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GENERALIZATIONS OF SOME POLYNOMIAL
INEQUALITIES FOR THE FAMILY OF B-OPERATORS

GULSHAN SINGH, W. M. SHAH AND A. LIMAN

Abstract. Let P, be the class of polynomials of degree at most n. In 1969, Rahman [Functions
of exponential type, Trans. Amer. Math. Soc., 135(1969), 295-309] introduced a class B, of
operators B that map P, into itself and proved that

max B{P(R))| < BIE (k2

R>1,

max 1P(z)]

z|=1

for every B € B, , where E,(z) :=2".
In this paper, we prove some generalizations and refinements of this result, which in par-
ticular yields some known polynomial inequalities as special cases.

1. Introduction and statement of results

Let P, be the class of polynomials P(z) := Yioa 7/ of degree at most n and
P'(z) its derivative, then it is known that

max |P'(z)] < nmax|P(z)| (1)
|z[=1 |z[=1
and
max |P(z)] < R"max |P(z)]. (2)
le|=R>1 lz]=1

Inequality (1), which is an immediate consequence of Bernstein’s inequality (for ref-
erence see [6]) on the derivative of a trigonometric polynomial is best possible with
equality holding for the polynomial P(z) = AZ", where A is a complex number. In-
equality (2) is a simple deduction from the maximum modulus principle (see [13, p.
3461, [9, p. 158], problem 269).

For the class of polynomials P € P, having all their zeros in |z| < 1, we have

min |P'(z)| > nmin |P(z)| (3)
|z[=1 |z[=1
and
min |P(z)| = R" min|P(z)|. (4)
|z|=R>1 <=1
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Inequalities (3) and (4) are due to Aziz and Dawood [3]. Both the results are sharp and
equality holds for a polynomial having all its zeros at the origin.

If we restrict ourselves to a class of polynomials having all their zeros in |z| > 1,
inequalities (1) and (2) can be sharpened. In fact, if P(z) # 0 in |z| < 1, then

max |P'(z)| < = max |P(2)| (5)
|z|=1 2 |z=1
and R
+
max |P(z <(—>maxPz. 6
max PO < (T3 ) max|P() (6)

Inequality (5) was conjectured by Erd@s and later verified by Lax [7], where as Ankeny
and Rivlin [1] used (5) to prove (6). Inequalities (5) and (6) were further improved in
[3] and under the same hypothesis, it was shown that

ﬁglpf(z)\ < E{EE}HP(ZH — min \p(z)\} )
and - o
1P < 5 ) max|P@)] = (Z5—) min P ®)

Equality in (5), (6), (7) and (8) holds for polynomials of the form P(z) = az" + 3,
where |of| = |B].

Aziz [2], Aziz and Shah [4] and Shah [14] extended such well known inequalities
to the polar derivative of a polynomial P(z) with respect to a point o defined by

Dy P(z) :=nP(2) + (0t — 2)P'(z)

and obtained several sharp inequalities. Like polar derivative there are many other
operators which are just as interesting (for reference see [11,12]). It is an interesting
problem, as pointed out by Professor Q. I. Rahman to characterize all such operators.
As a part of this characterization Rahman [10] (see also Rahman and Schmeisser [12,
page 538-551]) introduced a class B, of operators B that map P € P, into itself. That
is, the operator B carries P € P, into

BIP)() = 20P(2) + 2 () P’l (!Z) Y (%)21);(!& o)

where Ag, 41,4, are real or complex numbers, such that all the zeros of

n!

u(z) := Ao+ c(n, DAz +¢(n,2) 2%, c(n,r) = (10)

ri(n—r)!
lie in the half plane

A<= (11)

and observed:
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THEOREM A. If P € P,, then

max|P(z)[, R>1. (12)

|z[=1

ﬁl‘iylg ‘B[P(RZ)} ‘ < )B[E,, (Rz)]

As an improvement Shah and Liman [15] proved:

THEOREM B. If P € P,, P(z) # 0 for |z| < 1, then

P2 < 5{ BlEA R + ol max P (13)

for every B € By, where E,(z) :=7".

Theorems A and B provide compact generalizations of inequalities (1), (2) and
(3), (4) respectively and these inequalities follow when we substitute for B[P](z) and
then use Ay, A; and A, suitably.

In this paper, we prove some more general results concerning the operator B € B,
preserving inequalities between polynomials, which in turn yields compact generaliza-
tions of some well known polynomial inequalities. We first prove:

THEOREM 1. Let F(z) be a polynomial of degree n having all zeros in |z| < k,
where k> 0 and f(z) be a polynomial of degree not exceeding that of F(z). If | f(z)] <
|F(z)| for |z| =k, then for all complex numbers o, B with |o| <1, |B| <1, R>r>k
and |z| = 1, we have

BIF(R2)] + w(R, 1, B, K)BLF ()| < |BIF (RO + y(R.r. 0, BRBIF (1)), (14)

where

Wk ro,k) = B{ () = o}~ (15)

A variety of interesting results can be deduced from Theorem 1 as special cases.
For example, by taking k = 1, we immediately have the following:

COROLLARY 1. Let F(z) be a polynomial of degree n having all its zeros in
lz| <1 and f(z) be a polynomial of degree not exceeding that of F(z). If

If@I < |F ()] for [z =1,

then for any real or complex numbers o, B with |a| <1, |B| <1, R>r>1 and
|z > 1, we have

BUF(R2)|+ (R, 1,00, B)BIS (r2))| < |BIF(R2)] + (R BIBIF ()], (16)
where
oRraB)=p{ (1) ~lal} - (17)

The following result immediately follows from Theorem 1 by taking f(z) = P(z)
and F(z) = Mz", where M = ﬁa)lc|P(z)|.
Z|=
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COROLLARY 2. If P(z) is a polynomial of degree n, then for all real or complex
numbers o, B with || <1, |[B| <1, R>r>=k >0, we have

[BIP(R2)) + W(R.r, . B, O)BIP(r2)|

! B[En(RZ)] + W(R7 7 OQﬁJC)B[EAVZ)] ’ llgié ‘P(Z)|»

Sk

where y and E, are defined above.
In particular for k£ = 1, we have the following interesting result:

COROLLARY 3. Let P(z) be a polynomial of degree n, then for all real or com-
plex numbers o, B with |a| <1, |B| <1, R>r>1,

[BIP(R)] + 0 (R, 1, B)BIP(r2))|

<‘B[En(RZ)]+¢(R7r,a7B)B[En(FZ)} lﬂglP(Z)I Jor |7 =1, (18)

where ¢ and E, are defined above.
For o = 0 in Corollary 3, we get the following:

COROLLARY 4. Let P(z) be a polynomial of degree n, then for every real or
complex number B with |B| <1, R>r>1,

‘B[P(Rz)] +B (I:TJFIIYB[P(FZ)}‘

<\B[En<Rz>1+ﬁ(%)"B[Envz)])ﬁgw(zn for [>1. (19

REMARK 1. For =0, Corollary 4 reduces to inequality (12). Next if we chose
A=A, =0 and B =0 in (18) and note that all the zeros of u(z) defined by (10) lie in
the region (11), we obtain for every real or complex number o with || <1, R>r>1,

‘P(Rz) — OcP(rz)) < |R" — ar”

Tr‘la)1<|P(z)| for z| = 1. (20)
2=

Zn

Inequality (20) includes inequality (2) as a special case when o« = 0. Further, if we
divide both sides of the inequality (20) by R —r with o = 1 and making R — r, we get

P/(r2)| < e max [P for Jel > 1, (21)

|z[=1

which in particular yields inequality (1).

THEOREM 2. If P(z) is a polynomial of degree n, having no zeros in the disk
|z| <k, where k > 0, then for all real or complex numbers o, B with |o| <1, |B] <1,
R>r>kand|z] > 1, we get
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BIP(Re)] + (R, 1,0, B KBIP(r2)]| < [BIO(Ra)] + w(R. ., B K)BIO() |,

where Q(z) == (%)"P(%) and Y(R,r,a, B,k) is defined by (15).

THEOREM 3. If P(z) is a polynomial of degree n, having all its zeros in the disk
|z| <k, where k > 0, then for all real or complex numbers o, B with |or| <1,
R>r>k, we have

[BIP(R2)] + w(R.r.ct. B, K)BIP(r2)]|

Zkin ’B[En(RZ)} + w(R,r, O(,ﬁ,k)B[En(rz)] ’ IIRLI}JP(Z)L

where Y and E, are defined above.

THEOREM 4. Let P(z) be a polynomial of degree n, then for all real or complex
numbers o, B with |o| <1, |[B| <1, R>r>k, k<1 and |z =1, we have

[BIP(R)] + Y (R 7. t, B, K)BIP(r2)]| + | BIO(R2)] + W(R,r,cr, B K)BIO(r2)]|

< {10l 1+ Wl 0 1) | [ B (R -+ w(R ot BLOBIE (1)} max P2
(22)

where Q(z) = (%)"@ and E,(2) :=7".

THEOREM 5. Let P(z) be a polynomial of degree n having all its zeros in |z| > k,
k < 1, then for all real or complex numbers o, B with || <1, |B| <1, R>r>k
and |z| = 1, we have

)B[P(Rz)} +y(R,r,a, B, k)B[P(VZ)}‘

{|AO|’1+1VRra[3k‘ ‘B (R2)] + (R, 1, oL, B,K)BIE (rz)]’}max\P(z)L

lzl=1
where Y and E, are defined above.

THEOREM 6. Let P(z) be a polynomial of degree n having no zeros in the disk
lz| <k, k<1, then for all real or complex numbers o, B with |a| <1, |[B| <1,
R>r>kand |z| =1, we have

‘B[P(Rz)] +y(R,r, a7B7k)B[P(rZ)]’

<3 { [ |BUEn R + iR, B R)BIE (]| + 0]+ w0, max P(:)
+ [ki BIE(R2)) + (R, 7,00, B, K)BIE (r2)]| — 20l [ 1+ y(R. . 0, B, min P(: al},

where Y and E, are defined above.

For o¢ = 0 in Theorem 6, we have the following:
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COROLLARY 5. Let P(z) be a polynomial of degree n having no zeros in the disk
lz| <k, k<1, then for every real or complex number 3 with |B| <1, R>r >k and
=1,

Blp(Ra) + 5 (5 ) BRG]
<3{ [ (k) + B (I:I,f)"B[En(rzﬂﬂ + [l +ﬁ(1:T+,f)"H max |P(2)
+ [ et o)+ B (T ) Bl = ol 1+ 8 () | min P .

If we take B =0 in Theorem 6, we get

COROLLARY 6. Let P(z) be a polynomial of degree n having no zeros in the disk
lz| <k, k < 1, then for every real or complex number o with || < 1, R>r >k and
lzl =1,

[BIP(R?)] — aB(P(r)]|
Hle
1
w

Also, the following result immediately follows from Theorem 6, if we take k = 1.

BIE (R2)] ~ oBIEN(r2)| + Vol |1 - r| | max|P(2)

+ [ iR — (0| - 0] = ]| min P }.

COROLLARY 7. Let P(z) be a polynomial of degree n having no zeros in the disk
|z| < 1, then for all real or complex numbers o, B with |o] <1, |[B| <1, R>r>1
and |z| =1,

‘B[P(Rz)] +o(R,r, a,ﬁ)B[P(rz)])

sl assasmsco s ansesl g

2
+ [|BUEARe)) + 0 (R, 0, BBIE2)] | — |1+ (R, )| mim P

where ¢ and E, are defined above.
If we take k =1 and 8 =0 in Theorem 6, we get the following:

COROLLARY 8. Let P(z) be a polynomial of degree n having no zeros in the disk
lz| <1, then for all real or complex numbers o, B with |o| <1, |B| <1, R>r>1
and |z| =1,

BIEA(R)] ~ oB[E ()| + 20l 1 — o max|P(2)

|z[=1

[BIE(R2)) ~ B Ew(r)]| = [hol|1 — a | min P .
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2. Lemmas

For the proofs of these theorems we require the following lemmas. The first lemma
follows from Corollary 18.3 of [8, p. 65].

LEMMA 1. Ifall the zeros of a polynomial P(z) of degree n lie in a circle |z] <k,
where k > 0, then all the zeros of the polynomial B[P)(z) also lie in the circle |z| < k
where k> 0.

LEMMA 2. If P(z) is a polynomial of degree n, having all zeros in the closed disk
|z| <k, where k >0, then for every R > r and rR > k?,

PRI > (84 )1PG2)l, Jel = 1.

The above Lemma is due to Aziz and Zargar [5].

3. Proofs of the theorems

Proof of Theorem 1. Since |f(z)| < |F(z)| for |z| = k, therefore any zero of F(z)
that lies on |z| = k, is also zero of f(z). For A with |A| < 1, it follows by Rouche’s
theorem, that the polynomial H(z) = F(z) + Af(z) has all its zeros in |z| < k. On
applying Lemma 2 to H(z), we have

R+k

H(R) > (77 ) IHG)| > HO) R>r>k [ =1 (23)

Therefore, for any o with |a| < 1, we have

R n
) e, e =1
(24)
Since H(Rz) has all its zeros in |z| < % < 1. Therefore, for every real or complex num-
ber o with || < 1, it follows from inequality (23) by direct application of Rouche’s
theorem that the polynomial H(Rz) — otH (rz) has all its zeros in |z] < 1. Again from
inequality (24) by the direct application of Rouche’s theorem, it follows that for all real
or complex number 3 with |3| < 1 and R > r > k, that all the zeros of the polyno-

mial H(Rz) — oH (rz) —i—ﬂ{ (%) — \Oc\}H(rz) lie in |z| < 1. Applying Lemma 1

and using the linearity of B, it follows that all the zeros of the polynomial

H(Rz) — aH(rz)‘ ' Rz‘—|a||H”Z‘ {(

R+k
r+k

T(2) := BlH(Rz)] — aB[H(r2)] + B { ( ) ~ lo }BH ()]

lie in |z| < 1 for every real or complex number o with || < 1 and R > r > k. Re-
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placing H(z) by F(z)+ A f(z), we conclude that all the zeros of the polynomial
T(2) i= BIF (R2)] + ABIf (R2)] — o (BIF (r2)] + LB/ (r2)]
+{ ()" It} (BF G2+ 2B )
= BIF(R)] — aBlF ()] + B{ (5 )"~ ol }BIF ()

+ A (BU(R)] — aBlf(r2)] +[3{(I:i:> ~ || }BIf ()

lie in |z] < 1 for all real or complex numbers o, § with |a| <1, || <1, R>r>k
and |z] <1.
This implies

BIf(R)] + w(R. 1,0, B.K)BLY (r2)]| < |BIF(R2)) + y(R o BLR)BIF ()], (25)

r+k
If the inequality (25) is not true, then there exist a point z = @ with |®| > 1 such
that

where W (R,r,a,,k) :zﬁ{(MY— \(x\} —o, |zl >1Tand R>r>k.

BIf(R2)] + w(R,r, o, B,K)B] f(rz)]’ > ‘B[F(Rz)] (R0, B.K)BIE(r2)]|.

Taking

BIF (Rz)] + y(R, 1., B, k)B[F (rz)]

Bf(Rz)] + w(R,r.ct, B,k)B[f(rz)]

so that || < 1 and with this choice of A, we have T(®w) =0 for |®| > 1. This is

clearly a contradiction to the fact that all the zeros of T'(z) lie in |z] < 1. Thus for all
real or complex numbers o,  with || <1, |B|<1and R>r >k, we get(14). O

A=

Proof of Theorem 2. Let Q(z) := (%)"P(%) Since all the zeros of a polynomial
P(z) of degree n lie in |z| > k, therefore, Q(z) is a polynomial of degree n having all its
zeros in |z| < k. Applying Theorem 1 with f(z) replaced by P(z) and F(z) by Q(z),
we obtain forevery R > r >k and |z| > 1,

BIP(RS)] + (R, 1,00, B, KBIP(r2)]| < [BIQ(RD)] + W(R. 1, B, K)BIO()] |

This proves Theorem 2. [

Proof of Theorem 3. Let m = |n‘11n |P(z)|. For m =0, there is nothing to prove.
z|=k

Assume that m > 0, so that all the zeros of P(z) lie in |z| < k and we have,

<|P(2)| for |zl =k

z
my
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Applying Theorem 1 with F(z) replaced by P(z) and f(z) by m(3)", we obtain for all
real or complex numbers o, B with || <1, |B| <1, R>r>k,

[BIP(R2)] + w(R, 1,0, B, K)BIP(r2)]|

2,%,1 ’B[En(Rz)} + (R, r,0, B,k)B[E,(r2)] j min |P(2)|

This proves Theorem 3. [

Proof of Theorem 4. Let M = 1|n‘a>]§\P(z)|, then |P(z)| < M for |z] <k. If A is
.

any real or complex number with |A| > 1, then by Rouche’s theorem the polynomial
G(z) = P(z) — AM does not vanish in |z| < k. Consequently the polynomial

n 2
H(z):=(})"G(%)
has all zeros in |z] < k and |G(z)| = |H(z)| for |z] = k. On applying Theorem 1, we
have for all real or complex numbers o, f§ with |a| <1, [B| <1, R>r>k, k<1
and |z] > 1,
BG(RS)] + w(R,r, 0, B K)BIG(r2)]| < |BIH (R2)] + (R r. e, B WBIH ()| (26)

Since

H(z) = (3)"G(5) = (3)"P(5) = A(3)"M = Q(2) = A(3)"M.
Therefore, using the fact that B is linear and B[1] = A, we get from inequality (26)
[BIP(RS)] + (R 1,0 B )BIP(r2)] — A2oM (1 -+ y(R.r.t,B.K) )|

<|BiOWR)] + W(R.r, o, B KBIQ()] ~ M (BIE (RO + W(R.r, 0, B, RIBIE ()] )|
(27)

Using Corollary 2 for the polynomial Q(z) and noting that |P(z)|=]|Q(z)| for |z| = k
we obtain

|BIO(RS)] + w(R,r,cr, B, K)BIO(2)]| < i

BIEW(Re)]+ W(R, 1., B, )BIE (r2) M.
Therefore, we can choose an argument of A in (27) such that

\B[Q(Rzn YR, 0B K)BIO(2)] ~ IM 1 (BIE(R)] + y(R, 1,0, B K)BIE ()] )|

—|7L\Mk [BIE(R2)) + W(R. 1. 0, B,K)BIE, (r2)]| [ BIO(R:)] + (R, 1,0, B, K)BIO(r2)] |
(28)
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Using (28) in (27), we get
BIP(R)] + Y (R, 1,0, B,K)BIP(r2)] | — (2] 0lM|1 + w(R 1.z, B, )|
< 1AM |BIE(RS) + w(R, 1,01 B RBIEA(r)]|
~ |BlO®:)]+ y(R.r.0. B BIOC) .
Equivalently,
[BIP(R) + y(R. 1, 0, B,K)BIP(r2) )+)B (R2)]+ w(R.7,t, B, K)BIQ(r2)]|
<M 0|1+ (R, 0 B.K)| + 1 | BIEN(Re)] + (R, r. B R)BIE ()| .
Making |A| — 1, we have
[BIP(RS)] + (R, 1,0, B )BIP(r2)]| + | BIOR)] + w(R. 1, 0, B, K BIO(r2))|
<M{|Ao\‘1+l[/R r, o, Bk ‘ ‘B (R2)] + w(R,r,0, B,k)BIE (rz)]’}. (29)
By the Maximum Modulus Principle for the polynomial P(z) when k < 1, we get

M= r‘ga),glP()l g}af\P( 2)]. (30)

Combining (30) and (29), we get desired result. [

Proof of Theorem 5. The desired result immediately follows by combining Theo-
rem 2 and Theorem 4. [

Proof of Theorem 6. If P(z) has a zero on |z| = k, then the result follows from
Theorem 5. Therefore we assume that P(z) has all zeros in |z| > k, so that m =

‘nlnn |P(z)] > 0 and for a real or complex number A with |A| < 1, we have |Am| <
< |P(z)], for |z| = k. By Rouche’s theorem, the polynomial G(z) = P(z) — Am does

not vamsh in |z| < k. Consequently the polynomial

a7

H(z) = (3)"G(%)
has all zeros in |z| < k and |G(z)| = |H(z)| for |z| = k. By applying Theorem 1, we

have for all real or complex numbers o, f with |a| <1, |B| <1, R>r>k, k<1
and |z] > 1,

BIG(R2)] + w(R, 1, B, K)BIG(r)]| < |BIH(Ra)] + w(R,r,x. B, K)BIH (2)]|.  (32)
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Substituting for G(z) and H(z) in (32), using the fact that B is linear and B[1] = Ay,
we get

BIP(R2) |+ (R,r,ct, B 0)BIP(r2)] — Ao (14 w(R. 1,0, B.)) |
<|Blora) + w(R. 1,0 B,0)BlO()]
~ T (BIEWRR)) + (R r. o B OBIE) | 33)
Choosing the argument of A suitably, which is possible, we get from (33)
BIP(R2) |+ (R,r,, B, 0)BIP(2)]| — 12| Aol |1+ w(R, 1,0, B, )|
< |Bi®R)] + (k. 7,00 B, B0~ [Am [ BlEw (k)]

+ V(R 1,0, B,k)BE(r2)]],

(34)
This gives,
[BIP(R)] + y(R.r. t, B, K)BIP(r2)]|
<p Rﬂ+w@raﬁ@ﬂ(ﬂ”
qu@ (R2)] + w(R,r,a, B, k)BIE, w\%%W+eraﬂ@H
Making || — 1, we have
[BIP(R2)] + w(R. 1,0, B, K)BIP(r2)]|
<|BlO(R)] + y(R 1. p.K)BlQ(r)]|
{&

Also, by Theorem 4, we have

BIEx(R2)] + w(R, 1,0, B.K)BIE m‘4%m+wkraﬁmHm(%)

‘B[P(Rz)} +y(R, 1,0, B,k)B[P(rz) ‘—i— ‘B (R2)] + w(R,r,0, B, k)B[Q(rz)}‘

< {10l Wl 0 1) | [ BE (R -+ wR ot BLOBIE ()] max P2
(36)

Combining the inequalities (35) and (36), we get the desired result. [J
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