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ASYMPTOTIC FORMULAE ASSOCIATED WITH THE

WALLIS POWER FUNCTION AND DIGAMMA FUNCTION

CHAO-PING CHEN, NEVEN ELEZOVIĆ AND LENKA VUKŠIĆ

Abstract. Let s,t be two given real numbers, s �= t . We determine the coefficients c j(s,t) such
that [

Γ(x+ t)
Γ(x+ s)

]1/(t−s)

∼ exp

(
ψ

(
x+

∞

∑
j=0

c j(s,t)x− j)

))

as x → ∞ , where ψ(x) = Γ′(x)/Γ(x) denotes the digamma function. Also, the analysis of the
coefficients in the asymptotic expansion of the composition exp(ψ(x+ s)) is given in details.

1. Introduction

Euler’s gamma function:

Γ(z) =
∫ ∞

0
tz−1e−t dt (ℜ(z) > 0)

is one of the most important functions in mathematical analysis and its applications in
various diverse areas. The logarithmic derivative of the gamma function:

ψ(z) =
Γ′(z)
Γ(z)

or logΓ(z) =
∫ z

1
ψ(t)dt

is known as the psi (or digamma) function.
In 1959 W. Gautschi [10] presented the remarkable inequality:

n1−s <
Γ(n+1)
Γ(n+ s)

< exp
(
(1− s)ψ(n+1)

)
(1)

for 0 < s < 1 and n ∈ N := {1,2,3, . . .} . In 1983 D. Kershaw [12] gave the following
closer bounds:

(
x+

s
2

)1−s
<

Γ(x+1)
Γ(x+ s)

<

(
x− 1

2
+

√
s+

1
4

)1−s

, (2)

exp[(1− s)ψ(x+
√

s)] <
Γ(x+1)
Γ(x+ s)

< exp

[
(1− s)ψ

(
x+

s+1
2

)]
(3)
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for real x > 0 and 0 < s < 1. In 2005 D. Kershaw [13] proved the following inequality:

ψ(x+
√

st) <
1

t− s
ln

Γ(x+ t)
Γ(x+ s)

< ψ
(

x+
s+ t
2

)
(4)

for x � 0 and 0 < s � t , but the better bounds was already proved in [7].

ψ(x+ Iψ(s,t)) <
1

t− s
ln

Γ(x+ t)
Γ(x+ s)

< ψ
(

x+
s+ t
2

)
(5)

where

Iψ(s,t) = ψ−1
(

1
t − s

∫ t

s
ψ(u)du

)

is integral ψ -mean of s and t , ψ−1 denotes the inverse function of ψ . Namely, in [8]
it is proved that √

st � t− s
ln t− lns

� Iψ(s,t).

Since

Iψ(x+ s,x+ t)− x→ s+ t
2

as x → ∞.

this implies that

1
t− s

ln
Γ(x+ t)
Γ(x+ s)

∼ ψ
(

x+
s+ t
2

)
as x → ∞. (6)

The main intention of this paper is to extend this formula and obtain full asymptotical
expansion of the form

1
t − s

ln
Γ(x+ t)
Γ(x+ s)

∼ ψ
(

x+
∞

∑
j=0

c j(s,t)x− j
)

.

The inequalities (2) to (3) have attracted much interest of many mathematicians
and have motivated a large number of research papers involving various generalizations
and improvements, see [15] and an overview in [16] and the references cited therein. It
was shown in [7] that the function

z(x) =
[

Γ(x+ t)
Γ(x+ s)

]1/(t−s)

− x

is convex and decreasing on (−r,∞) for |t− s| < 1, and concave and increasing on the
same interval for |t− s| > 1, where s,t are given real numbers and r = min(s,t) . See
also [5, 17] for alternative proofs. This implies the following result: For all x > 0, the
inequalities

x+
s+ t−1

2
<

[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

< x+
[

Γ(t)
Γ(s)

]1/(t−s)

(7)
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holds for |t− s| < 1, and with reversed sign for |t− s| > 1.
Recently, Burić and Elezović [2, Theorem2.1] gave the following complete asymp-

totic expansion for the Wallis power function[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

∼
∞

∑
n=0

Pn(t,s)x−n+1, (8)

where Pn(t,s) are polynomials of order n defined by

P0(t,s) = 1,

Pn(t,s) =
1
n

n

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
(k+1)(t− s)

Pn−k(t,s) (n ∈ N).
(9)

Here Bk(t) stands for the Bernoulli polynomials defined by the following generating
function:

xetx

ex −1
=

∞

∑
k=0

Bk(t)
xk

k!
. (10)

Polynomials Pn(t,s) have complicated form so by the change of variables

α =
s+ t−1

2
, β1 =

t− s+1
2

, β2 =
−t + s+1

2
,

β = β1β2 =
1− (t− s)2

4
,

authors in [2, Theorem 5.1] presented the following expansion for (8):[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

∼ x+
∞

∑
n=0

Qn+1(α,β )
1
xn , (11)

where Qn(α,β ) is a polynomial obtained from Pn(t,s) and has much more natural
form than Pn(t,s) . Moreover, the authors gave an efficient recurrence formula for de-
termining the coefficients Qn(α,β ) and finally derived closed form for polynomials
Qn(α,β ) .

In this paper we continue the analysis of such asymptotic expansion, with special
attention to the connection with digamma function.

The asymptotic expansion

f (x) ∼ a0 +
a1

x
+

a2

x2 + . . . as x → ∞ (12)

is called asymptotic power series.
The formal manipulations with asymptotic series in the paper are justified by prop-

erties of asymptotic power series; see [9, §1.6]. It is known that two such expansions
can be added or multiplied, and also divided provided that leading coefficient of de-
nominator is different from zero. Also, asymptotic power series may be substituted in
finite linear combinations, in polynomials, and in asymptotic power series. Coefficients
of the new expansion are obtained by formal substitution and rearrangement of terms.

The following two lemmas will be explicitly used in the sequell.
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LEMMA 1. ([9, p. 20]) If the function g has expansion into power series

g(x) =
∞

∑
n=0

cnx
n, as x → 0

and f (x) has asymptotic expansion (12) with leading coefficient a0 = 0 , then g( f (x))
has asymptotic expansion whose coefficients can be obtained by formal substitution and
rearrangement of terms.

LEMMA 2. ([9, p. 21]) If the function f in (12) is differentiable and if f ′ pos-
sesses an asymptotic power series expansion, then

f ′(x) ∼−a1

x2 − 2a2

x3 − 3a3

x4 − . . . , as x → ∞. (13)

2. Functional transformations of an asymptotic series

In this section we will prove some useful technical lemmas.

LEMMA 3. Let A be a function with asymptotic expansion

A(x) ∼
∞

∑
n=1

anx
−n.

Then the composition B(x)= exp(A(x)) has asymptotic expansion of the following form

B(x) ∼
∞

∑
n=0

bnx
−n

where b0 = 1 and

bn =
1
n

n

∑
k=1

kakbn−k, n � 1. (14)

Proof. The existence of the asymptotic expansion of the function B follows from
Lemma 1. Suppose for the moment that A is differentiable and that A′ has asymptotic
expansion. Differentiating equation B(x) = eA(x) we get

B′(x) = A′(x)eA(x) = A′(x)B(x)

so B′ also has asymptotic expansion. So we can write

B′(x) ∼
(

∞

∑
n=1

an(−n)x−n−1

)(
∞

∑
n=0

bnx
−n

)

∼
∞

∑
n=0

(
n

∑
k=0

(−k)akbn−k

)
x−n−1,
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but also

B′(x) ∼
∞

∑
n=0

bn(−n)x−n−1,

which implies that for n � 1

bn =
1
n

n

∑
k=1

kakbn−k.

Let us show that assumption about existence of asymptotic expansion of the func-
tion A is not necessary. Choose N arbitrary large and define

Ã(x) =
N

∑
n=1

anx
−n,

B̃(x) = exp(Ã(x)).

Then the first N coefficients of the asymptotic expansion of the function B̃ coincides
with the coefficients of function B . But Ã is differentiable and Ã′ has asymptotic
expansion. From the equation B̃′(x) = Ã′(x)B̃(x) one gets the same connection (14)
between coefficients for all indices < N . This finishes the proof. �

Applying this procedure to the coefficients of the expression (23) one get (25).
Here is also a dual result, the proof is similar:

LEMMA 4. Let c0 �= 0 and

C(x) ∼
∞

∑
n=0

cnx
−n

be a given asymptotical expansion. Then the composition A(x) = ln(C(x)) has asymp-
totic expansion of the following form

A(x) ∼
∞

∑
n=1

anx
−n

where

an =
cn

c0
− 1

nc0

n−1

∑
k=1

kakcn−k, n � 1. (15)

Since C(x) = exp(A(x)) , it is easy to extract (15) from equation (14).
In the sequel we shall need also the following transform, see [4, Lemma 3.2] for

the similar statement. This lemma has its origin in Euler’s work, see [11] for historical
treatment in the case of Taylor series.

LEMMA 5. Let g be a function with asymptotical expansion (as x → ∞):

g(x) ∼
∞

∑
n=0

cnx
−n, (c0 �= 0).
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Then for all real r it holds

[g(x)]r ∼
∞

∑
n=0

Pn(r)x−n

where
P0(r) = cr

0,

Pn(r) =
1

nc0

n

∑
k=1

[k(1+ r)−n]ckPn−k(r).
(16)

Proof. Denote f (x) = [g(x)]r . This can be written as f (x) = exp[r ln(g(x))] and
existence of asymptotic expansion follows from lemmas above. If g is differentiable
and g′ has an asymptotic expansion, then for r �= 0 it holds

−r f (x)g′(x) = f ′(x)g(x).

Hence

−r

( ∞

∑
k=0

Pk(r)x−k
)( ∞

∑
j=0

(− j)c jx
− j−1

)
∼
( ∞

∑
k=0

(−k)Pk(r)x−k−1
)( ∞

∑
j=0

c jx
− j
)

,

r
n

∑
k=0

kckPn−k(r) =
n

∑
k=0

(−n+ k)ckPn−k(r),

and (16) follows. By direct inspection one can see that (16) remains valid for r = 0.
The rest of the proof follows using the same technique as in Lemma 3. �

Using this lemma we can obtain another formula for the coefficients in Lemma 3.

COROLLARY 6. Let A be a function with asymptotic expansion

A(x) ∼
∞

∑
n=1

anx
−n.

Then the composition B(x)= exp(A(x)) has asymptotic expansion of the following form

B(x) ∼
∞

∑
n=0

bnx
−n

where b0 = 1 and

bn =
n−1

∑
k=0

1
(n− k)!

Pk(n− k)x−n (17)

where (Pn) is defined as in (16), using cn = an+1 .

Proof. We can write

B(x) ∼
∞

∑
k=0

1
k!

x−k
( ∞

∑
n=0

an+1x
−n
)k

(18)
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∼
∞

∑
k=0

x−k

k!

∞

∑
n=0

Pn(k)x−n (19)

∼
∞

∑
n=0

∞

∑
k=0

1
k!

Pn(k)x−n−k (20)

∼
∞

∑
n=0

n

∑
k=0

1
(n− k)!

Pk(n− k)x−n. (21)

For k = n we have Pn(0) = 0, and (17) follows. �

Remark 1. In fact, we can give explicit representation of the coefficients bn ,

exp

( ∞

∑
n=1

an

xn

)
∼ 1+

∞

∑
n=1

bn

xn ,

with the coefficients bn given by

bn = ∑
k1+2k2+...+nkn=n

ak1
1 ak2

2 · · ·akn
n

k1!k2! · · ·kn!

summed over all nonnegative integers kn satisfying the equation

k1 +2k2 + . . .+nkn = n.

The representation using recursive algorithm is better for numerical evaluations.

3. Exponential of digamma function

The psi function behaves like a logarithm, a very simple relation

ln(x+ 1
2 ) < ψ(x+1) < ln(x+ e−γ)

is proved in [7]. Of course, this behaviour can be also seen from the asymptotic expan-
sion [1, p. 259]:

ψ(x) ∼ lnx− 1
2x

− 1
12x2 +

1
120x4 −

1
252x6 + · · · as x → ∞, (22)

Therefore, one may expect that the function

H(x) := eψ(x)

is close to identity. In this sections we give the detailed analysis of asymptotic expan-
sion of the function H(x+ s) and analyse properties of related polynomials.

Asymptotic expansion of the function eψ(x+t) can be obtained from the known
expansion [14, p. 33]

ψ(x+ s) ∼ lnx+
∞

∑
k=1

(−1)k+1Bk(s)
k

x−k. (23)

The following result is direct application of Lemma 3.
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THEOREM 7. It holds:

eψ(x+s) ∼
∞

∑
n=0

Sn(s)x−n+1, (24)

where S0 = 1 and

Sn(s) =
1
n

n

∑
k=1

(−1)k+1Bk(s)Sn−k(s), n � 1. (25)

From (25) it seems that Sn is a polynomial of degree n , but this is not the case.
There is the collapses of the degree for n = 2.

THEOREM 8. Polynomial Sn is of degree n−2 for n � 2 and it satisfies

Sn(s+ t) =
n

∑
k=2

(−1)n−k
(

n−2
n− k

)
Sk(s)tn−k (26)

Proof. We have

H(x+ t + s) = eψ(x+t+s) ∼
∞

∑
n=0

Sn(s)(x+ t)−n+1

∼ S0(s)(x+ t)+S1(s)+
∞

∑
n=2

Sn(s)
∞

∑
k=0

(−n+1
k

)
tkx−n+1−k

∼ S0(s)(x+ t)+S1(s)+
∞

∑
n=2

∞

∑
k=0

Sn(s)(−1)k
(

n+ k−2
k

)
tkx−(n+k)+1

∼ S0(s)(x+ t)+S1(s)+
∞

∑
n=2

n

∑
k=2

Sk(s)(−1)n−k
(

n−2
n− k

)
tn−kx−n+1.

The manipulations with asymptotic series is justified by Lemma 1. This equals

H(x+ t + s) ∼
∞

∑
n=0

Sn(s+ t)x−n+1.

Comparing coefficients of x−n+1 we obtain:

S0(s+ t) = S0(s),
S1(s+ t) = tS0(s)+S1(s),

Sn(s+ t) =
n

∑
k=2

Sk(s)(−1)n−k
(

n−2
n− k

)
tn−k, for n � 2.

From (25) easily follows S2(0) �= 0 (in fact, S2(0) = 1/24) which means that Sn is
polynomial of degree n−2, for n � 2.

�
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Therefore, the leading coefficient of Sn , n � 2 is (−1)nS2(0) = (−1)n/24. The
first few polynomials (Sn) are

S0 = 1,

S1 = s− 1
2
,

S2 =
1
24

,

S3 = − s
24

+
1
48

,

S4 =
s2

24
− s

24
+

23
5760

,

S5 = − s3

24
+

s2

16
− 23s

1920
− 17

3840
,

S6 =
s4

24
− s3

12
+

23s2

960
+

17s
960

− 10099
2903040

,

...

Thus, the function exp(ψ(x)) has the following asymptotic expansion:

eψ(x) ∼ x− 1
2

+
1

24x
+

1
48x2 −

23
5760x3 −

17
3840x4 +

10099
2903040x5 + . . . (27)

This function has a simpler expansion in the terms of x− 1
2 , which contains only

odd powers. Equivalently, we can write this expansion by taking s = 1
2 :

eψ(x+ 1
2 ) ∼ x+

1
24x

− 37
5760x3 +

10313
2903040x5 + . . . (28)

If we write polynomial Sn(s) as a function of variable α , then the expressions will
be somewhat simpler. Let Rn(α) = Sn(s) , where α = s− 1

2 and β = 1
4 . Therefore,

Rn can be calculated as Qn(α, 1
4 ) by formulas from [2] The first few polynomials from

this expansion are:

R0 = 1,

R1 = α,

R2 =
1
24

,

R3 = − α
24

,

R4 =
α2

24
− 37

5760
,

R5 = −α3

24
+

37α
1920

,
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R6 =
α4

24
− 37α2

960
+

10313
2903040

.

THEOREM 9. Properties of polynomials (Rn) are:
(1) Explicit formulae

Rn(α +h) =
n

∑
k=2

(−1)n−k
(

n−2
n− k

)
Rk(h)αn−k, n � 2, (29)

and

Rn(α) =
�n/2	
∑
k=1

(−1)n−2k
(

n−2
n−2k

)
R2k(0)αn−2k, n � 2. (30)

Hence
R2n+1(0) = 0, n � 1 (31)

(2) Appell’s property:

R′
n(α) = −(n−2)Rn−1(α). (32)

Proof. The equation (29) follows from (26) since Rn(α) = Sn(α + 1
2 ) .

Let us prove (31). We start with the known asymptotic expansion [14]

ψ(x+ 1
2 ) ∼ lnx+

∞

∑
k=1

(−1)k+1Bk+1( 1
2)

k+1
x−k+1.

Since
Bk+1( 1

2 ) = −(1−2k)Bk+1

this coefficient is equal to 0 for all even k . Hence, asymptotic expansion of the function
H(x+ 1

2 ) is of the form

H(x+ 1
2) ∼ x · exp(H1(x2)) = x ·H2(x2)

for some series H1 and H2 , so it contains only odd powers. Hence, (31) holds true.
Putting h = 0 in (29), it follows (30).

It remains to prove Appell’s property. From

H(x+ t) = H(x+ 1
2 + α) = eψ(x+ 1

2 +α) ∼
∞

∑
n=0

Rn(α)x−n+1,

it holds
∂H(x+ 1

2 + α)
∂α

=
∂H(x+ 1

2 + α)
∂x

.

Therefore
∞

∑
n=0

R′
n(α)x−n+1 =

∞

∑
n=0

Rn(α)(−n+1)x−n

and (32) easily follows. �
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The property (32) can be called Appell’s property, since (32) implies that

Vn(α) = (−1)nRn+2(α)

are Appell polynomials.
The most important case is s = 1

2 . Then α = 0 and the following expansion holds
true:

eψ(x+ 1
2 ) ∼ x+

1
24x

− 37
5760x3 +

10313
2903040x5 −

5509121
1393459200x7 + . . . (33)

4. The main result

THEOREM 10. Let us denote

F(x,t,s) =
[

Γ(x+ t)
Γ(x+ s)

]1/(t−s)

= exp(ψ(G(x))) (34)

Then the function G has the following asymptotic expansion

G(x) ∼
∞

∑
k=0

ck(t,s)x−k+1 (35)

where

c0(t,s) = 1,

cn(t,s) =
1
n

n−1

∑
k=1

kakcn−k(t,s)+
n

∑
k=1

Bk(1)
k

bn−k(k)

+
Bn+1(1− t)−Bn+1(1− s)

n(n+1)(t− s)
.

(36)

Here Bn(t) are Bernoulli polynomials, (bn(k)) , are defined by (16), and (ak) are de-
fined by (15)

Proof. Exponential and digamma functions are strictly increasing, therefore the in-
verse of x 
→ exp(ψ(x)) is well defined. This is sufficient for the existence of the func-
tion G . The existence of its asymptotic expansion will be clear from the constructive
proof which follows.

Let us denote cn instead of cn(t,s) . We want to determine coefficients (cn) from
the following equation:

ψ
(

x
∞

∑
j=0

c jx
− j
)

= logF(x,t,s).

The following two expansions will be used, see [14, p. 32 and p. 33]

logF(x,t,s) ∼ lnx+
∞

∑
n=1

Bn+1(1− t)−Bn+1(1− s)
n(n+1)(t− s)

1
xn ,
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ψ(x) ∼ lnx−
∞

∑
n=1

Bn(1)
n

1
xn .

Then we obtain

lnx+ ln

( ∞

∑
k=0

ckx
−k
)
−

∞

∑
k=1

Bk(1)
k

(
x

∞

∑
j=0

c jx
− j
)−k

∼ lnx+
∞

∑
n=1

Bn+1(1− t)−Bn+1(1− s)
n(n+1)(t− s)

1
xn .

(37)

Extracting the coefficients of the power x0 , it follows from here that lnc0 = 0, and
hence c0 = 1. Using (15) and (16), the left side of this equation can be written, after
removing the term lnx , as

∞

∑
n=1

anx
−n−

∞

∑
k=1

Bk(1)
k

x−k
∞

∑
j=0

b j(k)x− j

∼
∞

∑
n=1

(
an−

n

∑
k=1

Bk(1)
k

bn−k(k)
)

x−n.

(38)

The coefficient cn which should be determined from here is hidden in the calculation
of an . Using (15) we can write

an = cn− 1
n

n−1

∑
k=1

kakcn−k. (39)

Linking together (37), (38) and (39) immediately follows (36), which proves the theo-
rem. �

Using this procedure the following coefficients can be derived:

c0 = 1,

c1 =
1
2
(t + s),

c2 = − 1
24

(t− s)2,

c3 =
1
48

(t − s)2(s+ t−1),

c4 = − 1
5760

(t− s)2
[
73(t2 + s2)+94ts−120(t+ s)+20

]
,

c5 =
1

3840
(t − s)2

[
33(t3 + s3)+47ts(t + s)

−73(t2 + s2)−94ts+20(t+ s)+20)
]
,

c6 =
1

2903040
(t− s)2

[
18125(t4 + s4)+27292(t3s+ ts3)+30126t2s2

−49896(t3+ s3)−71064(t2s+ s2t)+19404(t2+ s2)
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+21672ts+30240(t+ s)−10248
]

We shall now express coefficients cn in terms of variables α and β . Denote

cn(α,β ) = c(t,s).

In relation (36) we substitute the only term which depends on t and s :

Bn+1(1− t)−Bn+1(1− s)
(n+1)(t− s)

with (−1)n+1∇n(α,β ) , see [2]. After simplyfication, the first few coefficients can be
written as:

c0 = 1,

c1 =
1
2

+ α,

c2 =
1
24

(−1+4β ),

c3 =
1
24

α(1−4β ),

c4 =
1

5760

(−27+240α2−52β
)
(−1+4β ),

c5 = − 1
1920

α
(−27+80α2−52β

)
(−1+4β ),

c6 = − 1
2903040

[
7625+120960α4−3024α2(27+52β )

+88β (185+134β )
]
(−1+4β ).

Polynomials (cn) has analogous properties as those given for polynomials (Sn)
and (Rn) . The proof is similar, so we omit it.

THEOREM 11. It holds
(1) Explicit formulae

cn(α,β ) =
n

∑
k=2

(−1)n−k
(

n−2
n− k

)
ck(0,β )αn−k, for n � 2. (40)

(2) Appell property

∂cn(α,β )
∂α

= −(n−2)cn−1(α,β ), n � 2. (41)

Let us denote
dn(β ) = cn(0,β ).
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THEOREM 12. Function G from (34) has the following asymptotic expansion

G(x) ∼ (x+ α)+ 1
2 +

∞

∑
k=1

d2k(β )(x+ α)−2k+1, (42)

where
d0(β ) = 1,

dn(β ) =
1
n

n−1

∑
k=1

kakdn−k(β )+
n−1

∑
k=1

Bk(1)
k

bn−k(k)

+
(−1)n+1

n(n+1)

n

∑
k=0

(
n+1
k+1

)
Bn−kTk(β ), n � 1,

(43)

where (bn( j)) are defined by (16) (with dk instead of ck ) and (Tk) are polynomials in
β defined by

T0(β ) = T1(β ) = 1,

Tn(β ) = Tn−1(β )−βTn−2(β ).
(44)

Proof. The formula

G(x) ∼
∞

∑
k=0

dk(β )(x+ α)−k+1

and the calculation of the coefficients given in (43) follow immediately from the previ-
ous theorem, using representation of the Bernoulli quotient through internal variables
α and β given in [2]. The only fact which has to be proved is: d2n+1(β ) = 0.

The starting expansion will be

Γ(x+ t)
Γ(x+ s)

1/(t−s)

∼
∞

∑
n=0

A2n(β )(x+ α)−2n+1,

or the equivalent form given in [14, p. 34]. Take here t = α +β1 , s = α +β2 . Then for
α = 0 it follows that asymptotic expansion of the function F contains only odd powers
and has the form

F(x,β1,β2) = xF1(x2)

for some series F1 . On the other hand, this expansion can be written in the form

xF1(x2) = H(G(x)) (45)

where H(x) = exp(ψ(x)) . From (33), in the case α = 0 the asymptotic expansion of
H has the form

H(x) ∼ x+
∞

∑
n=1

R2n(β )x−2n−1.

Suppose that in the asymptotic expansion of the function G

G(x) ∼
∞

∑
n=0

dn(β )x−n+1
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it holds d2k+1 �= 0 for some k � 1. Then there exist a minimal k with this property. In
the equation (45) the right side will contain the member d2k+1x−2k (and the exponent
2k is minimal with this property) which does not exists on the left side of this equation.
Thus, it must be d2k+1(β ) = 0 for all k � 1 and the theorem is proved. �

The first few coefficients dn are:

d0 = 1,

d1 =
1
2
,

d2 =
1
24

(−1+4β ),

d4 =
1

5760
(27−56β −208β 2),

d6 =
1

2903040
(−7625+14220β +53328β 2 +47168β 3),

In particular, for s = 1
4 and t = 3

4 it holds α = 0 and β = 3
16 , so we obtain

[
Γ(x+ 3

4)
Γ(x+ 1

4)

]2

∼ exp

(
ψ
[
x+

1
2
− 1

96x
+

49
30720x3 −

177473
185794560x5 + . . .

])
. (46)

As a consequence of obtained expansion, the following hypothesis about lower
bound in Kershow second inequality can be posed:

HYPOTHESIS. It holds[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

> exp
(

ψ(x+ 1
2 (t + s)− 1

24 (t− s)2x−1)
)
.
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[3] T. BURIĆ AND N. ELEZOVIĆ,New asymptotic expansions of the quotient of gamma functions, Integral
Transforms Spec. Funct. 23 (2012), 355–368.
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Lenka Vukšić, Faculty of Electrical Engineering and Computing,
University of Zagreb, Unska 3, 10000 Zagreb, Croatia

e-mail: lenka.vuksic@fer.hr

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


