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SOME PROPERTIES AND INEQUALITIES FOR

hhhh–GEOMETRICALLY CONVEX FUNCTIONS

BO ZHANG, BO-YAN XI AND FENG QI

Abstract. In the paper, the definition of h -geometrically convex functions is introduced, some
properties of h -geometrically convex functions are studied, and several integral inequality for
the newly defined functions are established.

1. Introduction

Throughout this paper, we use the following notations:

R = (−∞,∞), R0 = [0,∞), and R+ = (0,∞).

We first recite some definitions of various convex functions.

DEFINITION 1.1. A function f : I ⊆ R → R is said to be convex if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y) (1.1)

holds for all x,y ∈ I and t ∈ [0,1].

DEFINITION 1.2. A function f : I ⊆R+ →R+ is said to be geometrically convex
if

f
(
xty1−t)� [ f (x)]t [ f (y)]1−t (1.2)

holds for all x,y ∈ I and t ∈ [0,1].

DEFINITION 1.3. ([14, Definition 1.9]) A function f : I ⊆ R+ → R+ is said to
be s-geometrically convex if

f
(
xty1−t)� [ f (x)]t

s
[ f (y)](1−t)s (1.3)

for some s ∈ (0,1] , where x,y ∈ I and t ∈ [0,1] .

DEFINITION 1.4. ([6, Definition 4]) Let I,J ⊆R be intervals, (0,1)⊆ J , h : J →
R0 be a non-negative function, and h �≡ 0. A function f : I → R0 is called h -convex,
or say, f belongs to the class SX(h, I) , if f is non-negative and

f (tx+(1− t)y) � h(t) f (x)+h(1− t) f (y) (1.4)

for all x,y ∈ I and t ∈ [0,1] .
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DEFINITION 1.5. ([6, Section 3]) Let h be a function defined on an interval J ⊆
R . It is said to be super-multiplicative on J if

h(xy) � h(x)h(y) (1.5)

is valid for all x,y ∈ J . If the inequality (1.5) reverses, then f is said to be a sub-
multiplicative function on J .

For more information on notions of various convex functions and their Hermite-
Hadamard type inequalities, please refer to recently published articles [1, 2, 3, 4, 5, 7,
8, 9, 10, 11, 12, 13, 15] and closely related references therein.

In this paper, we will introduce a new notion “h -geometrically convex function”,
study some basic properties of this kind of functions, and establish several inequalities
of the newly introduced functions.

2. A new notion

We now introduce a new notion “h -geometrically convex function” as follows.

DEFINITION 2.1. Let h : [0,1]→ R0 and h �≡ 0. A function f : I ⊆ R+ → R+ is
called h -geometrically convex, or say, f belongs to the class HGX(h, I) , if

f
(
xty1−t)� [ f (x)]h(t)[ f (y)]h(1−t) (2.1)

for all x,y ∈ I and t ∈ [0,1] . If the inequality (2.1) is reversed, then f is called h -
geometrically concave and denoted by f ∈ HGV(h, I) .

REMARK 2.1. It is clear that

1. when h(t) = ts on [0,1] , the h -geometrically convex functions become the s-
geometrically convex functions;

2. when h(t) = t on [0,1] , the h -geometrically convex functions become the geo-
metrically convex functions.

REMARK 2.2. It is easy to show that the inequality (2.1) is equivalent to

ln f
(
et lnx+(1−t) lny)� h(t) ln f

(
elnx)+h(1− t) ln f

(
elny) (2.2)

for all x,y ∈ I and t ∈ [0,1] .

REMARK 2.3. The above Definition 2.1 was also independently introduced in the
preprint [4, Definition 9].
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3. Properties

We now discuss some properties of the h -geometrically convex functions.

THEOREM 3.1. Let h : [0,1]→R0 and f : I ⊆R+ → [1,∞) . Then f ∈HGX(h, I)
if and only if ln f (eu) ∈ SX(h, ln I) , where ln I � {lnx : x ∈ I} .

Proof. This follows from the inequality (2.2). �

THEOREM 3.2. Let h : [0,1] → R0 and f : I ⊆ R+ → R+ . Then f ∈ HGX(h, I)
if and only if 1

f ∈ HGV(h, I) .

Proof. If f ∈ HGX(h, I) , we have

f
(
xty1−t)� [ f (x)]h(t)[ f (y)]h(1−t)

for x,y ∈ I and t ∈ [0,1] , so

[ f
(
xty1−t)]−1 � [ f (x)]−h(t)[ f (y)]−h(1−t)

for all x,y ∈ I and t ∈ [0,1] , namely, 1
f ∈ HGV(h, I) .

Similarly, if 1
f ∈ HGV(h, I) , then f ∈ HGX(h, I) . Theorem 3.2 is proved. �

THEOREM 3.3. Let h : [0,1]→R0 , f : I ⊆R+ →R+ , and ϕ : J ⊆R+→ϕ(J)⊆ I .

1. If f ∈ HGX(h, I) is an increasing (or decreasing respectively) function on I
and ϕ is geometrically convex (or concave respectively) function on J , then
f ◦ϕ ∈ HGX(h,J) .

2. If f ∈ HGV(h, I) is an increasing (or decreasing respectively) function on I
and ϕ is geometrically convex (or concave respectively) function on J , then
f ◦ϕ ∈ HGV(h,J) .

Proof. We only prove the case that f ∈ HGX(h, I) is an decreasing function on I
and ϕ is a geometrically concave function on J .

Since ϕ is a geometrically concave function on J , for all x,y ∈ J and t ∈ [0,1] ,
we have

ϕ
(
xty1−t)� [ϕ(x)]t [ϕ(y)]1−t .

Since f is an decreasing and h -geometrically convex function on I , we have

f
(
ϕ
(
xty1−t))� f

(
[ϕ(x)]t [ϕ(y)]1−t)� [ f (ϕ(x))]h(t)[ f (ϕ(y))]h(1−t)

for all x,y ∈ J and t ∈ [0,1] , and then f ◦ ϕ ∈ HGX(h,J) . Theorem 3.3 is thus
proved. �
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THEOREM 3.4. Let hi : [0,1] → R0 for i = 1,2 and f : I ⊆ R+ → R+ . If

1. either h2(t) � h1(t) for t ∈ [0,1] , f : I ⊆ R+ → (0,1] , and f ∈ HGX(h2, I) ,

2. or h2(t) � h1(t) for t ∈ [0,1] , f : I ⊆ R+ → [1,∞) , and f ∈ HGX(h2, I) ,

then f ∈ HGX(h1, I) .

Proof. This is an easy consequence of Definition 2.1. �

COROLLARY 3.1. Let hi : [0,1] → R0 for i = 1,2, . . . ,n and f : I ⊆ R+ → R+ .
If

1. either h(t) = min{hi(t),1 � i � n} for t ∈ [0,1] and f : I ⊆ R+ → (0,1] ,

2. or h(t) = max{hi(t),1 � i � n} for t ∈ [0,1] and f : I ⊆ R+ → [1,∞) ,

then f ∈ HGX(h, I) .

Proof. This follows from utilizing Theorem 3.4 and induction. �

THEOREM 3.5. Let h : [0,1]→ R0 and f ∈ HGX(h, I) .

1. If h(t)+h(1− t)� 1 for t ∈ [0,1] , then f (x) � 1 for x ∈ I ;

2. If h(t)+h(1− t)� 1 for t ∈ [0,1] , then f (x) � 1 for x ∈ I .

Proof. Since f ∈ HGX(h, I) , we have

f (x) = f
(
xtx1−t)� [ f (x)]h(t)[ f (x)]h(1−t) = [ f (x)]h(t)+h(1−t),

which can be rearranged as

[ f (x)]h(t)+h(1−t)−1 � 1.

By the property of the exponential function, Theorem 3.5 follows. �

4. Inequalities

THEOREM 4.1. Let h : [0,1]→ R0 and f ∈ HGX(h, I) such that 1 ∈ I . If

1. either h is a sub-multiplicative function on [0,1] and f : I → (0,1] ,

2. or h is a super-multiplicative function on [0,1] and f : I → [1,∞) ,

then, for all α,β > 0 and x,y ∈ I , with α + β = γ � 1 , we have

f
(
xαyβ )� [ f (x)]h(α)[ f (y)]h(β )[ f (1)]h(α(1−γ)/γ)+h(β (1−γ)/γ). (4.1)

Specially, if f (1) = 1 , then

f
(
xαyβ)� [ f (x)]h(α)[ f (y)]h(β ). (4.2)
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Proof. If h : [0,1] → R0 is a sub-multiplicative function and f : I → (0,1] , let
λ = α

γ , then

f
(
xαyβ )= f

(
xλ γy(1−λ )γ)� [ f (xγ )]h(λ )[ f (yγ )]h(1−λ )

� {[ f (x)]h(γ)[ f (1)]h(1−γ)}h(λ ){[ f (y)]h(γ)[ f (1)]h(1−γ)}h(1−λ )

� [ f (x)]h(λ γ)[ f (y)]h((1−λ )γ)[ f (1)]h((λ γ)+h((1−λ )(1−γ))

= [ f (x)]h(α)[ f (y)]h(β )[ f (1)]h(α(1−γ)/γ)+h(β (1−γ)/γ)

for x,y ∈ I . Specially, if f (1) = 1, we can obtain the inequality (4.2) easily. The proof
of Theorem 4.1 is complete. �

THEOREM 4.2. Let h : [0,1]→ R0 , f ∈HGX(h, I) , and λi > 0 with ∑n
i=1 λi = 1 .

If

1. either h is a sub-multiplicative function on [0,1] and f : I → (0,1] ,

2. or h is a super-multiplicative function on [0,1] and f : I → [1,∞) ,

then, for all xi ∈ I and i = 1,2, . . . ,n, we have

f

(
n

∏
i=1

xλi
i

)
�

n

∏
i=1

[ f (xi)]h(λi). (4.3)

Proof. When n = 2, from Definition 2.1, we have

f
(
xλ1
1 xλ2

2

)
� [ f (x1)]h(λ1)[ f (x2)]h(λ2)

for x1,x2 ∈ I . So the inequality (4.3) holds for n = 2.
Suppose that the inequality (4.3) holds for n = k , i.e.,

f

(
k

∏
i=1

xλi
i

)
�

k

∏
i=1

[ f (xi)]h(λi)

for xi ∈ I and i = 1,2, . . . ,k . By this hypothesis, it follows that, when n = k+1, putting
Λk = ∑k

i=1 λi gives

f

(
k+1

∏
i=1

xλi
i

)
= f

(
x

λk+1
k+1

(
k

∏
i=1

xλi
i

))
= f

(
x

λk+1
k+1

(
k

∏
i=1

xλi/Λk
i

)Λk
)

� [ f (xk+1)]h(λk+1)

[
f

(
k

∏
i=1

xλi/Λk
i

)]h(Λk)

= [ f (xk+1)]h(λk+1)
k

∏
i=1

[ f (xi)]h(λi/Λk)h(Λk).

Since h is a sub-multiplicative function on [0,1] and f : I → (0,1] , or h is a super-
multiplicative function on [0,1] and f : I → [1,∞) , we have

f

(
k+1

∏
i=1

xλi
i

)
� [ f (xk+1)]h(λk+1)

k

∏
i=1

[ f (xi)]h(λi/Λk)h(Λk) �
k+1

∏
i=1

[ f (xi)]h(λi)
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for xi ∈ I and i = 1,2, . . . ,n . Equivalently speaking, when n = k + 1, the inequal-
ity (4.3) holds. By induction, the proof of Theorem 4.2 is complete. �

THEOREM 4.3. Let h : [0,1]→R0 and f : I ⊆R+ →R+ satisfying f ∈HGX(h1,
[a,b]) and f ∈ L([a,b]) , where a,b ∈ I with 0 < a < b. If

1. either h(t) � t for t ∈ [0,1] and f : [a,b] → (0,1] ,

2. or h(t) � t for t ∈ [0,1] and f : [a,b] → [1,∞) ,

then

1
lnb− lna

∫ b

a

f (x)
x

dx � L( f (a), f (b)) (4.4)

and

1
lnb− lna

∫ b

a
f (x)dx � L(a f (a),b f (b)), (4.5)

where L(u,v) is the logarithmic mean defined by

L(u,v) =

⎧⎨
⎩

u− v
lnu− lnv

, u �= v;

u, u = v.
(4.6)

Proof. Let x = a1−tbt for 0 � t � 1. Using the h -geometric convexity of f on
[a,b] , either utilizing h(t) � t for t ∈ [0,1] and f : I ⊆ R+ → (0,1] , or employing
h(t) � t for t ∈ [0,1] and f : I ⊆ R+ → [1,∞) , we obtain

1
lnb− lna

∫ b

a

f (x)
x

dx =
∫ 1

0
f
(
a1−tbt)dt �

∫ 1

0
[ f (a)]h(1−t)[ f (b)]h(t) d t

�
∫ 1

0
[ f (a)]1−t [ f (b)]t d t = L( f (a), f (b))

and

1
lnb− lna

∫ b

a
f (x)dx =

∫ 1

0
a1−tbt f

(
a1−tbt)d t �

∫ 1

0
a1−tbt [ f (a)]h(1−t)[ f (b)]h(t) d t

�
∫ 1

0
a1−tbt [ f (a)]1−t [ f (b)]t dt = L(a f (a),b f (b)).

The proof of Theorem 4.3 is complete. �

COROLLARY 4.1. Under conditions of Theorem 4.3, if h(t) = t , then

1
lnb− lna

∫ b

a

f (x)
x

dx � L( f (a), f (b)) (4.7)

and

1
lnb− lna

∫ b

a
f (x)dx � L(a f (a),b f (b)). (4.8)
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THEOREM 4.4. Let hi : [0,1]→R0 for i = 1,2 and f ,g : I ⊆R+ →R+ satisfying
f ∈ HGX(h1, [a,b]) , g ∈ HGX(h2, [a,b]) , and f g ∈ L([a,b]) , where a,b ∈ I with 0 <
a < b. If

1. either min{h1(t),h2(t)} � t for t ∈ [0,1] and f ,g : [a,b]→ (0,1] ,

2. or max{h1(t),h2(t)} � t for t ∈ [0,1] and f ,g : [a,b]→ [1,∞) ,

then

1
lnb− lna

∫ b

a

f (x)
x

g(x)dx � L( f (a)g(a), f (b)g(b)) (4.9)

and

1
lnb− lna

∫ b

a
f (x)g(x)dx � L(a f (a)g(a),b f (b)g(b)), (4.10)

where L(u,v) is defined as in (4.6).

COROLLARY 4.2. Under conditions of Theorem 4.4, if h(t) = t , then

1
lnb− lna

∫ b

a

f (x)
x

g(x)dx � L( f (a)g(a), f (b)g(b)) (4.11)

and

1
lnb− lna

∫ b

a
f (x)g(x)dx � L(a f (a)g(a),b f (b)g(b)). (4.12)
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