) =
f (x) for each x > 0. �

REMARK 4. The anonymous referee suggested another proof of the above theorem
which goes as follows. We may assume that the measure σ in (15) has no atom at zero.
Then f is a pointwise limit of

fR(x) =
∫ R

1/R
e−xtσ(dt)

as R → ∞ . Each fR(x) is, in turn, the limit of

fR,n(x) :=
∫ R

1/R

(
1+

xt
n

)−n
σ(dt)

as n→∞ by monotone convergence theorem (since x log(1+1/x) is increasing). Since
fR,n(x) ∈ Sn , we conclude that f (x) ∈ S∞ . Adding an atom at zero to σ is equivalent
to adding a positive constant to f and does not alter the proof.

THEOREM 7. If f ∈ Sα and g ∈ Sβ then f g ∈ Sα+β .

Proof. See [12, Chapter VII, paragraph 7.4].

REMARK 5. Theorems 3 and 7 show that the union S∞ is a cone with multiplica-
tion: if f ,g ∈ S∞ then a f +bg∈ S∞ , for all a,b � 0 and f g ∈ S∞ .

THEOREM 8. Each

f (z) =
∫

[0,∞)

μα(du)
(u+ z)α + μ∞ ∈ Sα

can be represented in the form

f (z) =
1

Γ(α)
L (uα−1L (μα ;u)du;z)+ μ∞, (17)

where L denotes the Laplace transform.
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Proof. Write
1

(u+ z)α =
1

Γ(α)

∫
[0,∞)

e−(u+z)ttα−1dt

and apply Tonelli’s theorem to show that the iterated integral in (17) exists and is equal
to f (z) . �

REMARK 6. Formula (17) has been found in [37] for absolutely continuous mea-
sures.

THEOREM 9. For a fixed non-negative measure μ ∈ Mα and β > α > 0 denote

fα (z) =
∫

[0,∞)

μ(du)
(u+ z)α + μ∞, (18)

and

fβ (z) =
∫

[0,∞)

μ(du)
(u+ z)β + μ∞. (19)

Then for all x > 0

fα (x) =
Γ(β )

Γ(α)Γ(β −α)

∞∫
x

( fβ (t)− μ∞)dt

(t − x)1+α−β + μ∞, (20)

and

fβ (x) =
Γ(α)(−1)n

Γ(β )Γ(n−β + α)

∞∫
x

f (n)
α (t)dt

(t− x)1+β−α−n
+ μ∞, (21)

where n = [β −α]+1 .

Proof. To prove (20) substitute (19) for fβ into (20) and exchange the order of
integration which is legitimate by Tonelli’s theorem again. Conditions β > α > 0 guar-
antee the existence of the inner integral. To demonstrate the validity of (21) differentiate
(18) under integral sign (n � 1)

f (n)
α (t) = (−1)n(α)n

∫
[0,∞)

μ(du)
(u+ t)α+n ,

where (α)n = α(α +1) · · · (α +n−1) = Γ(α +n)/Γ(α) , substitute into (21) and ex-
change the order of integrations. �

REMARK 7. Formula (20) is the right-sided Riemann-Liouville fractional integral
[16, section 2.2], [27, §5] and formula (21) is the right-sided Caputo fractional deriva-
tive [16, section 2.4], [25, section 2.4.1]. The Riemann-Liouville fractional derivative
cannot be used in (21) since, in general, the resulting integral will diverge.
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THEOREM 10. The class Sα , α > 1 is closed under pointwise limits: if { fn}∞
n=1 ⊂

Sα and if the limit lim
n→∞

fn(x) = f (x) exists for all x > 0 then f ∈ Sα .

Proof. A proof for α = 1 can be found in [29, Theorem 2.2(iii)]. It carries over mutatis
mutandis to all α > 0. �

3. Exact Stieltjes order

We will say that f is of exact Stieltjes order α∗ if f ∈ S∞ and

α∗[ f ] = inf{α : f ∈ Sα}. (22)

THEOREM 11. If f is of exact Stieltjes order α∗ then f ∈ Sα∗ . In other words
the infimum in (22) is always attained.

Proof. Since f ∈ S∞ it is infinitely differentiable so that Fα
n,k(x) in (7) is well defined

and continuous in α for each fixed x > 0 for all α > α∗ . Passing to the limit α → α∗
we verify that (7) is true for α = α∗ . Hence, f ∈ Sα∗ . �

THEOREM 12. Suppose f ∈ Sβ . Then β > α∗[ f ] iff the function

Φ(y) =
∫

(0,y)

μβ (du)
(y−u)ε (23)

is non-decreasing on (0,∞) for some ε ∈ (0,min{β ,1}) .
Proof. Assume Φ(y) is non-decreasing. We need to show that β is not exact.

According to Definition 1 in the Appendix and Theorem A1

I+1−ε μβ =
Φ(y)dy
Γ(1− ε)

+ μ∞δ∞ ∈ Mβ+1−ε = Mα+1,

where α = β − ε and μ∞ = μβ ({∞}) . Hence,

∫
[0,∞)

Φ(y)dy
(1+ y)α+1 < ∞.

This implies that ∫
[0,∞)

dΦ(y)
(1+ y)α < ∞. (24)

Indeed, for each t > 0 integration by parts,

Φ(y)
α(1+ y)α

∣∣∣∣t
0
=

1
α

∫
[0,t)

dΦ(y)
(1+ y)α −

∫
[0,t)

Φ(y)dy
(1+ y)α+1 ,
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shows that limt→∞ Φ(t)(1+ t)−α exists (finite or infinite). This limit must be zero since
otherwise Φ(y)(1+ y)−α > C > 0 for all y > M and

∫
[0,∞)

Φ(y)dy
(1+ y)α+1 > C

∫
[M,∞)

dy
1+ y

= ∞.

Hence, limt→∞ Φ(t)(1 + t)−α = 0 and the above integration by parts proves (24). It
follows that the measure μα whose distribution function is equal to AΦ(y) and whose
atom at infinity is equal to μ∞ belongs to Mα . Here A = Γ(α)/[Γ(β )Γ(α −β +1)] .
Consider the function

g(z) =
∫

[0,∞)

μα(du)
(u+ z)α + μ∞.

By Theorem 3 we have g ∈ Sβ and

g(z) =
∫

[0,∞)

μ̃β (du)
(u+ z)β + μ∞,

where μ̃β (du) is given by (9). But then μα and μ̃β are related by (10) which coincides
with (23) times A (note that n = 0 in (10) because β −α = ε < 1). This proves that
μ̃β = μβ so that f (z) = g(z) ∈ Sα , α < β .

Conversely, if β is not exact choose ε ∈ (0,β −α∗) , ε < 1. We have f ∈ Sβ−ε .
According to Theorem 3 the function AΦ(y) , where Φ is defined in (23) equals the
distribution function of the measure μβ−ε and so is non-decreasing. �

COROLLARY 1. Suppose f ∈ Sβ , ε ∈ (0,min{β ,1}) and the following limit ex-
ists:

lim
y→+∞

Φ(2y)
Φ(y)

= Aε ,

where Φ is defined by (23). If Aε < 1 then β is the exact Stieltjes order of f .

Proof. Clearly, the condition Aε < 1 implies that Φ(y) cannot be non-decreasing so
that by Theorem 12 β must be exact. �

COROLLARY 2. Suppose f ∈ Sβ and the support of the measure μβ is compact.
Then β is the exact Stieltjes order of f .

Proof. Indeed, for all y > B , B := sup{x : x ∈ supp(dμ)} , the function Φ(y) is strictly
decreasing for each ε ∈ (0,min{β ,1}) , so that by Theorem 12 β must be exact. �

Consider three prototypical examples.
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EXAMPLE 1. Find the exact Stieltjes order of (α > 1)

f (z) =
1∫

0

dt
(z+ t)α =

1
α −1

(
1

zα−1 −
1

(1+ z)α−1

)
.

By corollary 2 α∗ = α since supp(dμ) is compact.

EXAMPLE 2. Find the exact Stieltjes order of (α > 1)

f (z) =
∞∫

1

dt
(z+ t)α .

By theorem 12 compute

Φ(t) =
t∫

0

I([1,∞))du
(t −u)ε =

{
0, 0 < t � 1

(t −1)1−ε/(1− ε), t > 1

This function is non-decreasing on [0,∞) , so that α∗ < α . To find the exact order we
compute

f (z) =
1

(α −1)(1+ z)α−1 =
∞∫

0

dν(t)
(z+ t)α−1 ,

where the measure dν(t) is concentrated at one point t = 1 with ν({1}) = (α −1)−1

so that by Corollary 2 α∗ = α −1.

EXAMPLE 3. According to Euler’s integral representation [1, Theorem 2.2.1] the
Gauss hypergeometric functions 2F1 can be written as

f (z) := 2F1(a,b;c;−z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

ub−1(1−u)c−b−1

(1+ zu)a du, c > b > 0.

Assume that 0 < a � b . By the above formula f ∈ Sa . Change of variable u = 1/t
yields

2F1(a,b;c;−z) =
Γ(c)

Γ(b)Γ(c−b)

∫ ∞

1

μ(t)dt
(z+ t)a ,

where
μ(t) = ta−c(t−1)c−b−1, t > 1.

We aim to show that a is the exact Stieltjes order of f . Computation gives

Φ(y) :=
y∫

1

μ(t)dt
(y− t)ε = A(y−1)c−b−ε

2F1(c−a,c−b;c−b− ε +1;−(y−1)),

where A = Γ(c−b)Γ(1− ε)/[Γ(c−b− ε +1)] for any given ε ∈ (0,min{1,c−b}) .
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Using the asymptotic formula [1, formula (2.3.12)] for 2F1 as y → ∞, we get

Φ(y) = A(y−1)−ε (D+o(1)) ,

where D > 0 is a constant. This implies that Φ(y) cannot be increasing the exact order
is equal to a .

In our recent paper [15] we have investigate the exact Stieltjes order of the gener-
alized hypergeometric function q+1Fq .

REMARK 8. According to Theorem 10 the class Sα is closed under pointwise
limits. It is then reasonable to ask whether the exact Stieltjes order is also preserved
by such limits. The following example shows that the answer is negative in general.
Consider the sequence of functions (α > 1)

fm(z) =
m∫

1

dt
(z+ t)α =

1
(α −1)(z+1)α−1 −

1
(α −1)(z+m)α−1 , m = 2,3, . . .

According to Corollary 2 each fm has exact order α while pointwise

lim
m→∞

fm(z) =
1

(α −1)(z+1)α−1 for each z ∈ C\(−∞,0].

According, to Example 2 above, the limit function is of exact order α −1.

REMARK 9. Theorem 9 shows that if α is the exact Stieltjes order of f then
its fractional derivative of order γ will have the exact order α + γ while its fractional
integral of order γ will have the exact order α−γ provided that α > γ and μ ∈Mα−γ .

4. Complex variable properties

Clearly, f is holomorphic in C\(−∞,−r] , where r = inf{x : x ∈ supp(μα)} and
f (z) = f (z) . In particular, if 0 /∈ supp(μα) (or, equivalently, supp(ρα) is bounded)
then the function f can be represented by the power series

f (z) =
∞

∑
k=0

(−1)k (α)k

k!
ρk(α)zk,

convergent in the disk |z| < 1/R . Here R = sup{x : x ∈ supp(ρα)} , (α)k = Γ(α +
k)/Γ(α) , and

ρk(α) =
∫

[0,R]

tkdρα(t) < ∞, k = 0,1, . . . (25)

are the moments of the measure ρα which are finite due to (6).
For functions belonging to S1 Krein [19, Appendix, Theorem 4] found the follow-

ing celebrated characterization.
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THEOREM 13. A function f holomorphic in the cut plane C\(−∞,0] belongs to
S1 iff f (x) � 0 for x > 0 and ℑ f (z) � 0 for ℑz > 0 .

Because of the special role played by S1 (including a number of stability properties
[3], connection to continued fractions [8] and Padé approximation [2]) it is interesting
to relate the functions from Sα to S1 . One way of doing this is provided by Theorem 9,
another approach is presented in the following two theorems.

THEOREM 14. Suppose f ∈ Sα , 0 < α � 1 . Then f 1/α ∈ S1 .

Proof. For ℑz > 0 and t > 0 we have:

−πα < arg(z+ t)−α < 0 ⇒ −πα < arg( f (z)) � 0 ⇒ ℑ( f (z)1/α ) � 0.

Since f 1/α (z) is holomorphic in C \ (−∞,0] and non-negative for z > 0 we get the
conclusion by Krein’s theorem 13. �

THEOREM 15. Suppose f ∈ Sα , α � 1 . Then g(z) := f (z1/α ) ∈ S1 .

Proof. Indeed g(z) is holomorphic in C\ (−∞,0] and non-negative for x > 0. Next for
ℑz > 0 and t > 0 we have:

0 < arg(z1/α) < π/α ⇒ 0 < arg(z1/α + t) < π/α, ⇒ ℑ(z1/α + t)−α < 0

Integrating the last expression with respect to non-negativemeasure preserves the lower
half plane, so that the proof is completed by Krein’s theorem 13. �

REMARK 10. For α > 1 the mapping Sα → S1 defined by f (z)→ g(z) := f (z1/α )
is clearly not surjective as can be seen immediately by taking g(z) = 1/(1+ z) ∈ S1 ,
f (z) = g(zα) /∈ Sα (since it is not holomorphic in the upper half-plane). The conditions
(a) f (z) is holomorphic in the cut plane C \ (−∞,0] , (b) f (x) � 0 for x > 0 and (c)
ℑ f (z) � 0 for 0 < arg(z) < π/α are necessary for f to belong to Sα . Unfortunately,
these conditions are not sufficient as the following example shows:

f (z) =
1

(z+1)2 −
1

2(z+2)2 .

Indeed, a straightforward computation yields (z = x+ iy):

ℑ f (z) =−y(30+87x+96x2+50x3 +12x4 + x5 +12y2 +22xy2 +12x2y2 +2x3y2 + xy4)
(1+2x+ x2 + y2)2(4+4x+ x2 + y2)2 .

Hence, for {z ∈ C : ℜz > 0,ℑz > 0} we get ℑ f (z) < 0 and f (x) � 0 for x > 0.
However, f /∈ S2 since the representing measure is signed. In fact, f ∈ S3 since

f (z) =
∞∫

1

dν(t)
(z+ t)3 , where dν(t)=

{
2dt, t ∈ (1,2],
dt, t ∈ (2,∞).

We thank Alex Gomilko for this example. It provides a partial answer to the question
asked by Sokal at the end of [31].
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THEOREM 16. Each f ∈ Sα satisfies

| f (z)| � A

∣∣∣∣ z−1
ℑ(z)

∣∣∣∣α + μ∞, (26)

where A =
∫
[0,∞) μα(du)/(u+1)α < ∞ , and ℜ(z) � 0 .

Proof. We have

| f (z)| =

∣∣∣∣∣∣∣
∫

[0,∞)

μα(du)
(u+ z)α + μ∞

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫

[0,∞)

μα(du)
(u+1)α

(
u+1
u+ z

)α
+ μ∞

∣∣∣∣∣∣∣
� A[ψ(z)]α/2 + μ∞,

with A given above and

ψ(z) = max
u�0

∣∣∣∣u+1
u+ z

∣∣∣∣2 =
∣∣∣∣ z−1

ℑ(z)

∣∣∣∣2 .

The last equality is true for ℜ(z) � 0 by standard calculus. �

Appendix

Inversion formulas for some fractional integrals of measures on half-axis

In this appendix we prove some facts about fractional integrals and derivatives of
Borel measures supported on R+ . Fractional calculus is certainly a classical subject
with a number of monographs available today, including [9, 16, 17, 23, 25, 27]. Frac-
tional integrals and derivatives have been studied in (weighted) spaces of integrable
functions, in Hölder classes, in spaces of generalized functions, in the complex plane,
for functions of several variables and in various other contexts. We could not find, how-
ever, a good reference for fractional integrodifferentiation of measures. Here we prove
two inversion theorems required in the study of the generalized Stieltjes transforms that
we could not find in the literature. They might be useful in some other contexts as well,
for instance in connection with completely monotonic functions of positive order, see
[18].

Let us remind the reader that Mα is the positive cone comprising non-negative
Borel measures supported on [0,∞] and satisfying (2). Clearly, Mα ⊂ Mβ if α < β .
There is a natural involution Nα defined on Mα by (5). For a measure μ ∈ Mα we
denote by Fμ its left-continuous distribution function normalized by Fμ(0) = 0. The
distribution function Fμ defines the measure μ uniquely except for a possible atom at
infinity which must be specified separately.
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DEFINITION A1. Let μ ∈ Mα . The measure ν := I+η μ is called the left-sided
Riemann-Liouville fractional integral of μ of order η > 0 if

ν(B) :=
1

Γ(η)

∫
B\{∞}

dy
∫

[0,y)

μ(du)
(y−u)1−η + μ(B∩{∞}) for each Borel set B ⊂ [0,∞].

(27)

REMARK A1. Formula (27) is a generalization of the left-sided Riemann-Liouville
fractional integral as given in [16, (2.2.1),(2.2.2)] and [27, Chapter 2(5.1),(5.3)].

DEFINITION A2. Let μ ∈Mα . The measure τ := K−
α ,η μ is called the right-sided

Kober-Erdélyi fractional integral of μ of order η > 0 if

τ(B) := μ(B∩{0})+
1

Γ(η)

∫
B\{0}

yα−1dy

⎧⎪⎨
⎪⎩
∫

(y,∞)

μ(du)
uη+α−1(u− y)1−η + μ∞

⎫⎪⎬
⎪⎭ (28)

for each Borel set B ⊂ [0,∞] .

REMARK A2. Formula (28) is a generalization of the right-sided Kober-Erdélyi
fractional integral as given in [16, (2.6.8)] and [27, Chapter 4, (18.6)] with a slight
change of notation. Condition (2) ensures that the right hand side of (28) exists. By
definition the measure τ has no atom at infinity.

THEOREM A1. If μ ∈ Mα then ν = I+η μ ∈ Mα+η and given ν we can recover
μ from

Fμ(y) =
1

Γ(1+n−η)

(
d
dy

)n ∫
[0,y)

ν(du)
(y−u)η−n , (29)

where n = [η ] and μ({∞}) = ν({∞}) .
Proof. The claim ν ∈ Mα+η is proved by repeating the computation (12) with β =
α + η , ν = μβ and z = 1. The proof of the inversion formula has also been given in
the proof of Theorem 3. �

THEOREM A2. If μ ∈ Mα then τ := K−
α ,η(μ) ∈ Mα+η and given τ we can

recover μ from

Fμ(y) = τ({0})+
1

Γ(n+1−η)
×{

α
∫

(0,y)

xα−1dx

(
−x2 d

dx

)n

xη−n
∫

(x,∞)

τ(ds)
sα+n(s− x)η−n

− yα
(
−y2 d

dy

)n

yη−n
∫

(y,∞)

τ(ds)
sα+n(s− y)η−n

}
, (30)

where n = [η ] and μ∞ = αΓ(η) lim
y→∞

y−αFτ(y) .
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Proof. To show that τ ∈ Mα+η compute

∫
(0,∞)

τ(dt)
(1+ t)α+η =

1
Γ(η)

∫
[0,∞)

tα−1dt
(1+ t)α+η

∫
(t,∞)

μ(du)
uη+α−1(u− t)1−η

=
1

Γ(η)

∫
(0,∞)

u1−η−α μ(du)
∫

(0,u)

tα−1dt
(1+ t)α+η(u− t)1−η

︸ ︷︷ ︸
=uη+α−1(1+u)−αB(α ,η)

=
Γ(α)

Γ(α + η)

∫
(0,∞)

μ(du)
(1+u)α < ∞

To prove formula (30) assume for the moment that μ∞ = 0 and substitute (28) into (30):

α
∫

(0,y)

xα−1dx

(
−x2 d

dx

)n

xη−n
∫

(x,∞)

τ(ds)
sα+n(s− x)η−n

− yα
(
−y2 d

dy

)n

yη−n
∫

(y,∞)

τ(ds)
sα+n(s− y)η−n

=
α

Γ(η)

∫
(0,y)

xα−1dx

{(
d
dt

)n

(1/t)η−n
∫

(1/t,∞)

ds
sn+1(s−1/t)η−n

∫
(s,∞)

μ(du)
uη+α−1(u− s)1−η

}
|t=1/x

− yα

Γ(η)

{(
d
dt

)n

(1/t)η−n
∫

(1/t,∞)

ds
sn+1(s−1/t)η−n

∫
(s,∞)

μ(du)
uη+α−1(u− s)1−η

}
|t=1/y

, (31)

where we have used the formula(
−y2 d

dy

)n

ϕ(y) =
{(

d
dt

)n

ϕ(1/t)
}
|t=1/y

.

Further, exchange of the order of integrations justified by Tonelli’s theorem yields:

∫
(1/t,∞)

ds
sn+1(s−1/t)η−n

∫
(s,∞)

μ(du)
uη+α−1(u− s)1−η

= B(η ,1−η +n)tη−n
∫

(1/t,∞)

μ(du)
un+α (ut−1)n.

We will show now that(
d
dt

)n ∫
(1/t,∞)

μ(du)
un+α (ut−1)n = n!

∫
(1/t,∞)

u−α μ(du).
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Denote by μ∗ the image of the measure μ under the mapping λ (u) = 1/u , so that for
each Borel set A ⊂ (0,∞) we have μ∗(A) := μ(λ−1(A)) . Then(

d
dt

)n ∫
(1/t,∞)

μ(du)
un+α (ut−1)n =

(
d
dt

)n ∫
(0,t)

sn+α(t/s−1)nμ∗(ds)

=
(

d
dt

)n ∫
(0,t)

(t− s)nsα μ∗(ds)

= n!

(
d
dt

)n ∫
(0,t)

dt1

∫
(0,t1)

dt2 · · ·
∫

(0,tn)

sα μ∗(ds)

= n!
∫

(0,t)

sα μ∗(ds)

= n!
∫

(1/t,∞)

u−α μ(du)

Finally, by integration by parts for Lebesgue-Stieltjes integral (see [7, Theorem 6.2.2])
we obtain:

α
∫

(0,y)

xα−1dx

(
−x2 d

dx

)n

xη−n
∫

(x,∞)

τ(ds)
sα+n(s− x)η−n

− yα
(
−y2 d

dy

)n

yη−n
∫

(y,∞)

τ(ds)
sα+n(s− y)η−n

= Γ(1−η +n)
∫

(0,y)

μ(dx)

= Γ(1−η +n)(Fμ(y)−Fμ(0+))
= Γ(1−η +n)(Fμ(y)− μ({0})).

Since μ({0}) = τ({0}) by (28) this proves formula (30). While integrating by parts
we have also used the following limit:

lim
x→0

xα
∫

(x,∞)

u−α μ(du) = lim
x→0

xα
∫

(x,1)

u−αdFμ(u)

= lim
x→0

xα
(

u−αFμ(u)
∣∣∣∣1
x
+α

∫
(x,1)

u−α−1Fμ(u)du

)

= lim
x→0

(
αxα

∫
(x,1)

u−α−1Fμ(u)du−Fμ(x)
)

= lim
x→0

−x−α−1Fμ(x)
(1/α)(−α)x−α−1 −Fμ(0+) = 0.
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Here the first equality is due to (2), the second is integration by parts and the preultimate
is L’Hôpital’s rule applied if

∫
(x,1)u

−α−1Fμ(u)du is unbounded.

If μ∞ �= 0 we need to add the following term to the left-hand side of (31):

αμ∞

Γ(η)

∫
(0,y)

xα−1dx

(
−x2 d

dx

)n

xη−n
∫

(x,∞)

sα−1ds
sα+n(s− x)η−n

︸ ︷︷ ︸
=B(η,1−η+n)x−η

− μ∞yα

Γ(η)

(
−y2 d

dy

)n

yη−n

=B(η,1−η+n)y−η︷ ︸︸ ︷∫
(y,∞)

sα−1ds
sα+n(s− y)η−n

=
αμ∞

Γ(η)

∫
(0,y)

xα−1dx

(
−x2 d

dx

)n

x−n − μ∞yα

Γ(η)

(
−y2 d

dy

)n

y−n

=
αμ∞n!
Γ(η)

∫
(0,y)

xα−1dx− μ∞n!yα

Γ(η)
= 0,

where

(
−x2 d

dx

)n

x−n =
{(

d
dt

)n

tn
}
|t=1/x

= n!.

This shows that (31) is still valid for μ∞ �= 0.

Finally, to recover the atom at infinity μ∞ we compute

lim
x→∞

x−αFτ(x) = lim
x→∞

[μ({0})x−α ]+
1

Γ(η)
lim
x→∞

x−α
∫

(0,x)

yα−1dy
∫

(y,∞)

μ(du)
uη+α−1(u− y)1−η

+
μ∞

Γ(η)
lim
x→∞

x−α
∫

(0,x)

yα−1dy

=
μ∞

αΓ(η)
+

1
Γ(η)

lim
x→∞

x−α
∫

(0,x)

yα−1dy
∫

(y,∞)

μ(du)
uη+α−1(u− y)1−η .

In order to show that the last limit is zero we interchange the order of integrations
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(justified again by Tonelli’s theorem):∫
(0,x)

yα−1dy
∫

(y,∞)

μ(du)
uη+α−1(u− y)1−η

=
∫

(0,x)

u1−η−α μ(du)

=B(α ,η)uα+η−1︷ ︸︸ ︷∫
(0,u)

(u− y)η−1yα−1dy+
∫

[x,∞)

u1−η−α μ(du)×

×
∫

(0,x)

(u− y)η−1yα−1dy

︸ ︷︷ ︸
=(1/α)xαuη−1

2F1(α ,1−η;1+α ;x/u)

= Fμ(x)− μ({0})+
1
α

xα
∫

[x,∞)

u−α
2F1(α,1−η ;1+ α;x/u)μ(du).

Hence, we need to prove that limx→∞ x−αFμ(x) = 0 and

lim
x→∞

∫
[x,∞)

u−α
2F1(α,1−η ;1+ α;x/u)μ(du) = 0.

Both equalities follow from (2): the first was proved by Widder [35, Corollary 3a.3],
the second follows from the fact that 2F1(a,b;c;x) is bounded on [0,1] if c > a+b by
the Gauss formula [1, Theorem 2.2.2]. �

The relation between I+η and K−
α ,η is revealed in the following theorem.

THEOREM A3. Suppose μ ∈ Mα . Then Nα+η I+η μ = K−
α ,ηNα μ .

Proof. Indeed, if f is given by (1) and ν = I+η μ then by Theorem 3

f (z)− μ∞ =
∫

[0,∞)

μ(du)
(u+ z)α =

Γ(α + η)
Γ(α)

∫
(0,∞)

ν(du)
(u+ z)α+η

=
Γ(α + η)

Γ(α)

∫
(0,∞)

τ1(dt)
(1+ tz)α+η ,

where τ1 = Nα+ην = Nα+η I+η μ . On the other hand, if ρ = Nα μ then according to the
comment after formula (5) and by Theorem 4 we have

f (z)− μ∞ =
∫

(0,∞)

ρ(dt)
(1+ tz)α +

μ0

zα =
Γ(α + η)

Γ(α)

∫
(0,∞)

τ2(dt)
(1+ tz)α+η ,

where τ2 = K−
α ,η ρ = K−

α ,ηNα μ . Comparing these two formulas we conclude that τ1 =
τ2 due to uniqueness of the representing measure. �
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[29] R.L. SCHILLING, R. SONG Z. VONDRAČEK, Bernstein Functions. Theory and Applications, Walter

de Gruyter, Studies in Mathematics, 37, 2010.
[30] J.H. SCHWARZ, The generalized Stieltjes transform and its inverse, J. of Math. Phys. 46 (2005),

013501.
[31] A.D. SOKAL, Real-variables characterization of generalized Stieltjes functions, Expo. Math. 28

(2010), 179–185.
[32] T.J. STIELTJES, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8 (1894), 1–

122; 9 (1895), 5–47. (Reprinted, together with an English translation, in: T.J. Stieltjes, Oeuvres
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