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BOUND FOR THE ZEROS OF POLYNOMIALS

M. BIDKHAM, A. ZIREH AND H. A. SOLEIMAN MEZERJI

Abstract. In this paper, we prove a result concerning the location of the zeros of polynomials in
an annulus involving binomial coefficients and (t,s)−Fibonacci numbers. Our result includes
not only some known results as special cases but also sharpens them more accurate.

1. Introduction and statement of results

The task of determining the roots of polynomials has been frequently investigated.
Recently, Diaz-Barerro [3] has obtained bounds for zeros of polynomials in terms of
binomial coefficients and Fibonacci numbers (F0 = 0, F1 = 1 and n � 2, Fn = Fn−1 +
Fn−2 ). In fact he has proved the following result.

THEOREM A. Let p(z) = ∑n
k=0 akzk , (ak �= 0) be a non-constant complex poly-

nomial of degree n. Then all the zeros of p(z) lie in the annulus R = {z ∈ C : r1 �
|z| � r2} , where

r1 =
3
2

min
1�k�n

{
2nFk

(n
k

)
F4n

∣∣∣a0

ak

∣∣∣
} 1

k

and r2 =
2
3

max
1�k�n

{
F4n

2nFk
(n
k

) ∣∣∣an−k

an

∣∣∣
} 1

k

. (1.1)

Let Pn denote the nth Pell number (i.e. P0 = 0, P1 = 1 and for n� 2, Pn = 2Pn−1+
Pn−2 ). Diaz-Barerro and Egozcue[4] introduced bounds for the zeros of polynomials in
terms of binomial coefficients and Pell numbers by proving:

THEOREM B. Let p(z) = ∑n
k=0 akzk , (ak �= 0) be a non-constant complex poly-

nomial of degree n. Then all the zeros of p(z) lie in the annulus R = {z ∈ C : r3 �
|z| � r4} , where

r3 = min
1�k�n

{
2kPk

(n
k

)
P2n

∣∣∣a0

ak

∣∣∣
} 1

k

and r4 = max
1�k�n

{
P2n

2kPk
(n
k

) ∣∣∣an−k

an

∣∣∣
} 1

k

. (1.2)

Bidkham and Shashahani [2] proved the following result which is better than above
result when r3 is obtained for k = n .
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THEOREM C. Let p(z) = ∑n
k=0 akzk , (ak �= 0) be a non-constant complex poly-

nomial of degree n and

λk =
5nPk

(n
k

)
[(1+

√
2)2n +(1−√

2)2n]P2n
.

Then all the zeros of p(z) lie in the annulus R = {z ∈ C : r5 � |z| � r6} , where

r5 =
12
5

min
1�k�n

{
λk

∣∣∣a0

ak

∣∣∣}
1
k

and r6 =
5
12

max
1�k�n

{
1
λk

∣∣∣an−k

an

∣∣∣}
1
k

. (1.3)

Also Affane, Biaz and Govil [1] have obtained a lower bound for the zeros of
polynomials in terms of binomial coefficients by proving:

THEOREM D. Let p(z) = ∑n
k=0 akzk , (ak �= 0) be a non-constant complex poly-

nomial of degree n. Then all the zeros of p(z) lie in the R = {z ∈ C : r7 � |z| � r8} ,
where

r7 = min
1�k�n

{
k
(n
k

)
n2n−1

∣∣∣a0

ak

∣∣∣
} 1

k

and r8 = 1+ δk, (1.4)

being δk the unique positive root of the kth degree equation

Qk(x) = xk +
k

∑
ν=2

[(
k−1
k−ν

)
−

ν−1

∑
j=1

(
k− j−1

k−ν

)∣∣∣an− j

an

∣∣∣
]

xk+1−ν −A = 0,

and A = max0� j�n−1 | a j
an
| , a j = 0 if j < 0 .

In this paper, we obtain a result that not only includes the above results as special
cases but also gives a method for obtaining sharper bounds for the location of the zeros
of a polynomial.

Let α and β be the roots of quadratic equation

x2− tx− s = 0

being t,s strictly positive real numbers. First we define the (t,s)−Fibonacci numbers
as follows:

DEFINITION 1. For any positive real numbers t,s , the (t,s)−Fibonacci sequence,
say {Ft,s,n}n∈N is defined by

Ft,s,n+1 = tFt,s,n + sFt,s,n−1 for n � 1 (1.5)

with initial conditions
Ft,s,0 = 0, Ft,s,1 = 1.
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THEOREM 1. Let p(z) = ∑n
k=0 akzk , (ak �= 0) be a non-constant complex polyno-

mial of degree n. Then for j � 1, all its zeros lie in the annulus

R = {z ∈ C : r9 � |z| � r10}

where

r9 = min
1�k�n

{(n
k

)
Ft,s,k(Ft,s,2 j )k(sFt,s,2 j−1)

n−k

Ft,s,2 jn

∣∣∣a0

ak

∣∣∣
} 1

k

(1.6)

and

r10 = max
1�k�n

{
Ft,s,2 jn(n

k

)
Ft,s,k(Ft,s,2 j )k(sFt,s,2 j−1)n−k

∣∣∣an−k

an

∣∣∣
} 1

k

(1.7)

REMARK 1. For t = s = 1 and j = 2, Theorem 2 reduces to Theorem A. If we
take t = 2, s = 1 in Theorem 2, we get the following result:

COROLLARY 1. Let p(z) = ∑n
k=0 akzk , (ak �= 0) be a non-constant complex poly-

nomial of degree n. Then for j � 1, all its zeros lie in the annulus

R = {z ∈ C : s1 � |z| � s2}

where

s1 = min
1�k�n

{(n
k

)
Pk(P2 j)k(P2 j−1)

n−k

P2 jn

∣∣∣a0

ak

∣∣∣
} 1

k

and

s2 = max
1�k�n

{
P2 jn(n

k

)
Pk(P2 j)k(P2 j−1)n−k

∣∣∣an−k

an

∣∣∣
} 1

k

.

REMARK 2. If j = 1, then Corollary 1 reduces to Theorem B. If j = 2, then
Corollary 1 reduces to Theorem C.

2. Lemmas

LEMMA 1. Let r and s be the roots of quadratic equation x2−ax−b = 0 , being
a,b strictly positive real number. Define the two sequence {An}n∈N and {Bn}n∈N by
Bn = ∑n−1

k=0 rksn−1−k and An = crn +dsn , where c and d are real constants. If j � 2 ,
then

n

∑
k=0

(
n
k

)
(bBj−1)n−k(Bj)kAk = Ajn.

This lemma is due to Diaz–Barerro and Egozcue [4].
As an special case of Lemma 1, by considering x2 − tx− s = 0 and An = Bn =

Ft,s,n , we get the following lemma:
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LEMMA 2. For j � 1
n

∑
k=0

(
n
k

)
(sFt,s,2 j−1)

n−k(Ft,s,2 j )kFt,s,k = Ft,s,2 jn.

holds.

LEMMA 3. The nth (t,s)−Fibonacci number is given by

Ft,s,n =
αn −β n

α −β
, (Binet ′s f ormula) (2.1)

and for j � 1
Ft,s,2 jn = (α2 j−1n + β 2 j−1n)Ft,s,2 j−1n, (2.2)

where α , β are the roots of the characteristic equation

r2 = tr+ s (2.3)

for α > β .

Proof. The roots of the characteristic equation (2.3) are α = (t +
√

t2 +4s)/2
and β = (t−√

t2 +4s)/2. Since t,s are positive, then

β < 0 < α and |β | < |α|,
α + β = t and αβ = −s,

α −β =
√

t2 +4s.

It is trivial that (2.1) is true for n = 0, 1. By induction if we suppose that (2.1) is true
for the terms Ft,s,n−1 and Ft,s,n , then

Ft,s,n+1 = tFt,s,n + sFt,s,n−1 = t
αn −β n

α −β
+ s

αn−1−β n−1

α −β

=
1

α −β
{(tα + s)αn−1− (tβ + s)β n−1},

(2.4)

since α + β = t and αβ = −s , we have tα + s = α2 and tβ + s = β 2 , therefore by
(2.4) we obtain

Ft,s,n+1 =
αn+1−β n+1

α −β
(2.5)

By using the above formula for (t,s)−Fibonacci sequence, for a = 1√
t2+4s

, we have

Ft,s,n = a(αn −β n)
Ft,s,2n = (αn + β n)Ft,s,n

Ft,s,4n = (α2n + β 2n)Ft,s,2n

...

Ft,s,2 jn = (α2 j−1n + β 2 j−1n)Ft,s,2 j−1n.

(2.6)

This completes the proof of Lemma 3. �
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3. Proof of the Theorem 1

If a0 = 0, then r9 = 0. We suppose that a0 �= 0. It is clear that from the definition
of r9 in (1.6) that

rk
9 �

{(n
k

)
Ft,s,k(Ft,s,2 j )k(sFt,s,2 j−1)

n−k

Ft,s,2 jn

∣∣∣a0

ak

∣∣∣
}

k = 1,2, ...,n. (3.1)

Then, for |z| < r9 , where r9 is as defined in (1.6) , we get

|p(z)| = |a0 +
n

∑
k=1

akz
k|

� |a0|−
n

∑
k=1

|ak||z|k

> |a0|−
n

∑
k=1

|ak|rk
9

= |a0|
(

1−
n

∑
k=1

∣∣∣∣ak

a0

∣∣∣∣rk
9

)

� |a0|
(

1−
n

∑
k=1

(n
k

)
Ft,s,k(Ft,s,2 j )k(sFt,s,2 j−1)

n−k

Ft,s,2 jn

)
(by (3.1))

= 0 (by Lemma 2).

(3.2)

This implies p(z) �= 0 for |z| < r9 . Next, we show that all the zeros of p(z) lie in
|z| � r10 , where r10 is defined in (1.7) . From (1.7) , we have∣∣∣∣an−k

an

∣∣∣∣�
(n
k

)
Ft,s,k(Ft,s,2 j )k(sFt,s,2 j−1)

n−k

Ft,s,2 jn
rk
10, (1 � k � n)

or
n

∑
k=1

∣∣∣∣an−k

an

∣∣∣∣ 1

rk
10

�
n

∑
k=1

(n
k

)
Ft,s,k(Ft,s,2 j)k(sFt,s,2 j−1)

n−k

Ft,s,2 jn
. (3.3)

On the other hand

|p(z)| = |anz
n + ...+a1z+a0|

� |anz
n|−

n

∑
k=1

|an−k||z|n−k

= |anz
n|
(

1−
n

∑
k=1

∣∣∣∣an−k

an

∣∣∣∣ 1
|z|k
)

> |anz
n|
(

1−
n

∑
k=1

∣∣∣∣an−k

an

∣∣∣∣ 1

rk
10

)
.

(3.4)

Using (3.3) and Lemma 2, we have |p(z)|> 0 for |z|> r10 . Consequently all the zeros
of p(z) lie in |z| � r10 and this proves second part of Theorem 1. �
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4. Quality of zero bounds

For k = n in Corollary 1, we have

s1 =
{

Pn(P2 j)n

P2 jn

∣∣∣a0

an

∣∣∣}
1
n

.

Using Lemma 3 (inequality (2.2)), we can obtain

s1 =
{

Aj

∣∣∣a0

an

∣∣∣}
1
n

,

where

Aj =
(P2 j)n

[α2 j−1n + β 2 j−1n][α2 j−2n + β 2 j−2n]...[αn + β n]
,

with α = 1+
√

2 and β = 1−√
2 and

lim
j−→∞

Aj = lim
j−→∞

(P2 j)n

[α2 j−1n + β 2 j−1n][α2 j−2n + β 2 j−2n]...[αn + β n]
.
αn−β n

αn−β n

= lim
j−→∞

(P2 j )n(αn −β n)
(α2 jn−β 2 jn)

= lim
j−→∞

1

(2
√

2)n

(α2 j −β 2 j
)n(αn −β n)

(α2 jn−β 2 jn)
.
β 2 jn

β 2 jn

= lim
j−→∞

1

(2
√

2)n

(αn −β n)(1−β 2 j+1
)n

(1−β 2 j+1n)
.

(4.1)

Since |β | < 1, then we get

lim
j−→∞

Aj =
1

(2
√

2)n
(αn −β n) =

Pn

(2
√

2)n−1
.

As Aj is a monotonic increasing sequence, hence if s1 is obtained for k = n , then it
not only improves Theorems B and C, but also for j −→ ∞ , it is the best possible result
and we have

s1 =
{

Pn

(2
√

2)n−1

∣∣∣a0

an

∣∣∣} 1
n

. (4.2)

Since Pn > (
√

2)n−1 for n � 2, hence if r7 is obtained for k = n , then (4.2) is better
than the one in Theorem D. We can illustrate this by the following examples.

EXAMPLES.

i) For the polynomial f1(z) = 20z3 + z2 + z + 1000, it is found that the annulus
obtained by Theorems A, B and C are respectively 2.656646 � |z| � 5.10873,
3.057107 � |z| � 4.43952 and 3.147073 � |z| � 4.312606. The lower bound
by Theorem D is 2.32079 and the upper bound is implicit and finally, if we use
Corollary 1 for j −→ ∞ , it turns out to be 3.14980 � |z| � 4.30887.
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ii) For the polynomial f2(z) = 10iz3 − z2 − (
√

3 + i)z + 400, it is found that the
annulus obtained by Theorems A, B and C are respectively 2.466212 � |z| �
4.742524, 2.837967 � |z| � 4.121285 and 2.921484 � |z| � 4.003469. The
lower bound by Theorem D is 2.154435 and the upper bound is implicit and
finally, if we use Corollary 1 for j −→ ∞ , it turns out to be 2.924018 � |z| � 4.

iii) For f3(z) = 10z3− z2−2z+300, it is found that the annulus obtained by Theo-
rems A, B and C are respectively 2.240702 � |z| � 4.308869, 2.578464 � |z| �
3.744436 and 2.654344 � |z| � 3.637393. The lower bound by Theorem D is
1.957434 and the upper bound is implicit and finally, if we use Corollary 1 for
j −→ ∞ , it turns out to be 2.656646 � |z| � 3.634241.
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