
Journal of
Classical

Analysis

Volume 3, Number 2 (2013), 109–127 doi:10.7153/jca-03-10

EXTENSION OF SOME CLASSICAL SUMMATION

THEOREMS FOR THE GENERALIZED HYPERGEOMETRIC

SERIES WITH INTEGRAL PARAMETER DIFFERENCES

ARJUN K. RATHIE AND R. B. PARIS

Abstract. We derive extensions of the classical summation theorems of Kummer and Watson
for the generalized hypergeometric series where r pairs of numeratorial and denominatorial
parameters differ by positive integers. The results are obtained with the help of a generalization
of Kummer’s second summation theorem for the 2F1 series given recently by Rakha and Rathie
[Integral Transforms and Special Functions, 22, 823–840 (2011)] together with generalizations
of the Euler transformations for the r+2Fr+1(z) function. A few interesting special cases are also
presented.

1. Introduction

The generalized hypergeometric function with p numeratorial and q denominato-
rial parameters is defined by the series [21, p. 41]

pFq

[
a1,a2, . . . ,ap

b1,b2, . . . ,bq
;z

]
=

∞

∑
n=0

(a1)n(a2)n . . . (ap)n

(b1)n(b2)n . . .(bq)n

zn

n!
, (1.1)

where for nonnegative integer n the Pochhammer symbol (or ascending factorial) is
defined by (a)0 = 1 and for n � 1 by (a)n = a(a+1) . . .(a+n−1) . However, for all
n (whether an integer or non-integer) we write

(a)n =
Γ(a+n)

Γ(a)
. (1.2)

In what follows we shall adopt the convention of writing the finite sequence of param-
eters (a1, . . . ,ap) simply by (ap) and the product of p Pochhammer symbols by

((ap))k ≡ (a1)k . . . (ap)k,

where an empty product ( p = 0) is understood to be unity. When p � q the above series
on the right-hand side of (1.1) converges for |z| < ∞ , but when p = q+1 convergence
occurs when |z| < 1 (unless the series terminates).

In the theory of hypergeometric and generalized hypergeometric functions sum-
mation and transformation formulas play a key role. Recently, considerable progress
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has been made in the direction of generalizing the classical summation theorems, such
as those of Gauss and Kummer for the series 2F1 , and of Watson, Dixon, Whipple and
Saalschütz for the series 3F2 , and others. The summation theorems that we extend in
our present investigation are given by the following:

KUMMER’S SUMMATION THEOREM I

2F1

[
a, b

1+a−b
;−1

]
=

Γ(1+a−b)Γ(1+ 1
2 a)

Γ(1+a)Γ(1+ 1
2 a−b)

, (1.3)

KUMMER’S SUMMATION THEOREM II

2F1

[
a, b

1
2a+ 1

2b+ 1
2
; 1

2

]
=

π
1
2 Γ( 1

2 a+ 1
2 b+ 1

2 )
Γ( 1

2 a+ 1
2 )Γ( 1

2 b+ 1
2 )

, (1.4)

KUMMER’S SUMMATION THEOREM III

2F1

[
a, 1−a

c
; 1

2

]
=

Γ( 1
2 c)Γ( 1

2 c+ 1
2 )

Γ( 1
2 c+ 1

2 a)Γ( 1
2 c− 1

2 a+ 1
2 )

, (1.5)

WATSON’S SUMMATION THEOREM

3F2

[
a, b, c

1
2a+ 1

2b+ 1
2 , 2c

;1

]
=

Γ( 1
2 )Γ(c+ 1

2 )Γ( 1
2 a+ 1

2 b+ 1
2 )Γ(c+ 1

2 − 1
2 a− 1

2 b)
Γ( 1

2 a+ 1
2 )Γ( 1

2 b+ 1
2 )Γ(c+ 1

2 − 1
2 a)Γ(c+ 1

2 − 1
2 b)

(1.6)

provided ℜ(2c−a−b)>−1. It has been recently pointed out in [1] that the summation
theorems (1.4) and (1.5) were first obtained by Kummer [7] and have been erroneously
attributed to Gauss and Bailey respectively in the book by Slater [21, p. 243–245].

During 1992–1996, Lavoie et al. [8, 9, 10] generalized the summation theorems in
(1.3)–(1.5) and also those of Watson, Dixon and Whipple for the 3F2 series by consid-
ering their contiguous extensions, and obtained a large number of special and limiting
cases (all verified with the help of Mathematica and Maple). Specifically, they obtained
the explicit expressions of

2F1

[
a, b

1+a−b+ i
;−1

]
, (1.7)

2F1

[
a, b

1
2 (a+b+ i+1)

; 1
2

]
(1.8)

and

2F1

[
a, 1−a+ i

c
; 1

2

]
, (1.9)

each for i = 0,±1, . . . ,±5. For i = 0, these results reduce to (1.3), (1.4) and (1.5)
respectively. In addition, they also obtained the explicit expression of the series

3F2

[
a, b, c

1
2(a+b+ i+1), 2c+ j

;1

]
, (1.10)
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for i, j = 0,±1,±2, which when i = j = 0 reduces to (1.6). In [19], Rakha and Rathie
generalized the above results (1.7)–(1.9) and (1.10) with j = 0 to the most general case
for any integer i .

In this paper we provide extensions of the above-mentioned classical summation
theorems to higher-order hypergeometric series when there are r pairs of numeratorial
and denominatorial parameters differing by positive integers (mr) . An early result of
this type was the generalized Karlsson-Minton theorem (which extends the well-known
Gauss summation theorem) given in Theorem 2, together with the special case when the
series terminates (which extends the Vandermonde-Chu summation formula) derived
by Miller [13]. A similar extension of the Saalschütz summation theorem has recently
been given in [6]. The approach we adopt here is to make use of the contiguous form of
Kummer’s second summation theorem for the 2F1 series derived in [19], together with
two recently obtained Euler-type transformations for r+2Fr+1 functions in [15, 17].

The plan of the paper is as follows. In Section 2 we collect together several the-
orems that will be required in the sequel. In Section 3, we derive the extension of
Kummer’s second summation theorem in the form

r+2Fr+1

[
a, b,

1
2 (a+b+ j +1),

( fr +mr)
( fr)

; 1
2

]

for j = 0,±1,±2, . . . , thereby extending earlier results in [5]. Sections 4 and 5 deal
with the extension of the first and third Kummer summation theorems in the form

r+2Fr+1

[
a, b,

1+a−b+ j,
( fr +mr)

( fr)
;−1

]

and

r+2Fr+1

[
a, 1−a+ j,

c,
( fr +mr)

( fr)
; 1

2

]

for j = 0,±1,±2, . . . .
Finally, in Section 6 we provide the extension of Watson’s summation theorem

with a single pair of numeratorial and denominatorial parameters differing by a positive
integer m in the form

4F3

[
a, b, c,

1
2 (a+b+1), 2c,

f +m
f

;1

]
.

In addition, several interesting special cases of the above-mentioned results are also
given. These results are of a general character and should help to advance the theory of
the evaluation of higher-order hypergeometric series.

2. Results required

In this section we collect together several results that will be required in our present
investigation. The generalization of Kummer’s second summation theorem for the
2F1( 1

2 ) series and the generalized Karlsson-Minton summation formula are given by
the following two theorems.
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THEOREM 1. For j = 0,±1,±2, . . . , we have the contiguous form of Kummer’s
second summation theorem for the 2F1 series given by [19]

2F1

[
a, b

1
2 (a+b+ j +1)

; 1
2

]

=
π

1
2 Γ( 1

2a+ 1
2b+ 1

2 j+ 1
2)Γ( 1

2a− 1
2b− 1

2 j+ 1
2)

Γ( 1
2b)Γ( 1

2b+ 1
2)Γ( 1

2a− 1
2b+ 1

2 | j|+ 1
2)

| j|
∑
n=0

(| j|
n

)
(∓1)nΓ( 1

2b+ 1
2n)

Γ( 1
2a+ 1

2− 1
2 | j|+ 1

2n)
, (2.1)

where the upper or lower sign is chosen according as j � 0 or j < 0 respectively.

THEOREM 2. Let (mr) be a sequence of positive integers and m := m1 + · · ·+mr .
The generalized Karlsson-Minton summation theorem is given by [17, 18]

r+2Fr+1

[
a,b,
c,

( fr +mr)
( fr)

;1

]
=

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

m

∑
k=0

(−1)k(a)k(b)kCk,r

(1+a+b− c)k
(2.2)

provided ℜ(c−a−b) > m.

The coefficients Ck,r appearing in (2.2) are defined for 0 � k � m by

Ck,r =
1
Λ

m

∑
j=k

σ jS
(k)
j , Λ = ( f1)m1 . . . ( fr)mr , (2.3)

with C0,r = 1, Cm,r = 1/Λ . The S(k)
j denote the Stirling numbers of the second kind

and the σ j (0 � j � m) are generated by the relation

( f1 + x)m1 · · ·( fr + x)mr =
m

∑
j=0

σ jx
j. (2.4)

In [16], an alternative representation for the coefficients Ck,r is given as the termi-
nating hypergeometric series of unit argument

Ck,r =
(−1)k

k! r+1Fr

[−k, ( fr +mr)
( fr)

;1

]
. (2.5)

When r = 1, with f1 = f , m1 = m , Vandermonde’s summation theorem [21, p. 243]
can be used to show that

Ck,1 =
(

m
k

)
1

( f )k
. (2.6)

The following three theorems give transformations of the r+2Fr+1(z) hypergeo-
metric functions in the special case that r pairs of numeratorial and denominatorial
parameters differ by positive integers. Theorems 4 and 5 generalize the familiar Euler
transformations for the Gauss 2F1(z) function.
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THEOREM 3. Let (mr) denote a set of positive integers with m := m1 + · · ·+mr .
Then, when |z| < 1 , we have [14]

r+2Fr+1

[
a,b,
c,

( fr +mr)
( fr)

;z

]
=

m

∑
k=0

(a)k(b)k

(c)k
zkCk,r 2F1

[
a+ k,b+ k

c+ k
;z

]
, (2.7)

where the coefficients Ck,r are defined in (2.3) or (2.5). The expansion (2.7) also holds
when z = 1 provided ℜ(c−a−b) > m.

The result (2.7) can be deduced as a particular case of the more general expansion
given by Luke in [11, Eq. (5.10.2(4))] combined with the fact that Ck,r = 0 for k > m
[16]. It is also related to the more general expansion obtained by Karlsson [3] for
a hypergeometric function with integral parameter differences expressed as an r -fold
sum of lower-order hypergeometric functions; see also [22] for a simpler derivation.

THEOREM 4. Let (mr) be a sequence of positive integers and m := m1 + · · ·+mr .
Then if b �= f j (1 � j � r) , (λ )m �= 0 , where λ := c−b−m, we have the first Euler-
type transformation [15, 17]

r+2Fr+1

[
a,b,
c,

( fr +mr)
( fr)

;z

]
= (1− z)−a

m+2Fm+1

[
a,c−b−m,

c,
(ξm +1)

(ξm) ;
z

z−1

]
(2.8)

for |arg(1−z)|< π . The (ξm) are the nonvanishing zeros of the associated parametric
polynomial Qm(t) of degree m given by

Qm(t) =
1

(λ )m

m

∑
k=0

(b)kCk,r(t)k(λ − t)m−k ≡
m

∑
j=0

d jt
j, d0 = 1, (2.9)

where the coefficients Ck,r are defined in (2.3). The polynomial Qm(t) is normalized so
that Qm(0) = 1 .

THEOREM 5. Let (mr) be a sequence of positive integers and m := m1 + · · ·+mr .
Then if (c− a−m)m �= 0 , (c− b−m)m �= 0 , we have the second Euler-type transfor-
mation [15], [17, (5.8), (5.9)]

r+2Fr+1

[
a,b,
c,

( fr+mr)
( fr)

;z

]
= (1− z)c−a−b−m

m+2Fm+1

[
c−a−m, c−b−m,

c,
(ηm+1)
(ηm) ;z

]
(2.10)

for |arg(1− z)|< π .
The (ηm) are the nonvanishing zeros of the associated parametric polynomial

Q̂m(t) of degree m (d̂m �= 0) given by

Q̂m(t) =
m

∑
k=0

(−1)kCk,r(a)k(b)k(t)k

(c−a−m)k(c−b−m)k
Gm,k(t) ≡

m

∑
j=0

d̂ jt
j, (2.11)

where

Gm,k(t) := 3F2

[−m+ k,t + k,c−a−b−m
c−a−m+ k,c−b−m+ k

;1

]
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and the coefficients Ck,r are defined in (2.3). For 0 � k � m, the function Gm,k(t) is a
polynomial in t of degree m−k and Q̂m(t) is normalized so that Q̂m(0) = 1 (d̂0 = 1) .

We remark that in [15, 17] the transformations (2.8) and (2.10) were established
in the domains |z| < 1, ℜ(z) < 1

2 and |z| < 1, respectively; but these domains can be
extended to |arg(1− z)|< π by analytic continuation.

In the particular case r = 1, m1 = m = 1, f1 = f , we have the associated para-
metric polynomial from (2.9)

Q1(t) = 1+
(b− f )t

(c−b−1) f

with the nonvanishing zero ξ1 = ξ (provided b �= f , c−b−1 �= 0) given by

ξ =
(c−b−1) f

f −b
, (2.12)

and from (2.11)

Q̂1(t) = 1− {(c−a−b−1) f +ab}t
(c−a−1)(c−b−1) f

with the nonvanishing zero η1 = η (provided c− a− 1, c− b− 1 �= 0 and d̂1 �= 0)
given by1

η =
(c−a−1)(c−b−1) f
ab+(c−a−b−1) f

. (2.13)

In the case r = 1, the transformation (2.8) has been obtained previously in [20] and
both (2.8) and (2.10) in [12] using different methods.

The transformation (2.10) has been employed recently to obtain a generalization of
Saalschütz’s theorem in [6] when there are r pairs of numeratorial and denominatorial
parameters differing by positive integers.

3. Extension of Kummer’s second summation theorem

Our main result in this section is given by the following theorem which extends
Kummer’s second summation theorem (1.4) to the generalized hypergeometric series
with r pairs of numeratorial and denominatorial parameters differing by positive inte-
gers (mr) .

THEOREM 6. Let (mr) be a set of positive integers with m := m1 + · · ·+mr . Then,
we have the summation

r+2Fr+1

[
a, b,

1
2(a+b+ j +1),

( fr +mr)
( fr)

; 1
2

]

=
2b−1Γ( 1

2a+ 1
2b+ 1

2 j + 1
2 )Γ( 1

2a− 1
2b− 1

2 j + 1
2 )

Γ(b)Γ( 1
2a− 1

2b+ 1
2 | j|+ 1

2 )

| j|
∑
n=0

(∓1)n
(| j|

n

)
Gn(a,b) (3.1)

1If the transformation (2.8) is applied again to the hypergeometric function on the right-hand side with f
replaced by ξ we find from (2.12) η = (c−a−1)ξ/(ξ −a) , which simplifies to yield (2.13).
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for j = 0,±1,±2, . . . , where

Gn(a,b) :=
m

∑
k=0

(a)kCk,r Γ( 1
2 b+ 1

2 (n+ k))
Γ( 1

2 a+ 1
2 + 1

2 (n+ k−| j|)) (3.2)

and the upper or lower sign is chosen according as j � 0 or j < 0 , respectively. The
coefficients Ck,r are defined in (2.3) or (2.5) and, when r = 1 , in (2.6).

Proof. If we set z = 1
2 and c = 1

2 (a+b+ j +1) in (2.7), where j is an integer,
we obtain

F ≡ r+2Fr+1

[
a, b,

1
2 (a+b+ j +1),

( fr +mr)
( fr)

; 1
2

]

=
m

∑
k=0

2−k(a)k(b)kCk,r

( 1
2a+ 1

2b+ 1
2 j + 1

2 )k
2F1

[
a+ k,b+ k

1
2(a+b+ j +2k+1)

; 1
2

]
. (3.3)

We now employ the contiguous form of Gauss’ second summation theorem stated in
(2.1) with the substitutions a → a+ k , b → b+ k . Application of the duplication for-
mula for the gamma function

√
π Γ(2z) = 22z−1Γ(z)Γ(z+ 1

2 ),

followed by some routine algebra, then yields

F =
2b−1Γ( 1

2a+ 1
2b+ 1

2 j + 1
2 )Γ( 1

2a− 1
2b− 1

2 j + 1
2 )

Γ(b)Γ( 1
2a− 1

2b+ 1
2 | j|+ 1

2 )

×
m

∑
k=0

(a)kCk,r

| j|
∑
n=0

(∓1)n
(| j|

n

)
Γ( 1

2b+ 1
2(n+ k))

Γ( 1
2a+ 1

2 + 1
2 (n+ k−| j|)) ,

where the choice of sign is made according as j � 0 or j < 0, respectively. A straight-
forward reversal of the order of summation then leads to the result stated in (3.1). �

REMARK 1. The summation (3.1) is valid for any integer j and so represents a
more general result than that recently given in [5], which is only applicable for | j| � 5.

The summation in (3.1) for j = 0,±1 takes the forms

r+2Fr+1

[
a, b,

1
2(a+b+1),

( fr +mr)
( fr)

; 1
2

]

=
2a+b−2
√

π
Γ( 1

2a+ 1
2b+ 1

2 )
Γ(a)Γ(b)

m

∑
k=0

2kCk,r Γ( 1
2a+ 1

2k)Γ( 1
2b+ 1

2k), (3.4)

r+2Fr+1

[
a, b,

1
2(a+b+2),

( fr +mr)
( fr)

; 1
2

]

=
2a+b−2
√

π
Γ( 1

2a+ 1
2b)

Γ(a)Γ(b)
a+b
a−b

m

∑
k=0

2kCk,r D−
k (a,b), (3.5)
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and

r+2Fr+1

[
a, b,

1
2 (a+b),

( fr +mr)
( fr)

; 1
2

]

=
2a+b−2
√

π
Γ( 1

2a+ 1
2b)

Γ(a)Γ(b)

m

∑
k=0

2kCk,r D+
k (a,b) (3.6)

respectively, where

D±
k (a,b) := Γ( 1

2 a+ 1
2 k+ 1

2 )Γ( 1
2 b+ 1

2 k)±Γ( 1
2 a+ 1

2 k)Γ( 1
2 b+ 1

2 k+ 1
2 ).

When r = 0, the sequences ( fr) and ( fr +mr) are empty, so that m = 0, and (3.4)–(3.6)
reduce to the corresponding cases of (2.1).

REMARK 2. The results for j = −2, −1, 0 and 1 have been obtained by Miller
and Paris [14]. However, the result for j = −1 is given here in its corrected form.

In the case r = 1 (with m1 = m a positive integer and f1 = f ) the coefficients Ck,1
are given by (2.6). The summations (3.4)–(3.6) then reduce to

3F2

[
a, b,

1
2 (a+b+1)

f +m
f

; 1
2

]

=
2a+b−2
√

π
Γ( 1

2a+ 1
2b+ 1

2 )
Γ(a)Γ(b)

m

∑
k=0

(
m
k

)
2kΓ( 1

2a+ 1
2k)Γ( 1

2b+ 1
2k)

( f )k
, (3.7)

3F2

[
a, b,

1
2 (a+b+2),

f +m
f

; 1
2

]

=
2a+b−2
√

π
Γ( 1

2a+ 1
2b)

Γ(a)Γ(b)

m

∑
k=0

(
m
k

)
2kD−

k (a,b)
( f )k

, (3.8)

3F2

[
a, b,

1
2 (a+b),

f +m
f

; 1
2

]

=
2a+b−2
√

π
Γ( 1

2a+ 1
2b)

Γ(a)Γ(b)

m

∑
k=0

(
m
k

)
2kD+

k (a,b)
( f )k

. (3.9)

The formula (3.7) was first given by Fox [2]. The above summations, together with
those corresponding to j =±2, have been given in [5], where certain limiting cases are
also discussed.

4. Extension of Kummer’s first summation theorem

The extension of Kummer’s first summation theorem in (1.3) to the case where
there are r pairs of numeratorial and denominatorial parameters differing by positive
integers (mr) is given by the following theorem.

THEOREM 7. Let (mr) be a sequence of positive integers, with m := m1 + · · ·+
mr , and let p be an integer. Set q := |m+ p| and define

γp,m(b) :=
Γ(b− p)
Γ(b+m)

(m+ p � 0), 1 (m+ p < 0). (4.1)



EXTENSION OF SOME CLASSICAL SUMMATION THEOREMS 117

Then

r+2Fr+1

[
a, b,

1+a−b+ p,
( fr +mr)

( fr)
;−1

]

= 2p−m−2b Γ(1+a−b+ p)γp,m(b)
Γ(1+a−2b+ p−m)

q

∑
n=0

(∓1)n
(

q
n

)
Ĝn(a,λ ), (4.2)

where λ := 1+a−2b+ p−m and

Ĝn(a,λ ) :=
m

∑
k=0

(a)kĈk(ξ )Γ( 1
2 λ + 1

2 (n+ k))
Γ( 1

2 a+ 1
2 + 1

2 (n+ k−q))
(4.3)

with the upper or lower sign chosen according as m+ p� 0 or m+ p < 0 , respectively.
The coefficients Ĉk(ξ ) are defined by the terminating series (compare (2.3) and (2.5))

Ĉk(ξ ) =
(−1)k

k! m+1Fm

[−k, (ξm +1)
(ξm) ;1

]
=

m

∑
j=k

(−1) jd jS
(k)
j , (4.4)

where S(k)
j is the Stirling number of the second kind and the (ξm) are the nonvanishing

zeros of the associated parametric polynomial (2.9) of degree m expressed in the form

Qm(t) =
1

(λ )m

m

∑
k=0

(b)kĈk(ξ )(t)k(λ − t)m−k ≡
m

∑
j=0

d jt
j (d0 = 1).

Proof. Put z = −1 and the denominatorial parameter c = 1+a−b+ p , where p
is an integer, in the transformation formula (2.8) to obtain

r+2Fr+1

[
a, b,

1+a−b+ p,
( fr +mr)

( fr)
;−1

]

= 2−a
m+2Fm+1

[
a, 1+a−2b+ p−m,

1+a−b+ p,
(ξm +1)

(ξm) ; 1
2

]
,

where (ξm) are the zeros of the m th degree associated parametric polynomial Qm(t) in
(2.9). Application of the generalized Gauss summation theorem in (3.1) with j = m+ p
and the parameters ( fr) replaced by (ξm) then yields the result stated in (4.2).

From (2.3) and (2.5) the coefficients Ĉk(ξ ) are

Ĉk(ξ ) =
(−1)k

k! m+1Fm

[−k, (ξm +1)
(ξm) ;1

]
=

1
Λ′

m

∑
j=k

σ̂ jS
(k)
j ,

with Λ′ = ξ1 . . .ξm and from (2.4) the σ̂ j (0 � j � m) are generated by

(ξ1 + x) . . .(ξr + x) =
m

∑
j=0

σ̂ jx
j. (4.5)
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By comparison of (4.5) with the associated parametric polynomial (2.9) in the form

Qm(t) =
(−1)m

Λ′
m

∏
j=1

(t− ξ j) =
m

∑
j=0

d jt
j (d0 = 1),

it is easily seen that σ̂ j/Λ′ = (−1) jd j (0 � j � m). Hence we obtain

Ĉk(ξ ) =
m

∑
j=k

(−1) jd jS
(k)
j ,

which completes the proof. �

REMARK 3. It is important to note that in the application of the summation for-
mula (4.2) it is not necessary to compute the zeros (ξm) of the associated paramet-
ric polynomial Qm(t) in (2.9); it is sufficient to determine only the coefficients d j

(0 � j � m) associated with Qm(t) .
When r = 0 (so that m = 0), we immediately obtain from (4.2) the contiguous

form of Kummer’s first summation formula for the 2F1 series given by the following
theorem.

THEOREM 8. Let p be an integer and q = |p| . Then, with γp,m(b) as defined in
(4.1) (with m = 0 ), we have

2F1

[
a, b

1+a−b+ p
;−1

]

= 2p−2b Γ(1+a−b+ p)γp,0(b)
Γ(1+a−2b+ p)

q

∑
n=0

(∓1)n
(

q
n

)
Γ( 1

2λ + 1
2n)

Γ( 1
2a+ 1

2 + 1
2 (n−q))

(4.6)

for p = 0, ±1,±2, . . . , where λ := 1+a−2b+ p and the upper or lower sign is chosen
according as p � 0 or p < 0 , respectively.

REMARK 4. The summation (4.6) is valid for any integer p and so represents a
more general result than that given in Lavoie et al. [10], which is applicable for |p|� 5.

When p = 0, (4.6) combined with use of the duplication formula for the gamma
function reduces to Kummer’s summation formula in (1.3). When r = 1 and m1 = m =
1 ( f1 = f , ξ1 = ξ ), we have from (2.12) (with c = 1+a−b+ p ) and (2.6) that

ξ =
(a−2b+ p) f

f −b
, Ĉk(ξ ) =

1
(ξ )k

(k = 0,1).

Then, for p = 0,±1, we find respectively after some algebra the summations

3F2

[
a, b,

1+a−b,
f +1

f
;−1

]

=
Γ(1+a−b)

Γ(1+a)

{(
1− a

2 f

)
Γ(1+ 1

2a)
Γ( 1

2a−b+1)
+

a
2 f

Γ( 1
2a+ 1

2)
Γ( 1

2a−b+ 1
2 )

}
, (4.7)
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3F2

[
a, b,

2+a−b,
f +1

f
;−1

]

=
Γ(2+a−b)
2(b−1)Γ(a)

{(
1−1+a−b

f

)
Γ( 1

2a+ 1
2 )

Γ( 1
2a−b+ 3

2 )
−

(
1−a

f

)
Γ( 1

2a)
Γ( 1

2a−b+1)

}
(4.8)

and

3F2

[
a, b,
a−b,

f +1
f

;−1

]

=
Γ(a−b)
2Γ(a)

{
Γ( 1

2a)
Γ( 1

2a−b)
+

(
1− b

f

)
Γ( 1

2a+ 1
2 )

Γ( 1
2a−b+ 1

2)

}
. (4.9)

REMARK 5. The summations (4.7) and (4.8) have been given previously in [4,
Eqs. (5.1), (5.10)].

Finally, when r = 2, m1 = m2 = 1, the associated parametric polynomial is, from
(2.9), given by Q2(t) = d0 +d1t +d2t2 , where

d0 = 1, d1 = − ((α + β )λ + β )
f1 f2λ (λ +1)

, d2 =
α

f1 f2λ (λ +1)
,

with

α = ( f1 −b)( f2−b), β = f1 f2 −b(b+1), λ = a−2b+ p−1.

From (4.4), we therefore find the coefficients

Ĉ0(ξ ) = 1, Ĉ1(ξ ) = d2−d1, Ĉ2(ξ ) = d2.

Then we have the summation

4F3

[
a, b,

1+a−b+ p,
f1 +1, f2 +1

f1, f2
;−1

]

= 2p−2b−2 Γ(1+a−b+ p)γp,2(b)
Γ(a−2b+ p−1)

q

∑
n=0

(∓1)n
(

q
n

)
Ĝn(a,λ ) (4.10)

for p = 0,±1,±2, . . . , where γp,m(b) and Ĝn(a,λ ) are defined in (4.1) and (4.3),
q = |p+2| , and the upper or lower sign corresponds to p � −2 or p < −2.

We note that when r = 1, m1 = m = 2, we can put f1 = f , f2 = f +1 in the above
to obtain the evaluation of

3F2

[
a, b,

1+a−b+ p,
f +2

f
;−1

]
≡ 4F3

[
a, b,

1+a−b+ p,
f +1, f +2

f , f +1
;−1

]

given by (4.10).
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5. Extension of Kummer’s third summation theorem

The extension of Kummer’s third summation theorem in (1.5) to the case where
there are r pairs of numeratorial and denominatorial parameters differing by positive
integers (mr) is given by the following theorem.

THEOREM 9. Let (mr) be a sequence of positive integers, with m := m1 + · · ·+
mr , and let λ := c+a−m−1 , λ ′ := c−a−m. Then

r+2Fr+1

[
a, 1−a,

c,
( fr +mr)

( fr)
; 1

2

]

=
2a−1Γ(c)Γ(1−a−m)

Γ(a+ c−m−1)Γ(1−a+m)

2m

∑
n=0

(−1)n
(

2m
n

)
Ĝn(λ ′,λ ), (5.1)

where

Ĝn(λ ′,λ ) :=
m

∑
k=0

(λ ′)kĈk(η )Γ( 1
2 λ + 1

2 (n+ k))
Γ( 1

2 λ ′ + 1
2 + 1

2 (n+ k−2m))
. (5.2)

The coefficients Ĉk(η ) are defined by the finite series (compare (2.3) and (2.5))

Ĉk(η ) =
(−1)k

k! m+1Fm

[−k, (ηm +1)
(ηm) ;1

]
=

m

∑
j=k

(−1) jd̂ jS
(k)
j , (5.3)

where S(k)
j is the Stirling number of the second kind and the (ηm) are the nonvanishing

zeros of the associated parametric polynomial Q̂m(t) of degree m in (2.11) with the
parameter b = 1−a.

Proof. Put z = 1
2 and the numeratorial parameter b = 1−a in the transformation

formula (2.10) to find

r+2Fr+1

[
a, 1−a,

c,
( fr +mr)

( fr)
; 1

2

]
= 2m+1−c

m+2Fm+1

[
λ , λ ′,

c,
(ηm +1)

(ηm) ; 1
2

]
,

where λ := c+a−m−1, λ ′ := c−a−m and the (ηm) are the nonvanishing zeros of
the associated parametric polynomial of degree m given in (2.11) with b = 1−a .

Application of the extension of the summation theorem in (3.1) with j = 2m and
r → m , ( fr) → (ηm) then yields the result stated in (5.1), with the coefficients Ĉk(η )
defined in a similar manner to those appearing in Theorem 7. �

REMARK 6. It is important to note that in the application of the summation for-
mula (5.1) it is not necessary to compute the zeros (ηm) of the associated paramet-
ric polynomial Q̂m(t) in (2.11); it is sufficient to determine only the coefficients d̂ j

(0 � j � m) of Q̂m(t) .
In the case r = 1, m1 = m = 1 we have from (2.6) that Ĉk(η ) = 1/(η)k (k = 0,1),

where from (2.13) with b = 1−a

η =
(c−a−1)(c+a−2) f

a(1−a)+ (c−2) f
.
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Then from (5.1) we find

3F2

[
a, 1−a,

c,
f +1

f
; 1

2

]

=
2a−1Γ(c)

Γ(c+a−2)a(a−1)

2

∑
n=0

(−1)n
(

2
n

)[
Γ( 1

2 (c+a+n)−1)
Γ( 1

2 (c−a+n)−1)
+

c−a−1
η

Γ( 1
2 (c+a+n)− 1

2 )
Γ( 1

2 (c−a+n)− 1
2 )

]
.

(5.4)

This result has been given in a different form in [4, (5.3)].
When r = 1, m1 = 2 we find from (2.4) that σ0 = ( f )2 , σ1 = 2 f +1, σ2 = 1 so

that C0,1 = 1, C1,1 = 2/ f and C2,1 = 1/( f )2 . With s := c−a−b−2, we obtain from
(2.11) the quadratic parametric polynomial (with zeros η1 and η2 ) given by

Q̂2(t)= 1− 2st
λ λ ′ +

(t)2(s)2

(λ )2(λ ′)2
− 2abt

λ λ ′ f

{
1− s(1+ t)

(λ +1)(λ ′ +1)

}
+

(a)2(b)2

(λ )2(λ ′)2( f )2
t(1+t),

Upon rearrangement this yields

Q̂2(t) = 1− 2Bt
λ λ ′ +

Ct(1+ t)
(λ )2(λ ′)2

,

where

B := s+
ab
f

, C := (s)2 +
2abs

f
+

(a)2(b)2

( f )2
.

When a = 1
4 , b = 1−a , c = 1, f = 1

2 , for example, we consequently find

Q̂2(t) =
1

105
(105+424t+268t2)

so that, from (5.3),

Ĉ0(η ) = 1, Ĉ1(η ) = −52
35

, Ĉ2(η ) =
268
105

.

Evaluation of the right-hand side of (5.1) for the above parameters yields the value (to
10dp) 3F2[ 1

4 , 3
4 , 5

2 ;1, 1
2 ; 1

2 ] = 2.2113833040, which agrees with series evaluation of
the 3F2( 1

2 ) series on the left-hand side.

6. Extension of Watson’s summation theorem

We first establish two lemmas that will be required in our proof of the extension
of Watson’s summation theorem (1.6).

LEMMA 1. Let (mr) denote a set of positive integers and m := m1 + · · ·+ mr .
Then

r+3Fr+2

[
a, b, c,

1
2 (a+b+1), 2c,

( fr +mr)
( fr)

;1

]

=
∞

∑
n=0

2−4n(a)2n(b)2n(( fr+mr))2n

( 1
2 (a+b+1))2n(( fr))2n(c+ 1

2)nn!
r+2Fr+1

[
a+2n, b+2n,( fr+mr)+2n

1
2 (a+b+1)+2n,( fr)+2n

; 1
2

]
(6.1)
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provided ℜ(c− 1
2 a− 1

2 b) > m− 1
2 .

Proof. We first observe, by application of the well-known Gauss summation the-
orem for the 2F1 series of unit argument, that

2k(c)k

(2c)k
= 2F1

[
− 1

2k, − 1
2k+ 1

2

c+ 1
2

;1

]
=

[k/2]

∑
n=0

(− 1
2k)n(− 1

2k+ 1
2 )n

(c+ 1
2 )n n!

=
[k/2]

∑
n=0

2−2nk!

n!(k−2n)!(c+ 1
2 )n

,

where square brackets denote the integer part and use has been made of the fact that

(k−2n)! =
2−2nk!

(− 1
2 k)n(− 1

2 k+ 1
2 )n

.

Then

F ≡ r+3Fr+2

[
a, b, c,

1
2 (a+b+1), 2c,

( fr +mr)
( fr)

;1

]
=

∞

∑
k=0

(a)k(b)k(( fr +mr))k2−k

( 1
2 (a+b+1))k(( fr))kk!

· 2
k(c)k

(2c)k

=
∞

∑
k=0

[k/2]

∑
n=0

(a)k(b)k(( fr +mr))k

( 1
2 (a+b+1))k(( fr))k

2−k−2n

n!(k−2n)!(c+ 1
2 )n

.

Interchange of the order of summation followed by the substitution k → k + 2n
then produces

F =
∞

∑
n=0

∞

∑
k=0

(a)k+2n(b)k+2n(( fr +mr))k+2n

( 1
2 (a+b+1))k+2n(( fr))k+2n

2−k−4n

n!k!(c+ 1
2 )n

=
∞

∑
n=0

2−4n(a)2n(b)2n(( fr +mr))2n

( 1
2(a+b+1))2n(( fr))2n(c+ 1

2 )nn!

∞

∑
k=0

(a+2n)k(b+2n)k(( fr +mr)+2n)k

( 1
2(a+b+1)+2n)k(( fr)+2n)k2kk!

,

where we have used the identity

(a)k+ j = (a) j(a+ j)k (6.2)

with j = 2n . Identification of the second series over k as a r+2Fr+1( 1
2 ) series then

yields the result stated in (6.1). �

LEMMA 2. For positive integer m and integer k satisfying 0 � k � m, we have
the summation

4F3

[
1
2a+ 1

2k, 1
2b+ 1

2k, 1
2 f + 1

2m, 1
2 f + 1

2m+ 1
2

c+ 1
2 , 1

2 f + 1
2k, 1

2 f + 1
2k+ 1

2

;1

]

=
Γ(c+ 1

2)Γ(c+ 1
2 − 1

2a− 1
2b− k)

Γ(c+ 1
2 − 1

2a− 1
2k)Γ(c+ 1

2 − 1
2b− 1

2k)

m−k

∑
j=0

( 1
2a+ 1

2k) j( 1
2b+ 1

2k) j C
(m)
j,k

j!(k+ 1
2 + 1

2a+ 1
2b− c) j

(6.3)
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when ℜ(c− 1
2 a− 1

2 b) > m− 1
2 , where for non-negative integer j

C
(m)
j,k = 3F2

[
− j, 1

2 f + 1
2m, 1

2 f + 1
2m+ 1

2
1
2 f + 1

2k, 1
2 f + 1

2k+ 1
2

;1

]
. (6.4)

Proof. From the generalized Karlsson-Minton summation formula (2.2) we find

4F3

[
1
2a+ 1

2k, 1
2b+ 1

2k, f1 +m1, f2 +m2

c+ 1
2 , f1, f2

;1

]

=
Γ(c+ 1

2 )Γ(c+ 1
2− 1

2a− 1
2b−k)

Γ(c+ 1
2− 1

2a− 1
2k)Γ(c+ 1

2− 1
2b− 1

2k)

m1+m2

∑
j=0

(−1) j( 1
2a+ 1

2k) j( 1
2b+ 1

2k) j Cj,2

(k+ 1
2+ 1

2a+ 1
2b−c) j

, (6.5)

where k = 0,1,2, . . . , m1 , m2 are positive integers and it is supposed that ℜ(c− 1
2 a−

1
2 b) > m1 +m2 +k− 1

2 for convergence. The coefficients Cj,2 when r = 2 are defined
in (2.6) by

Cj,2 =
(−1) j

j! 3F2

[− j, f1 +m1, f2 +m2

f1, f2
;1

]
. (6.6)

Now consider the series

4F3

[
1
2a+ 1

2k, 1
2b+ 1

2k, 1
2 f + 1

2m, 1
2 f + 1

2m+ 1
2

c+ 1
2 , 1

2 f + 1
2k, 1

2 f + 1
2k+ 1

2

;1

]
(0 � k � m),

where m is a positive integer and ℜ(c− 1
2 a− 1

2 b) > m− 1
2 . When m and k are

of the same parity, we can let f1 = 1
2 f + 1

2 k , f2 = 1
2 f + 1

2 k + 1
2 , with m1 = m2 =

1
2 (m−k) in (6.5). When m and k are of different parity, we can let f1 = 1

2 f + 1
2 k+ 1

2 ,
m1 = 1

2 (m− k−1) and f2 = 1
2 f + 1

2 k , m2 = 1
2 (m− k+1) . In both cases we see that

m1 +m2 = m− k . Substitution of these values of f1 , f2 , m1 and m2 into (6.5) and
(6.6) then yields the result stated in (6.3) and (6.4). �

We now state the principal result of this section, which provides a generalization
of Watson’s summation theorem (1.6) to the case when a single pair of numeratorial
and denominatorial parameters differs by a positive integer m .

THEOREM 10. Let m denote a positive integer. Define the constants

Bk = (c+ 1
2 − 1

2 a− 1
2 b)−k

Γ( 1
2 a+ 1

2 k)Γ( 1
2 b+ 1

2 k)Γ(c+ 1
2 − 1

2 a)Γ(c+ 1
2 − 1

2 b)
Γ( 1

2 a)Γ( 1
2 b)Γ(c+ 1

2 − 1
2 a− 1

2 k)Γ(c+ 1
2 − 1

2 b− 1
2 k)

and the coefficients for non-negative integer j

C
(m)
j,k = 3F2

[
− j, 1

2 f + 1
2m, 1

2 f + 1
2m+ 1

2
1
2 f + 1

2k, 1
2 f + 1

2k+ 1
2

;1

]
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with 0 � k � m. Then, provided ℜ(c− 1
2 a− 1

2 b) > m− 1
2 , we have the summation

4F3

[
a, b, c,

1
2(a+b+1), 2c,

f +m
f

;1

]

=
Γ( 1

2 )Γ(c+ 1
2 )Γ( 1

2a+ 1
2b+ 1

2)Γ(c+ 1
2 − 1

2a− 1
2b)

Γ( 1
2a+ 1

2 )Γ( 1
2b+ 1

2 )Γ(c+ 1
2 − 1

2a)Γ(c+ 1
2 − 1

2b)
ϒm, (6.7)

where

ϒm =
m

∑
k=0

(
m
k

)
2kBk

( f )k

m−k

∑
j=0

( 1
2 a+ 1

2 k) j( 1
2 b+ 1

2 k) j

j!(k+ 1
2 a+ 1

2 b+ 1
2 − c) j

C
(m)
j,k .

When m = 0 , we find ϒ0 = 1 so that Watson’s summation theorem in (1.6) is recovered.

Proof. From (6.1) with r = 1 (m1 = m , f1 = f ) we find

4F3

[
a, b, c,

1
2(a+b+1), 2c,

f +m
f

;1

]

=
∞

∑
n=0

2−4n(a)2n(b)2n( f +m)2n

( 1
2(a+b+1))2n( f )2n(c+ 1

2)nn!
3F2

[
a+2n, b+2n, f +2n+m
1
2(a+b+1)+2n, f +2n

; 1
2

]
.

From (3.7) with a → a+2n , b → b+2n , f → f +2n and the duplication formula for
the gamma function, we have

3F2

[
a+2n, b+2n, f +2n+m
1
2 (a+b+1)+2n, f +2n

; 1
2

]

=
Γ( 1

2 )Γ( 1
2a+ 1

2b+ 1
2 +2n)

Γ( 1
2a+n)Γ( 1

2b+n)Γ( 1
2a+ 1

2 +n)Γ( 1
2b+ 1

2 +n)

×
m

∑
k=0

(
m
k

)
2kΓ( 1

2a+ 1
2k+n)Γ( 1

2b+ 1
2k+n)

( f +2n)k
.

Then, making use of the identities

( f +2n)k =
( f )k( f + k)2n

( f )2n
, (a)2n = 22n( 1

2 a)n( 1
2 a+ 1

2 )n, (6.8)

we obtain

4F3

[
a, b, c,

1
2 (a+b+1), 2c,

f +m
f

;1

]

=
Γ( 1

2 )Γ( 1
2a+ 1

2b+ 1
2 )

Γ( 1
2a)Γ( 1

2a+ 1
2)Γ( 1

2b)Γ( 1
2b+ 1

2 )

∞

∑
n=0

2−4n(a)2n(b)2n( f+m)2n( 1
2a+ 1

2k)n( 1
2b+ 1

2k)n

( 1
2a)n( 1

2a+ 1
2 )n( 1

2b)n( 1
2b+ 1

2 )n(c+ 1
2)nn!

×
m

∑
k=0

(
m
k

)
2kΓ( 1

2a+ 1
2k)Γ( 1

2b+ 1
2k)

( f )k( f +2k)2n
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=
Γ( 1

2 )Γ( 1
2a+ 1

2b+ 1
2 )

Γ( 1
2a)Γ( 1

2a+ 1
2)Γ( 1

2b)Γ( 1
2b+ 1

2 )

m

∑
k=0

(
m
k

)
2k

( f )k
Γ( 1

2a+ 1
2k)Γ( 1

2b+ 1
2k)

×
∞

∑
n=0

( 1
2a+ 1

2)n( 1
2b+ 1

2 )n( f +m)2n

(c+ 1
2 )n( f + k)2nn!

.

Use of the second relation in (6.2) enables the second sum over n to be identified
as a 4F3(1) series, which leads to the result

4F3

[
a, b, c,

1
2 (a+b+1), 2c,

f +m
f

;1

]

=
Γ( 1

2 )Γ( 1
2a+ 1

2b+ 1
2)

Γ( 1
2a)Γ( 1

2a+ 1
2)Γ( 1

2b)Γ( 1
2b+ 1

2 )

×
m

∑
k=0

(
m
k

)
2kΓ( 1

2a+ 1
2k)Γ( 1

2b+ 1
2k)

( f )k
4F3

[
1
2a+ 1

2k, 1
2b+ 1

2k, 1
2 f+ 1

2m, 1
2 f+ 1

2m+ 1
2

c+ 1
2 , 1

2 f+ 1
2k, 1

2 f+ 1
2k+ 1

2

;1

]
.

Employing the evaluation of the 4F3(1) series in (6.3) and (6.4) we then obtain after a
little algebra the result stated in (6.7). �

The coefficients C
(m)
j,k in (6.4) can also be written as the finite series

C
(m)
j,k =

j

∑
n=0

(− j)n( f +m)2n

n!( f + k)2n

from which it is readily seen that

C
(m)
0,k = 1, C

(m)
1,k =

(k−m)(1+2 f + k+m)
( f + k)( f + k+1)

, . . . , C
(m)
j,m = 0.

When m = 1, C
(1)
1,0 = −2/ f and accordingly we obtain the summation formula

4F3

[
a, b, c,

1
2 (a+b+1), 2c,

f +1
f

;1

]
=

Γ( 1
2 )Γ(c+ 1

2 )Γ( 1
2 a+ 1

2 b+ 1
2 )Γ(c+ 1

2 − 1
2 a− 1

2 b)
Γ( 1

2 a+ 1
2 )Γ( 1

2 b+ 1
2 )Γ(c+ 1

2 − 1
2 a)Γ(c+ 1

2 − 1
2 b)

ϒ1,

(6.9)
with

ϒ1 = 1+
2

(c− 1
2 a− 1

2 b− 1
2 ) f

{
1
4
ab+

( 1
2 a)1/2( 1

2 b)1/2

(c+ 1
2 − 1

2 a)−1/2(c+ 1
2 − 1

2 b)−1/2

}
(6.10)

valid when ℜ(c− 1
2 a− 1

2 b) > 1
2 . In (6.10), we have employed the extended definition

of the Pochhammer symbol in (1.2).

REMARK 7. Two different generalizations of Watson’s summation theorem anal-
ogous to that in (6.9) in the case m = 1 have been given recently in [4] when the de-
nominatorial parameters are respectively 1

2 (a+b+3) , 2c and 1
2 (a+b+1) , 2c+1.
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7. Concluding remarks

We have obtained the extensions of three classical summation theorems of Kum-
mer for the generalized hypergeometric series when there are r pairs of numeratorial
and denominatorial parameters differing by positive integers. In the case of Watson’s
summation theorem, however, this has been only possible for a 4F3(1) series with a
single pair of numeratorial and denominatorial parameters differing by a positive inte-
ger. This is due to the coefficients Ck,r in (3.4) in the case r = 1 possessing a simple
form, for which the n -dependence is separable by the first identity in (6.8).

We wish to point out that all the formulas developed in this paper have been tested
numerically with the aid of Mathematica. Application of these results is under investi-
gation and will be the subject of a forthcoming paper. It is hoped that these summation
formulas will be of interest and will help advance research in this important area of
classical special functions.
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[7] E. E. KUMMER, Über die hypergeometrische Reihe

1+
α ·β
1 · γ x+

α(α +1) ·β(β +1)
1 ·2 · γ(γ +1)

x2 +
α(α +1)(α +2) ·β(β +1)(β +2)

1 ·2 ·3 · γ(γ +1)(γ +2)
x3 + · · · ,

J. Reine Angew. Math. 15, 39–93 and 127–172, 1836.
[8] J. L. LAVOIE, F. GRONDIN AND A. K. RATHIE, Generalizations of Watson’s theorem on the sum of

a 3F2 , Indian J. Math. 34, 23–32, 1992.
[9] J. L. LAVOIE, F. GRONDIN AND A. K. RATHIE, Generalizations of Dixon’s theorem on the sum of a

3F2 , Math. Comp. 62, 267–276, 1994.
[10] J. L. LAVOIE, F. GRONDIN AND A. K. RATHIE, Generalizations of Whipple’s theorem on the sum of

a 3F2 , J. Comput. Appl. Math. 72, 293–300, 1996.
[11] Y. L. LUKE, Mathematical Functions and Their Approximations, Academic Press, New York, 1975.
[12] R. S. MAIER, P-symbols, Heun identities, and 3F2 identities, Contemp. Math. 471, 139–159, 2008.
[13] A. R. MILLER, Certain summation and transformation formulas for generalized hypergeometric se-

ries, J. Comp. Appl. Math. 231, 964–972, 2009.
[14] A. R. MILLER AND R. B. PARIS, Certain transformations and summations for the generalized hy-

pergeometric series with integral parameter differences, Integral Transforms and Special Functions,
22, 67–77, 2011.

[15] A. R. MILLER AND R. B. PARIS, Euler-type transformations for the generalized hypergeometric
function r+2Fr+1(x) , Zeitschrift Angew. Math. Phys. 62, 31–45, 2011.

[16] A. R. MILLER AND R. B. PARIS, On a result related to transformations and summations of general-
ized hypergeometric series, Math. Communications 17, 205–210, 2012.



EXTENSION OF SOME CLASSICAL SUMMATION THEOREMS 127

[17] A. R. MILLER AND R. B. PARIS, Transformation formulas for the generalized hypergeometric func-
tion with integral parameter differences, Rocky Mountain J. Math. 43, 291–327, 2013.

[18] A. R. MILLER AND H. M. SRIVASTAVA, Karlsson–Minton summation theorems for the generalized
hypergeometric series of unit argument, Integral Transforms and Special Functions 21, 603–612, 2010.

[19] M. A. RAKHA AND A. K. RATHIE, Generalizations of classical summation theorems for the series
2F1 and 3F2 with applications, Integral Transforms and Special Functions 22, 823–840, 2011.

[20] A. K. RATHIE AND R. B. PARIS, An extension of the Euler-type transformation for the 3F2 series,
Far East. J. Math. Sci. 27, 43–48, 2007.

[21] L. J. SLATER, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge,
1966.

[22] H. M. SRIVASTAVA,Generalized hypergeometric functions with integral parameter differences, Ned-
erl. Akad. Wetensch. Indag. Math. 35, 38–40, 1973.

(Received April 15, 2013) Arjun K. Rathie
Department of Mathematics, Central University of Kerala

Kasaragad 671328, Kerala, India
e-mail: akrathie@gmail.com

R. B. Paris
School of Computing, Engineering and Applied Mathematics

University of Abertay Dundee
Dundee DD1 1HG, UK

e-mail: r.paris@abertay.ac.uk

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


