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APPLICATIONS OF GENERAL MONOTONE SEQUENCES AND

FUNCTIONS TO TRIGONOMETRIC SERIES AND INTEGRALS

PÉTER KÓRUS

Abstract. Using the concept of general monotone sequences and functions we were able to ex-
tend some of the results of L. Leindler from sine series to cosine series and to sine and cosine
integrals as well.

1. Introduction: general monotone sequences

In the last few years, several results were achieved in various convergence prob-
lems of trigonometric series and integrals, concerning general monotone sequences
and functions, see for example [1, 2, 3, 4, 5] and its references. General monotone
sequences were first introduced and used by L. Leindler in [3] named as γ−group
bounded variation sequences. We recall that a complex sequence {ck}∞

k=1 is called a
β -general monotone sequence or shortly ({ck},{βn}) ∈ GMS, see [2, 1], if

2n

∑
k=n

|Δck| � Cβn

where Δck = ck − ck+1 , C = C({ck},{βn}) is a positive constant independent from
n and β = {βn}∞

n=1 is a positive sequence. For β -general monotone sequences, the
following theorems were proved in [3].

THEOREM A Let ({bk},{βn}) ∈ GMS . If βn = o(n−1) then the sine series

∞

∑
k=1

bk sinkx

is uniformly convergent in x .

THEOREM B Let ({bk},{βn}) ∈ GMS . If βn = O(n−1) or βn = o(n−1) , furthermore
{n j} is quasi geometrically increasing, then the estimates

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

bk sinkx

∣∣∣∣∣� C = C({bk},{n j})
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or

∞

∑
j=m

∣∣∣∣∣
n j+1−1

∑
k=n j

bk sinkx

∣∣∣∣∣= o(1), m → ∞

hold uniformly in x , respectively.

We recall that a sequence {n j} is said to be quasi geometrically increasing (de-
creasing) if there exist natural numbers μ and C � 1 such that for all natural numbers
j

n j+μ � 2n j and n j � Cnj+1

(
n j+μ � 1

2
n j and n j+1 � Cnj

)
.

Shortly after, in [4] it was seen that

THEOREM C [4] If the function f ∈ L1(0,2π) with {bk} Fourier sine coefficients,
the sequence {n j} is quasi geometrically increasing, and ({ck},{βn}) ∈ GMS with
βn = O(n−1) or βn = o(n−1) , then

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

bkck

∣∣∣∣∣� C({n j},{βn})‖ f‖L

or

∞

∑
j=m

∣∣∣∣∣
n j+1−1

∑
k=n j

bkck

∣∣∣∣∣= o(1), m → ∞

hold, respectively.

The previous results deal with sine series and it seems to be an obvious question
what happens when we have cosine series. For the uniform convergence an analogous
theorem to Theorem A was proved.

THEOREM D [2] Let ({ak},{βn}) ∈ GMS . If βn = o(n−1) then the cosine series

∞

∑
k=1

ak coskx

is uniformly convergent in x if and only if

∞

∑
k=1

ak converges. (1.1)

We note that the root of Theorems B and C goes back to S. A. Telyakovskiı̌ [7].
Throughout this paper, we denote by C a positive constant that may be different in
different occurrences.



APPLICATIONS OF GENERAL MONOTONICITY 71

2. Main results on trigonometric series

We draw an analogous result to Theorem B.

THEOREM 1 Let ({ak},{βn}) ∈ GMS . If βn = O(n−1) or βn = o(n−1) , furthermore
{n j} is quasi geometrically increasing, then the estimates

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ak coskx

∣∣∣∣∣� C = C({ak},{n j}) (2.1)

or

∞

∑
j=m

∣∣∣∣∣
n j+1−1

∑
k=n j

ak coskx

∣∣∣∣∣= o(1), m → ∞ (2.2)

hold uniformly in x , respectively, if and only if

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ak

∣∣∣∣∣< ∞. (2.3)

Proof. Necessity. If either (2.1) or (2.2) is satisfied, then choosing x = 0 we get
(2.3) immediately.
Sufficiency. We only consider the necessary modifications to the proof of [3, Theorem
2.3] (i.e. Theorem B). We can suppose that 0 � x < π . For x = 0, (2.1) or (2.2) is
implied by (2.3). In the case of 0 < x < π , to prove (2.1) we assume βn = O(n−1) .
First, we have for ni � N = �π/x� < ni+1 that

i−1

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ak coskx

∣∣∣∣∣+
∣∣∣∣∣

N

∑
k=ni

ak coskx

∣∣∣∣∣
=

i−1

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ak

(
1+2sin2 kx

2

)∣∣∣∣∣+
∣∣∣∣∣

N

∑
k=ni

ak

(
1+2sin2 kx

2

)∣∣∣∣∣
�

i−1

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ak

∣∣∣∣∣+
∣∣∣∣∣

N

∑
k=ni

ak

∣∣∣∣∣+
N

∑
k=n1

2|ak|kx2
� C+C+Cεn1Nx � C, (2.4)

where εn = supk�n kβk , since it was seen in [3] that for k � n , k|ak|�Cεn , furthermore

by (2.3), any ∑i
j=1

∣∣∣∑n j+1−1
k=n j

ak

∣∣∣ and
∣∣∣∑N

k=ni
ak

∣∣∣ sums are bounded. The second needed

estimation is ∣∣∣∣∣
ni+1−1

∑
k=N+1

ak coskx

∣∣∣∣∣+
∞

∑
j=i+1

∣∣∣∣∣
n j+1−1

∑
k=n j

ak coskx

∣∣∣∣∣� CεN . (2.5)
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This inequality is obtained using the well-known estimation |∑n
k=1 coskx| � C

x and
some calculations as in [3]. If we sum up (2.4) and (2.5) we get (2.1). To see (2.2),
we need inequality (2.5) and

i−1

∑
j=m

∣∣∣∣∣
n j+1−1

∑
k=n j

ak coskx

∣∣∣∣∣+
∣∣∣∣∣

N

∑
k=ni

ak coskx

∣∣∣∣∣
�

i−1

∑
j=m

∣∣∣∣∣
n j+1−1

∑
k=n j

ak

∣∣∣∣∣+
∣∣∣∣∣

N

∑
k=ni

ak

∣∣∣∣∣+
N

∑
k=nm

2|ak|kx2
� ε ′m + ε ′′ni

+Cεnm

where

ε ′m =
∞

∑
j=m

∣∣∣∣∣
n j+1−1

∑
k=n j

ak

∣∣∣∣∣ and ε ′′n = sup
M�n

∣∣∣∣∣
M

∑
k=n

ak

∣∣∣∣∣ ,
since βn = o(n−1) implies εn = o(1) , while (2.3) implies ε ′m = o(1) and ε ′′n = o(1) .

We note that (2.3) can not be replaced by the weaker condition (1.1) in Theorem 1,

consider for example the sequence n j = 2 j and define ak = (−1) j
/ j2 j for 2 j � k < 2 j+1 .

This time (1.1) is satisfied but (2.1) or (2.2) is not (just take x = 0).
We can also extend Theorem C for cosine coefficients as well.

COROLLARY 1 Theorem C remains true if (2.3) is satisfied and f has {ak} Fourier
cosine coefficients instead of {bk} Fourier sine coefficients.

This can be proved by an analogous argumentation to the proof of [4, Theorem
2.1] with cosine function in place of sine function, we leave it to the reader.

3. Background: general monotone functions

In the previous sections we drew results about trigonometric series with general
monotone coefficients. In the following sections we study trigonometric integrals, i.e.
the Fourier transforms of general monotone functions. From now on, we deal with
admissible functions f and g (or h , if we do not distinguish between them) defined on
R+ = [0,∞) , locally of bounded variation on (0,∞) , vanishing at infinity, and such that
f (t) ∈ L1[0,1] and tg(t) ∈ L1[0,1] . We say that a function h is β -general monotone,
or shortly (h,β ) ∈ GM, see [5, 1], if

∫ 2u

u
|dh(t)| < Cβ (u)

holds for all u∈ (0,∞) , where C =C(h,β ) is a positive constant independent of u , and
β is a majorant, that is, a positive function on R+ . For β -general monotone functions,
the following theorems were proved in [1].
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THEOREM E Let (g,β ) ∈ GM . If β (t) = o(t−1) as t → ∞ , then the sine Fourier
transform

G(x) =
∫ ∞

0
g(t)sinxt dt

converges uniformly on R+ .

THEOREM F Let ( f ,β ) ∈ GM . If β (t) = o(t−1) as t → ∞ , then the cosine Fourier
transform

F(x) =
∫ ∞

0
f (t)cosxt dt

converges uniformly on R+ if and only if
∫ u

0
f (t)dt converges as u → ∞. (3.1)

We note that certain general monotone classes of functions were also considered in [6]
for the uniform convergence of sine integrals.

4. Main results on trigonometric integrals

We prove analogous results to Theorem B for sine and cosine integrals as well.

THEOREM 2 Let (g,β ) ∈ GM . If β (t) = O(t−1) or β (t) = o(t−1) as t → ∞ , further-
more {u j} is quasi geometrically increasing, then the estimates

∞

∑
j=1

∣∣∣∣
∫ u j+1

u j

g(t)sinxt dt

∣∣∣∣� C(g,{u j}) (4.1)

or

∞

∑
j=m

∣∣∣∣
∫ u j+1

u j

g(t)sinxt dt

∣∣∣∣= o(1), m → ∞ (4.2)

hold uniformly in x ∈ R+ , respectively.

Before we prove Theorem 2 we need two lemmas.

LEMMA 1 [1] If (h,β ) ∈ GM with β (t) = O(t−1) as t → ∞ , then

t|h(t)|� t
∫ ∞

t
|dh(u)| � C sup

u�t/2

(
u
∫ 2u

u
|dh(v)|

)
� Cεt/2,

where C is a positive constant independent of t and εt = supu�t uβ (u) .
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LEMMA 2 Let (h,β ) ∈ GM with β (t) = O(t−1) as t → ∞ . If for a complex function
d(t) there exists a constant D such that for any u > 0 ,

∣∣∣∣
∫ u

0
d(t)dt

∣∣∣∣� D,

then for any U � u,

∣∣∣∣
∫ U

u
h(t)d(t)dt

∣∣∣∣� Cεu/2 u−1,

where C is a constant independent of u . Consequently, if εu = o(u) , then
∫ u
0 h(t)d(t)dt

converges as u → ∞ .

Proof. By Lemma 1, we have

|h(t)| �
∫ ∞

t
|dh(u)| � Cεt/2 t−1.

Hence using the notation

D(u) =
∫ u

0
d(t)dt

and integrating by parts we get

∣∣∣∣
∫ U

u
h(t)d(t)dt

∣∣∣∣=
∣∣∣∣[h(t)D(t)

]U
u −

∫ U

u
D(t)dh(t)

∣∣∣∣
� D

(
|h(u)|+ |h(U)|+

∫ U

u
|dh(t)|

)
� Cεu/2 u−1,

which proves Lemma 2.

Proof. [Proof of Theorem 2] First we show (4.1). We can suppose that x ∈ (0,∞) ,
furthermore β (t) = O(t−1) as t → ∞ . For ui � U = π/x < ui+1 , we have by Lemma 1
that

i−1

∑
j=1

∣∣∣∣
∫ u j+1

u j

g(t)sinxt dt

∣∣∣∣+
∣∣∣∣
∫ U

ui

g(t)sinxt dt

∣∣∣∣�
∫ U

u1

|g(t)|xt dt � Cεu1Ux � C, (4.3)

since εt = supu�t uβ (u) = O(1) . On the other hand, by

∣∣∣∣
∫ u

0
sinxt dt

∣∣∣∣= ∣∣[− x−1 cosxt
]u
0

∣∣� 2x−1,
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we can use Lemma 2 for h = g and d(t) = sinxt . Hence

IU =
∣∣∣∣
∫ ui+1

U
g(t)sinxt dt

∣∣∣∣+ ∞

∑
j=i+1

∣∣∣∣
∫ u j+1

u j

g(t)sinxt dt

∣∣∣∣
� Cx−1εU/2U−1 +Cx−1

∞

∑
j=i+1

εu j/2 u−1
j

� CεU/2

(
1+U

∞

∑
j=i+1

u−1
j

)
.

Since u−1
j is quasi geometrically decreasing,

∞

∑
j=m

u−1
j � Cu−1

m (m = 1,2, . . . , C � 1),

see [3]. This implies

IU � CεU/2
(
1+Uu−1

i+1

)
� CεU/2 � C. (4.4)

From (4.3) and (4.4) we obtain (4.1). To see (4.2), we only need to sum from m instead
of 1 in (4.3), take (4.4), and note that by β (t) = o(t−1) , εt = o(1) .

THEOREM 3 Let ( f ,β ) ∈ GM . If β (t) = O(t−1) or β (t) = o(t−1) as t → ∞ , further-
more {u j} is quasi geometrically increasing, then the estimates

∞

∑
j=1

∣∣∣∣
∫ u j+1

u j

f (t)cosxt dt

∣∣∣∣� K( f ,{u j}) (4.5)

or

∞

∑
j=m

∣∣∣∣
∫ u j+1

u j

f (t)cosxt dt

∣∣∣∣= o(1), m → ∞ (4.6)

hold uniformly in x ∈ R+ , respectively, if and only if

∞

∑
j=1

∣∣∣∣
∫ u j+1

u j

f (t)dt

∣∣∣∣< ∞. (4.7)

Proof. Necessity. If either (4.5) or (4.6) is satisfied, then by taking x = 0 we obtain
(4.7).
Sufficiency. First let us see (4.5). For x = 0, (4.5), also (4.6), is implied by (4.7). If we
assume that x ∈ (0,∞) , furthermore β (t) = O(t−1) as t → ∞ , then for ui � U = π/x <
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ui+1 , we have by Lemma 1 that

i−1

∑
j=1

∣∣∣∣
∫ u j+1

u j

f (t)cosxt dt

∣∣∣∣+
∣∣∣∣
∫ U

ui

f (t)cosxt dt

∣∣∣∣
=

i−1

∑
j=1

∣∣∣∣
∫ u j+1

u j

f (t)
(
1+2sin2 xt

2

)
dt

∣∣∣∣+
∣∣∣∣
∫ U

ui

f (t)
(
1+2sin2 xt

2

)
dt

∣∣∣∣
�

i−1

∑
j=1

∣∣∣∣
∫ u j+1

u j

f (t)dt

∣∣∣∣+
∣∣∣∣
∫ U

ui

f (t)dt

∣∣∣∣+
∫ U

u1

2| f (t)|xt
2

dt

� C+C+Cεu1Ux � C, (4.8)

since by (4.7) any ∑m
j=1

∣∣∣∫ u j+1
u j f (t)dt

∣∣∣ sums and
∣∣∣∫U

ui
f (t)dt

∣∣∣ integrals are bounded. On

the other hand, by ∣∣∣∣
∫ u

0
cosxt dt

∣∣∣∣= ∣∣[x−1 sinxt
]u
0

∣∣� 2x−1,

we can use Lemma 2 for h = f and d(t) = cosxt . Hence with a similar argumentation
as in the proof of Theorem 2 we get

IU =
∣∣∣∣
∫ ui+1

U
f (t)cosxt dt

∣∣∣∣+ ∞

∑
j=i+1

∣∣∣∣
∫ u j+1

u j

f (t)cosxt dt

∣∣∣∣� CεU/2. (4.9)

Since εt = O(1) , from (4.8) and (4.9) we obtain (4.5). To see (4.6), we need to sum
from m instead of 1 in (4.8), i.e.

i−1

∑
j=m

∣∣∣∣
∫ u j+1

u j

f (t)cosxt dt

∣∣∣∣+
∣∣∣∣
∫ U

ui

f (t)cosxt dt

∣∣∣∣
�

i−1

∑
j=m

∣∣∣∣
∫ u j+1

u j

f (t)dt

∣∣∣∣+
∣∣∣∣
∫ U

ui

f (t)dt

∣∣∣∣+
∫ U

um

2| f (t)|xt
2

dt

� ε ′m + ε ′′ui
+Cεum

where

ε ′m =
∞

∑
j=m

∣∣∣∣
∫ u j+1

u j

f (t)dt

∣∣∣∣ and ε ′′u = sup
V�u

∣∣∣∣
∫ V

u
f (t)dt

∣∣∣∣ .
Moreover take (4.9) and note that by β (t) = o(t−1) , εt = o(1) while (4.7) implies
ε ′m = o(1) and ε ′′u = o(1) .

We note that (4.7) can not be replaced by the weaker condition (3.1) in Theorem
3, a counterexample is the sequence u j = 2 j and f (t) = (−1) j

/ j2 j for 2 j � t < 2 j+1 .
Then (3.1) is satisfied but (4.5) or (4.6) is not.
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