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THE RESURGENCE PROPERTIES OF THE LARGE ORDER

ASYMPTOTICS OF THE ANGER––WEBER FUNCTION II

GERGŐ NEMES

Abstract. In this paper, we derive a new representation for the Anger–Weber function, employ-
ing the reformulation of the method of steepest descents by C. J. Howls (Howls, Proc. R. Soc.
Lond. A 439 (1992) 373–396). As a consequence of this representation, we deduce a number
of properties of the large order asymptotic expansion of the Anger–Weber function, including
explicit and realistic error bounds, asymptotic approximations for the late coefficients, exponen-
tially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.

1. Introduction and main results

In the first part of this series of papers [7], we proved new resurgence-type rep-
resentations for the remainder term of the asymptotic expansion of the Anger–Weber
function A−ν (λ ν) with complex ν and λ � 1. These resurgence formulas have dif-
ferent forms according to whether λ > 1 or λ = 1. The main goal of this paper is to
derive a similar representation for the Anger–Weber function Aν (λ ν) with complex
ν and λ > 0. Our derivation is based on the reformulation of the method of steepest
descents by Howls [4]. Using this representation, we obtain a number of properties of
the large order asymptotic expansion of the Anger–Weber function, including explicit
and realistic error bounds, asymptotics for the late coefficients, exponentially improved
asymptotic expansions, and the smooth transition of the Stokes discontinuities.

Our first theorem describes the resurgence properties of the asymptotic expansion
of Aν (λ ν) for λ > 0. The notations follow the ones given in [11, p. 298]. Throughout
this paper, empty sums are taken to be zero.

THEOREM 1.1. Let λ > 0 be a fixed positive real number, and let N be a non-
negative integer. Then we have

Aν (λ ν) =
1
π

N−1

∑
n=0

(2n)!an (λ )
ν2n+1 +RN (ν,λ ) (1.1)

for |argν| < π
2 , with

an (λ ) =
1

(2n)!

[
d2n

dt2n

(
t

λ sinht + t

)2n+1
]

t=0

=
(−1)n

(2n)!

∫ +∞

0
t2ne−πt iH(1)

it (λ it)dt

(1.2)
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and

RN (ν,λ ) =
(−1)N

πν2N+1

∫ +∞

0

t2Ne−πt

1+(t/ν)2 iH(1)
it (λ it)dt. (1.3)

In a previous paper [6], we proved similar representations for the Hankel function

H(1)
ν (λ ν) with λ � 1. In particular, for any non-negative integer N and fixed 0 < β <

π
2 , we have

H(1)
ν (ν secβ) =

eiν(tanβ−β)− π
4 i( 1

2νπ tanβ
) 1

2

(
M−1

∑
m=0

(−1)m Um (icotβ )
νm +R(H)

M (ν,β )

)
(1.4)

and

H(1)
ν (ν) = − 2

3π

N−1

∑
n=0

d2ne
2(2n+1)πi

3 sin

(
(2n+1)π

3

)
Γ
(

2n+1
3

)
ν

2n+1
3

+R(H)
N (ν) , (1.5)

for − π
2 < argν < 3π

2 , with

Um (icotβ ) = (−1)m (icotβ )m

2mm!

⎡⎣ d2m

dt2m

(
1
2

t2

icotβ (t− sinht)+ cosht−1

)m+ 1
2

⎤⎦
t=0

=
im

2(2π cotβ )
1
2

∫ +∞

0
tm− 1

2 e−t(tanβ−β ) (1+ e−2πt) iH(1)
it (it secβ )dt

(1.6)

and

d2n =
1

(2n)!

⎡⎣ d2n

dt2n

(
t3

sinh t− t

) 2n+1
3

⎤⎦
t=0

=
(−1)n

Γ
(

2n+1
3

) ∫ +∞

0
t

2n−2
3 e−2πt iH(1)

it (it)dt.

(1.7)
The remainder terms R(H)

M (ν,β ) and R(H)
N (ν) can be expressed as

R(H)
M (ν,β ) =

1

2(2π cotβ)
1
2 (iν)M

∫ +∞

0

tM− 1
2 e−t(tanβ−β)

1+ it/ν
(
1+ e−2πt) iH(1)

it (it secβ)dt

(1.8)
and

R(H)
N (ν) =

(−1)N

3πν
2N+1

3

∫ +∞

0
t

2N−2
3 e−2πt

(
e

(2N+1)πi
3

1+(t/ν)
2
3 e

2πi
3

+
1

1+(t/ν)
2
3

)
H(1)

it (it)dt.

(1.9)
These representations of the Hankel function will play an essential role in later sections
of this paper. It is important to note that for the case 0 < λ < 1, no simple explicit
expression is known for the remainder of the asymptotic series of the Hankel function

H(1)
ν (λ ν) .
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If Jν (z) denotes the Anger function, then sin(πν)Aν (λ ν) = Jν (λ ν)− Jν (λ ν)
(see [11, p. 296]). From these and the continuation formulas for the Bessel and Hankel
functions (see [11, p. 222 and p. 226]), we find

sin(πν)Aν
(
λ νe2π im)= Jν

(
λ νe2π im)− Jν

(
λ νe2π im)

= sin(πν)Aν (λ ν)+
(
1− e2π imν)Jν (λ ν)

= sin(πν)Aν (λ ν)− ieπ imν sin(πmν)
(
H(1)

ν (λ ν)+H(2)
ν (λ ν)

)
for every integer m . From this expression and the resurgence formulas (1.1), (1.4) and
(1.5), we can derive analogous representations in sectors of the form(

2m− 1
2

)
π < argν <

(
2m+

1
2

)
π , m ∈ Z,

as long as λ � 1. Similarly, applying the continuation formulas

− sin(πν)A−ν

(
λ νe(2m+1)π i

)
= J−ν

(
λ νe(2m+1)π i

)
− J−ν

(
λ νe(2m+1)π i

)
= sin(πν)Aν (λ ν)+ Jν (λ ν)− e−(2m+1)π iνJ−ν (λ ν)

= sin(πν)Aν (λ ν)+ ie−π imν sin(πmν)H(1)
ν (λ ν)

+ ie−(m+1)π iν sin(π (m+1)ν)H(2)
ν (λ ν) (1.10)

and the representations (1.1), (1.4) and (1.5), we can obtain resurgence formulas in any
sector of the form (

2m+
1
2

)
π < argν <

(
2m+

3
2

)
π , m ∈ Z,

provided that λ � 1. The lines argν =
(
2m± 1

2

)
π are the Stokes lines for the function

Aν (λ ν) .
When ν is an integer, the limiting values have to be taken in these continuation

formulas.
If we neglect the remainder term and extend the sum to N = ∞ in Theorem 1.1,

we recover the known asymptotic series of the Anger–Weber function. Some other
formulas for the coefficients an (λ ) can be found in [7, Appendix A].

In the following two theorems, we give exponentially improved asymptotic expan-
sions for the function Aν (λ ν) when λ > 1 and λ = 1, respectively. Since there is no

simple resurgence formula for the Hankel function H(1)
ν (λ ν) when 0 < λ < 1, at least

with our method, we can not prove exponentially improved expansions for the function
Aν (λ ν) in the range 0 < λ < 1. We express our expansions in terms of the Terminant
function T̂p (w) whose definition and basic properties are given in Section 5. In these
theorems, RN (ν,λ ) is defined by (1.1) and it is extended to the sector |argν| � 3π

2 via
analytic continuation. In Theorem 1.2, we employ the substitution 1 < λ = secβ with a
suitable 0 < β < π

2 . Throughout this paper, we write OM,ρ to indicate the dependence
of the implied constant on the parameters M and ρ .
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THEOREM 1.2. Suppose that |argν| � 3π
2 , |ν| is large and

N =
1
2
|ν| (tanβ −β + π)+ ρ

is a positive integer with ρ being bounded. Then

RN (ν,secβ )= i
eiν(tanβ−β+π)− π

4 i( 1
2νπ tanβ

) 1
2

M−1

∑
m=0

(−1)m Um (icotβ)
νm T̂2N−m+ 1

2
(iν (tanβ −β + π))

− i
e−iν(tanβ−β+π)+ π

4 i( 1
2 νπ tanβ

) 1
2

M−1

∑
m=0

Um (icotβ)
νm T̂2N−m+ 1

2
(−iν (tanβ −β + π))+RN,M (ν,secβ )

with M being an arbitrary fixed non-negative integer, and

RN,M (ν,secβ ) = OM,ρ

⎛⎝ e−|ν|(tanβ−β+π)( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
for |argν| � π

2 ;

RN,M (ν,secβ ) = OM,ρ

⎛⎝e∓ℑ(ν)(tanβ−β+π)( 1
2 |ν|π tanβ

) 1
2

|UM (icotβ )|
|ν|M

⎞⎠
for π

2 � ±argν � 3π
2 .

THEOREM 1.3. Suppose that |argν| � 3π
2 , |ν| is large and N = 1

2 π |ν|+ ρ is a
positive integer with ρ being bounded. Then

RN (ν,1) = −ieπ iν 2
3π

M−1

∑
m=0

d2me
2(2m+1)πi

3 sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

T̂2N− 2m−2
3

(π iν)

− ie−π iν 2
3π

M−1

∑
m=0

d2m sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

T̂2N− 2m−2
3

(−π iν)+RN,M (ν,1)

with M being an arbitrary fixed non-negative integer, and

RN,M (ν,1) = OM,ρ

(
e−π |ν| |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)
if M ≡ 0,2 mod 3,

RN,M (ν,1) = OM,ρ

(
e−π |ν| |d2M+2|

Γ
( 2M+3

3

)
|ν| 2M+3

3

)
if M ≡ 1 mod 3

for |argν| � π
2 ;

RN,M (ν,1) = OM,ρ

(
e∓πℑ(ν) |d2M| Γ

( 2M+1
3

)
|ν| 2M+1

3

)
if M ≡ 0,2 mod 3,



RESURGENCE OF THE ANGER–WEBER FUNCTION 125

RN,M (ν,1) = OM,ρ

(
e∓πℑ(ν) |d2M+2|

Γ
(

2M+3
3

)
|ν| 2M+3

3

)
if M ≡ 1 mod 3

for π
2 � ±argν � 3π

2 .

The rest of the paper is organized as follows. In Section 2, we prove the resurgence
formula stated in Theorem 1.1. In Section 3, we give explicit and realistic error bounds
for the asymptotic expansions of Aν (λ ν) using the results of Section 2. In Section 4,
asymptotic approximations for an (λ ) as n → +∞ are given. In Section 5, we prove
the exponentially improved expansions presented in Theorems 1.2 and 1.3, and provide
a detailed discussion of the Stokes phenomenon related to the expansions of Aν (λ ν) ,
λ � 1. The paper concludes with a short discussion in Section 6.

2. Proof of the resurgence formula

Our analysis is based on the integral definition of the Anger–Weber function

Aν (z) =
1
π

∫ +∞

0
e−νt−zsinh tdt |argz| < π

2
.

If z = λ ν , where λ is a positive constant, then

Aν (λ ν) =
1
π

∫ +∞

0
e−ν(λ sinht+t)dt |argν | < π

2
. (2.1)

The saddle points of the integrand are the roots of the equation λ cosht = −1. Hence,

the saddle points are given by t(k)± = ±sech−1λ + (2k+1)π i where k is an arbitrary

integer. We denote by C
(k)
± (θ ) the portion of the steepest paths that pass through the

saddle point t(k)± . Here, and subsequently, we write θ = argν . As for the path of
integration P (θ ) in (2.1), we take that connected component of{

t ∈ C : arg
[
eiθ (λ sinht + t)

]
= 0
}
∪{0} ,

which contains the origin. We remark that P (0) is the positive real axis.
First, we suppose that λ > 1 and take λ = secβ with a suitable 0 < β < π

2 . With

this notation, t(k)± = ±iβ +(2k+1)π i . For simplicity, we assume that θ = 0. In due
course, we shall appeal to an analytic continuation argument to extend our results to
complex ν . Let f (t,β ) = secβ sinh t + t . If

τ = f (t,β ) , (2.2)

then τ is real on the curve P (0) , and, as t travels along this curve from 0 to +∞ , τ
increases from 0 to +∞ . Therefore, corresponding to each positive value of τ , there is
a value of t , say t (τ) , satisfying (2.2) with t (τ) > 0. In terms of τ , we have

Aν (ν secβ ) =
1
π

∫ +∞

0
e−ντ dt (τ)

dτ
dτ =

1
π

∫ +∞

0
e−ντ 1

secβ cosh t (τ)+1
dτ.
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Following Howls, we express the function involving t (τ) as a contour integral using
the residue theorem, to find

Aν (ν secβ ) =
1
π

∫ +∞

0
e−ντ 1

2π i

∮
Γ

f−1 (u,β )
1− τ2 f−2 (u,β )

dudτ

where the contour Γ encircles the path P (0) in the positive direction and does not

enclose any of the saddle points t(k)± (see Figure 1). Now, we employ the well-known
expression for non-negative integer N

1
1− z

=
N−1

∑
n=0

zn +
zN

1− z
, z �= 1, (2.3)

to expand the function under the contour integral in powers of τ2 f−2 (u,β ) . The result
is

Aν (ν secβ) =
1
π

N−1

∑
n=0

∫ +∞

0
τ2ne−ντ 1

2π i

∮
Γ

du
f 2n+1 (u,β )

dτ +RN (ν,secβ ) ,

where

RN (ν,secβ) =
1
π

∫ +∞

0
τ2Ne−ντ 1

2π i

∮
Γ

f−2N−1 (u,β)
1− τ2 f−2 (u,β)

dudτ. (2.4)

The path Γ in the sum can be shrunk into a small circle around 0, and we arrive at

Aν (ν secβ ) =
1
π

N−1

∑
n=0

(2n)!an (secβ )
ν2n+1 +RN (ν,secβ ) , (2.5)

where

an (secβ ) =
1

2π i

∮
(0+)

du
f 2n+1 (u,β )

=
1

(2n)!

[
d2n

dt2n

(
t

secβ sinht + t

)2n+1
]

t=0

.

Performing the change of variable ντ = s in (2.4) yields

RN (ν,secβ) =
1

πν2N+1

∫ +∞

0
s2Ne−s 1

2π i

∮
Γ

f−2N−1 (u,β )
1− (s/ν)2 f−2 (u,β)

duds. (2.6)

This representation of RN (ν,secβ ) and the formula (2.5) can be continued analytically
if we choose Γ = Γ(θ ) to be an infinite contour that surrounds the path P (θ ) in the

anti-clockwise direction and that does not encircle any of the saddle points t(k)± . This
continuation argument works until the path P (θ ) runs into a saddle point. In the
terminology of Howls, such saddle points are called adjacent to the endpoint 0 . As∣∣∣arg( f (0,β )− f

(
t(k)± ,β

))∣∣∣= π
2

for any saddle point t(k)± , we infer that (2.6) is valid as long as − π
2 < θ < π

2 with a
contour Γ(θ ) specified above. When θ = − π

2 , the path P (θ ) connects to the saddle
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Γ

P(0)

Figure 1: The contour Γ encircling the path P (0) .

point t(0)
− = −iβ + π i . Similarly, when θ = π

2 , the path P (θ ) connects to the saddle

point t(−1)
+ = iβ −π i . These are the adjacent saddles. The set

Δ =
{

u ∈ P (θ ) : −π
2

< θ <
π
2

}
forms a domain in the complex plane whose boundary contains portions of steepest de-

scent paths through the adjacent saddles (see Figure 2). These paths are C
(0)
−
(− π

2

)
and

C
(−1)
+
(π

2

)
, and they are called the adjacent contours to the endpoint 0 . The function

under the contour integral in (2.6) is an analytic function of u in the domain Δ , there-
fore we can deform Γ over the adjacent contours. We thus find that for − π

2 < θ < π
2

and N � 0, (2.6) may be written

RN (ν,secβ ) =
1

πν2N+1

∫ +∞

0
s2Ne−s 1

2π i

∫
C

(0)
− (− π

2 )

f−2N−1 (u,β )

1− (s/ν)2 f−2 (u,β)
duds

+
1

πν2N+1

∫ +∞

0
s2Ne−s 1

2π i

∫
C

(−1)
+ ( π

2 )
f−2N−1 (u,β)

1− (s/ν)2 f−2 (u,β )
duds.

(2.7)

Now we make the changes of variable

s = t
| f (−iβ + π i,β)− f (0,β)|
f (−iβ + π i,β)− f (0,β)

f (u,β ) = −it f (u,β)

in the first, and

s = t
| f (iβ −π i,β)− f (0,β)|
f (iβ −π i,β)− f (0,β)

f (u,β ) = it f (u,β )

in the second double integral. Clearly, by the definition of the adjacent contours, t is
positive. The quantities f (−iβ + π i,β)− f (0,β )= i(tanβ −β + π) and f (iβ −π i,β)−
f (0,β) = −i(tanβ −β + π) were essentially called the “singulants” by Dingle [3, p.
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t(0)
−

t(−1)
+

C
(0)
−
(− π

2

)

C
(−1)
+
(π

2

)
(i)

(ii)

(iii)

(iv)

(v)

Figure 2: The path P (θ ) emanating from the origin when (i) θ = 0 , (ii) θ = − π
4 ,

(iii) θ = − 2π
5 , (iv) θ = π

4 , (v) θ = 2π
5 . The paths C

(0)
−
(− π

2

)
and C

(−1)
+
(π

2

)
are the

adjacent contours to 0 . The domain Δ comprises all points between these two paths in
the right-half plane.

147]. With these changes of variable, the representation (2.7) for RN (ν,secβ ) becomes

RN(ν,secβ ) =
(−1)N

πν2N+1

∫ +∞

0

t2N

1+(t/ν)2

(
1
2π

∫
C

(−1)
+ ( π

2 )
e−it f (u,β )du

− 1
2π

∫
C

(0)
− (− π

2 )
eit f (u,β )du

)
dt, (2.8)

for − π
2 < θ < π

2 and N � 0. Finally, we shift the contour C
(−1)
+
(π

2

)
upwards by π and

the contour C
(0)
−
(− π

2

)
downwards by π . Let us denote these new paths by C̃

(−1)
+
(π

2

)
and C̃

(0)
−
(− π

2

)
, respectively. We therefore find that the contour integrals in (2.8) can

be expressed in terms of the Hankel functions since

1
2π

∫
C

(−1)
+ ( π

2 )
e−it f (u,β )du=

e−πt

2
i
1
π i

∫
C̃

(−1)
+ ( π

2 )
eit(secβ sinhu−u)du=

e−πt

2
iH(1)

it (it secβ ) ,

and

− 1
2π

∫
C

(0)
− (− π

2 )
eit f (u,β )du = −e−πt

2
i
1
π i

∫
C̃

(0)
− (− π

2 )
e−it(secβ sinhu−u)du

= −e−πt

2
iH(2)

−it (−it secβ )

=
e−πt

2
iH(1)

it (it secβ ) .
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Substituting these expressions into (2.8) gives

RN (ν,secβ ) =
(−1)N

πν2N+1

∫ +∞

0

t2Ne−πt

1+(t/ν)2 iH(1)
it (it secβ )dt,

for − π
2 < θ < π

2 and N � 0. Thus, we have proved (1.1) and (1.3) for λ > 1.
Now, we extend our results to every λ > 0. For fixed ν , ℜ(ν) > 0, we can extend

RN (ν,λ ) to an analytic function of λ > 0 using (1.1). From the known behaviours

iH(1)
it (λ it) ∼− 2

π
logt as t → 0+

and
iH(1)

it (λ it) = o(1) as t → +∞,

it is seen that the right-hand side of (1.3) is a well-defined analytic function of 0 < λ �
1, for every fixed ν with ℜ(ν) > 0. Whence, by analytic continuation the equality
(1.3) holds for every λ > 0 and ν with ℜ(ν) > 0.

The first formula in (1.2) has been proved for λ > 1, however, by analytic contin-
uation, it holds for every λ > 0. To prove the second representation in (1.2), we apply
(1.3) for the right-hand side of

an (λ ) = π
ν2n+1

(2n)!
(Rn (ν,λ )−Rn+1 (ν,λ )) .

3. Error bounds

In this section, we derive explicit and realistic error bounds for the large order
asymptotic series of the Anger–Weber function. The proofs are based on the resurgence
formula given in Theorem 1.1.

We comment on the relation between Meijer’s work [5] on the asymptotic expan-
sion of Aν (λ ν) , λ > 1 and ours. Some of the estimates in [5] coincide with ours and
are valid in wider sectors of the complex ν -plane. However, it should be noted that
those bounds become less effective outside the sectors of validity of the representation
(1.3) due to the Stokes phenomenon. For those sectors we recommend the use of the
continuation formulas given in Section 1.

To estimate the remainder terms, we shall use the elementary result that

1
|1− reiϕ | �

{
|cscϕ | if 0 < |ϕ mod 2π |< π

2

1 if π
2 � |ϕ mod 2π |� π

(3.1)

holds for any r > 0. We will also need the fact that

iH(1)
it (λ it) � 0 (3.2)

for any t > 0 and λ � 1 (see [6]).
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3.1. Case (i): λ � 1

We observe that from (1.2) and (3.2) it follows that

|an (λ )| = 1
(2n)!

∫ +∞

0
t2ne−πt iH(1)

it (λ it)dt.

Using this formula, together with the representation (1.3) and the estimate (3.1), we
obtain the error bound

|RN (ν,λ )| � 1
π

(2N)! |aN (λ )|
|ν|2N+1

{
|csc(2θ )| if π

4 < |θ | < π
2

1 if |θ | � π
4 .

(3.3)

When ν is real and positive, we can obtain more precise estimates. Indeed, as 0 <
1

1+(t/ν)2
< 1 for t,ν > 0, from (1.2) and (1.3) we find

RN (ν,λ ) =
1
π

(2N)!aN (λ )
ν2N+1 Θ,

where 0 < Θ < 1 is an appropriate number depending on ν,λ and N . In particular,
when N = 0, we have

0 < Aν (λ ν) <
1

πν (1+ λ)
for ν > 0.

Therefore, the leading order asymptotic approximation for Aν (λ ν) is always in error
by excess, for λ � 1 and for all positive values of ν .

The error bound (3.3) becomes singular as θ → ± π
2 , and therefore unrealistic

near the Stokes lines. A better bound for RN (ν,λ ) near these lines can be derived
as follows. Let 0 < ϕ < π

2 be an acute angle that may depend on N . Suppose that
π
4 + ϕ < θ � π

2 . An analytic continuation of the representation (1.1) to this sector can
be found by rotating the path of integration in (1.3) by ϕ :

RN (ν,λ ) =
(−1)N

πν2N+1

∫ +∞eiϕ

0

t2Ne−πt

1+(t/ν)2 iH(1)
it (λ it)dt.

Substituting t = seiϕ

cosϕ and applying the estimation (3.1), we obtain

|RN (ν,λ )| � csc(2(θ −ϕ))

π cos2N+1 ϕ |ν|2N+1

∫ +∞

0
s2Ne−πs

∣∣∣∣∣H(1)
iseiϕ
cosϕ

(
λ

iseiϕ

cosϕ

)∣∣∣∣∣ds.

In [6], it was shown that∣∣∣∣∣H(1)
iseiϕ
cosϕ

(
λ

iseiϕ

cosϕ

)∣∣∣∣∣� 1√
cosϕ

∣∣∣H(1)
is (λ is)

∣∣∣= 1√
cosϕ

iH(1)
is (λ is) (3.4)
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for any s > 0, λ � 1 and 0 < ϕ < π
2 . It follows that

|RN (ν,λ )| � csc(2(θ −ϕ))

π cos2N+ 3
2 ϕ |ν|2N+1

∫ +∞

0
s2Ne−πsiH(1)

is (λ is)ds

=
csc(2(θ −ϕ))

cos2N+ 3
2 ϕ

1
π

(2N)! |aN (λ )|
|ν|2N+1 . (3.5)

The angle ϕ = arctan

(( 4N+5
2

)− 1
2

)
minimizes the function csc

(
2
(π

2 −ϕ
))

cos−2N− 3
2 ϕ ,

and

csc

(
2

(
θ − arctan

(( 4N+5
2

)− 1
2

)))
cos2N+ 3

2

(
arctan

((
4N+5

2

)− 1
2

)) �
csc

(
2

(
π
2 − arctan

(( 4N+5
2

)− 1
2

)))
cos2N+ 3

2

(
arctan

((
4N+5

2

)− 1
2

))

=
1√
2

(
1+

2
4N +5

)N+ 7
4
√

N +
5
4

�
√

e
2

(
N +

3
2

)

for all π
4 +ϕ = π

4 + arctan

(( 4N+5
2

)− 1
2

)
< θ � π

2 with N � 0. Applying this result in

(3.5) yields the upper bound

|RN (ν,λ )| �
√

e
2

(
N +

3
2

)
1
π

(2N)! |aN (λ )|
|ν|2N+1 , (3.6)

which is valid for π
4 + ϕ = π

4 + arctan

((
4N+5

2

)− 1
2

)
< θ � π

2 with N � 0. Since∣∣RN
(
ν,λ
)∣∣= ∣∣∣RN (ν,λ )

∣∣∣= |RN (ν,λ )| , this bound also holds when − π
2 � θ < − π

4 −

arctan

(( 4N+5
2

)− 1
2

)
. In the ranges π

4 < |θ |� π
4 +arctan

(√
2

3

)
it holds that |csc(2θ)|�√

e
2

(
1+ 3

2

)
, whence the estimate (3.6) is valid in the wider sectors π

4 < |θ |� π
2 as long

as N � 1.

3.2. Case (ii): 0 < λ < 1

In this case, we cannot prove error bounds involving the first omitted term, since

iH(1)
it (λ it) has an oscillatory behaviour when 0 < λ < 1 and t > 0. Nevertheless, we

define ãn (λ ) via the integral

ãn (λ ) =
1

(2n)!

∫ +∞

0
t2ne−πt

∣∣∣H(1)
it (λ it)

∣∣∣dt;

and by the representation (1.3) and the inequality (3.1), we deduce the error bound

|RN (ν,λ )| � 1
π

(2N)!ãN (λ )

|ν|2N+1

{
|csc(2θ )| if π

4 < |θ | < π
2

1 if |θ | � π
4 .
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Simple estimates for the quantities ãn (λ ) may perhaps be derived from the connection
formula with the modified Bessel function of the third kind of purely imaginary order

H(1)
it (λ it) =

2
π i

e
π
2 tKit (λ t) ,

and the known bounds for this latter function (see, e.g., Booker et al. [2]).
Since for 0 < λ < 1 we do not have an inequality like (3.4), it seems hard to obtain

any usable error bound which is appropriate when argν is close to ± π
2 .

4. Asymptotics for the late coefficients

In this section, we investigate the asymptotic nature of the coefficients an (λ ) as
n → +∞ with λ being fixed. For our purposes, the most appropriate representation of
these coefficients is the second integral formula in (1.2). Although the representation
is valid for all λ > 0, we shall find that the asymptotic form of an (λ ) is significantly
different according to whether λ > 1, λ = 1 or 0 < λ < 1.

4.1. Case (i): λ > 1

For this case, we take λ = secβ with a suitable 0 < β < π
2 . From (1.4), it follows

that for any t > 0 and 0 < β < π
2 , it holds that

iH(1)
it (it secβ ) =

e−t(tanβ−β )( 1
2 tπ tanβ

) 1
2

(
M−1

∑
m=0

imUm (icotβ )
tm

+R(H)
M (it,β )

)
. (4.1)

In [6], it was proved that the remainder R(H)
M (it,β) satisfies∣∣∣R(H)

M (it,β)
∣∣∣� |UM (icotβ)|

tM
. (4.2)

Substituting the formula (4.1) into (1.2) leads us to the expansion

(2n)!an (secβ ) =
(

2cotβ
π (tanβ −β + π)

) 1
2 (−1)n Γ

(
2n+ 1

2

)
(tanβ −β + π)2n×

×
(

M−1

∑
m=0

(i(tanβ −β + π))mUm (icotβ )
Γ
(
2n−m+ 1

2

)
Γ
(
2n+ 1

2

) +AM (n,β)

)
,

(4.3)

for any fixed 0 � M � 2n , provided that n � 1. The remainder term AM (n,β) is given
by the integral formula

AM (n,β ) =
(tanβ −β + π)2n+ 1

2

Γ
(
2n+ 1

2

) ∫ +∞

0
t2n− 1

2 e−(tanβ−β+π)tR(H)
M (it,β)dt.
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To bound this error term, we apply the estimate (4.2) to find

|AM (n,β )| � (tanβ −β + π)M |UM (icotβ )| Γ
(
2n−M+ 1

2

)
Γ
(
2n+ 1

2

) . (4.4)

Expansions of type (4.3) are called inverse factorial series in the literature. Numeri-
cally, their character is similar to the character of asymptotic power series, because the
consecutive Gamma functions decrease asymptotically by a factor 2n .

From the asymptotic behaviour of the coefficients Um (icotβ ) (see [6]), we infer
that for large n , the least value of the bound (4.4) occurs when

M ≈ tanβ −β
3(tanβ −β)+ π

(4n+1).

Whence, the smaller β is the larger n has to be to get a reasonable approximation from
(4.3).

Numerical examples illustrating the efficacy of the expansion (4.3), truncated op-
timally, are given in Table 1.

values of β and M β = π
6 , M = 4

exact numerical value of a50 (secβ) 0.2004926124399177097019512509947129 × 10−51

approximation (4.3) to a50 (secβ) 0.1997204566354320191164985775448290 × 10−51

error 0.7721558044856905854526734498839 × 10−54

error bound using (4.4) 0.16182537012652011778281419657176 × 10−53

values of β and M β = π
3 , M = 27

exact numerical value of a50 (secβ) 0.1619316740481494064448396260188866 × 10−59

approximation (4.3) to a50 (secβ) 0.1619316740481497277978573226174596 × 10−59

error −0.3213530176965985730 × 10−74

error bound using (4.4) 0.6473043619300051742 × 10−74

values of β and M β = 5π
12 , M = 47

exact numerical value of a50 (secβ) 0.4989354184460076118014557886550703 × 10−76

approximation (4.3) to a50 (secβ) 0.4989354184460076118014557886641359 × 10−76

error −0.90656× 10−105

error bound using (4.4) 0.181989× 10−104

Table 1: Approximations for a50 (secβ ) with various β , using (4.3).

4.2. Case (ii): λ = 1

Using (1.5), we can write

iH(1)
it (it) =

2
3π

M−1

∑
m=0

(−1)m d2m sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
t

2m+1
3

+ iR(H)
M (it) (4.5)
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for any t > 0. It was shown in [6] that∣∣∣R(H)
M (it)

∣∣∣� 2
3π

|d2M|
√

3
2

Γ
( 2M+1

3

)
t

2M+1
3

+
2
3π

|d2M+2|
√

3
2

Γ
( 2M+3

3

)
t

2M+3
3

, (4.6)

∣∣∣R(H)
M (it)

∣∣∣� 2
3π

|d2M+2|
√

3
2

Γ
( 2M+3

3

)
t

2M+3
3

, (4.7)

∣∣∣R(H)
M (it)

∣∣∣� 2
3π

|d2M|
√

3
2

Γ
(

2M+1
3

)
t

2M+1
3

(4.8)

according to whether M ≡ 0 mod 3, M ≡ 1 mod 3 or M ≡ 2 mod 3, respectively.
Substituting the expression (4.5) into (1.2) yields the expansion

(2n)!an (1) = (−1)n 2Γ
(
2n+ 2

3

)
3π2n+ 5

3

×

×
(

M−1

∑
m=0

(−1)m π
2m
3 d2m sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
Γ
(

6n−2m+2
3

)
Γ
(
2n+ 2

3

) +AM (n)

)
,

(4.9)

for any fixed 0 � M � 3n−1, provided that n � 1. The remainder term AM (n) is given
by the formula

AM (n) =
3π2n+ 5

3

2Γ
(
2n+ 2

3

) ∫ +∞

0
t2ne−πt iR(H)

M (it)dt.

Bounds for this error term follow from the estimates (4.6)–(4.8) since

|AM (n)| � π
2M
3 |d2M|

√
3

2
Γ
(

2M +1
3

)
Γ
( 6n−2M+2

3

)
Γ
(
2n+ 2

3

)
+ π

2M+2
3 |d2M+2|

√
3

2
Γ
(

2M +3
3

)
Γ
( 6n−2M

3

)
Γ
(
2n+ 2

3

) ,
|AM (n)| � π

2M+2
3 |d2M+2|

√
3

2
Γ
(

2M +3
3

)
Γ
(

6n−2M
3

)
Γ
(
2n+ 2

3

) , (4.10)

|AM (n)| � π
2M
3 |d2M|

√
3

2
Γ
(

2M +1
3

)
Γ
(

6n−2M+2
3

)
Γ
(
2n+ 2

3

) (4.11)

according to whether M ≡ 0 mod 3, M ≡ 1 mod 3 or M ≡ 2 mod 3, respectively.
From the asymptotic behaviour of the coefficients d2m (see [6]), for large n , the

least values of these bounds occur when M ≈ 2n . With this choice of M , the error

bounds are O
(
n−

1
2 9−n
)

. This is the best accuracy we can achieve using the expansion

(4.9). Numerical examples for various n are provided in Table 2.
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values of n and M n = 5, M = 10

exact numerical value of an (1) −0.2039315629047481261022927689594356 × 10−5

approximation (4.9) to an (1) −0.2039317236866484733447636037370858 × 10−5

error 0.1607819003472424708347776502 × 10−11

error bound using (4.10) 0.5218454726884724646870658288 × 10−11

values of n and M n = 10, M = 20

exact numerical value of an (1) 0.1740499192613222665759959822566006 × 10−10

approximation (4.9) to an (1) 0.1740499192631695872689300620308834 × 10−10

error −0.18473206929340797742828 × 10−21

error bound using (4.11) 0.52455141471539645254342 × 10−21

values of n and M n = 25, M = 50

exact numerical value of an (1) −0.1567780710784896492198553870128892 × 10−25

approximation (4.9) to an (1) −0.1567780710784896492198553919627602 × 10−25

error 0.49498710× 10−51

error bound using (4.11) 0.145150293× 10−50

Table 2: Approximations for an (1) with various n, using (4.9).

4.3. Case (iii): 0 < λ < 1

For this case, we take λ = sechα with a suitable α > 0. It is known that

iH(1)
it (it sechα) = 2ℜ

⎛⎝eit(α−tanhα)− π
4 i( 1

2 πt tanhα
) 1

2

(
M−1

∑
m=0

imUm (cothα)
tm

+R(H)
M (it,α)

)⎞⎠ ,

(4.12)
where R(H)

M (it,α) = OM,α
(
t−M
)

as t →+∞ . Here Um (cothα) = [Um (x)]x=cothα with
Um (x) being a polynomial in x of degree 3m . As far as we know, there is no simple

closed expression nor a realistic estimate for the remainder term R(H)
M (it,α) . Never-

theless, we assume that ∫ +∞

0
t2n− 1

2 e−πt
∣∣∣R(H)

M (it,α)
∣∣∣dt < +∞

and substitute the expansion (4.12) into (1.2) to obtain

(2n)!an (sechα) = ℜ

((
2cothα

π (α − tanhα + π i)

) 1
2 2Γ

(
2n+ 1

2

)
(α − tanhα + π i)2n

×
(

M−1

∑
m=0

(α − tanhα + π i)mUm (cothα)
Γ
(
2n−m+ 1

2

)
Γ
(
2n+ 1

2

) +AM (n,α)

))
, (4.13)
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for any fixed 0 � M � 2n , provided that n � 1. The remainder term AM (n,α) is given
by the integral formula

AM (n,α) = (−1)n e−
π
4 i (α − tanhα + π i)2n+ 1

2

Γ
(
2n+ 1

2

) ∫ +∞

0
t2n− 1

2 ei(α−tanhα+π i)tR(H)
M (it,α)dt.

To achieve the best accuracy using the expansion (4.13), we need to determine the index
of the least term of the expansion. This can be done if we know the large m behaviour
of the coefficients Um (cothα) . Such an asymptotic formula was derived by Dingle
[3, p. 168], using formal, non-rigorous methods. At leading order, his formula can be
written as

|Um (cothα)| ∼ Γ(m)
2π (2(α − tanhα))m .

Numerical calculations indicate that this approximation is correct, and assuming so, the
optimal truncation occurs at

M ≈ α − tanhα

2(α − tanhα)+
√

(α − tanhα)2 + π2
(4n+1) .

Therefore, the smaller α is the larger n has to be to get a reasonable approximation
from (4.13).

Numerical examples illustrating the efficacy of the formula (4.13), truncated opti-
mally, are given in Table 3.

values of α and M α = 1
2 , M = 3

exact numerical value of a50 (sechα) 0.2315627683882018769175712540082165 × 10−50

approximation (4.13) to a50 (sechα) 0.2303064844873166640986637287015961 × 10−50

error 0.12562839008852128189075253066203 × 10−52

values of α and M α = 1, M = 14

exact numerical value of a50 (sechα) 0.1279482878426982457824386451759845 × 10−50

approximation (4.13) to a50 (sechα) 0.1279482903067682761677730364825915 × 10−50

error −0.24640700303853343913066070 × 10−58

values of α and M α = 5, M = 62

exact numerical value of a50 (sechα) −0.9536145099812834565097014294181624 × 10−72

approximation (4.13) to a50 (sechα) −0.9536145099812834565097014294180344 × 10−72

error 0.1280× 10−102

Table 3: Approximations for a50 (sechα) with various α , using (4.13).
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5. Exponentially improved asymptotic expansions

We shall find it convenient to express our exponentially improved expansions in
terms of the (scaled) Terminant function, which is defined by

T̂p (w) =
eπ ipw1−pe−w

2π i

∫ +∞

0

t p−1e−t

w+ t
dt for p > 0 and |argw| < π ,

and by analytic continuation elsewhere. Olver [10] showed that when p ∼ |w| and
w → ∞ , we have

ie−π ipT̂p (w) =

{
O
(
e−w−|w|) if |argw| � π

O (1) if −3π < argw � −π .
(5.1)

Concerning the smooth transition of the Stokes discontinuities, we will use the more
precise asymptotic formulas

T̂p (w) =
1
2

+
1
2

erf

(
c(ϕ)

√
1
2
|w|
)

+O

(
e−

1
2 |w|c2(ϕ)

|w| 1
2

)
(5.2)

for −π + δ � argw � 3π − δ , 0 < δ � 2π ; and

e−2π ipT̂p (w) = −1
2

+
1
2

erf

(
−c(−ϕ)

√
1
2
|w|
)

+O

(
e−

1
2 |w|c2(−ϕ)

|w| 1
2

)
(5.3)

for −3π + δ � argw � π − δ , 0 < δ � 2π . Here ϕ = argw and erf denotes the Error
function. The quantity c(ϕ) is defined implicitly by the equation

1
2
c2 (ϕ) = 1+ i(ϕ −π)− ei(ϕ−π),

and corresponds to the branch of c(ϕ) which has the following expansion in the neigh-
bourhood of ϕ = π :

c(ϕ) = (ϕ −π)+
i
6

(ϕ −π)2− 1
36

(ϕ −π)3− i
270

(ϕ −π)4 + · · · . (5.4)

For complete asymptotic expansions, see Olver [9]. We remark that Olver uses the
different notation Fp (w)= ie−π ipT̂p (w) for the Terminant function and the other branch
of the function c(ϕ) . For further properties of the Terminant function, see, for example,
Paris and Kaminski [12, Chapter 6].

5.1. Proof of the exponentially improved expansions for Aν (λ ν)

5.1.1. Case (i): λ > 1

The proof goes exactly the same way as the proof of Theorem 3 in the first pa-
per of this series [7]. One has to replace RN (ν,β ) , RN,M (ν,β ) and tanβ − β by
RN (ν,secβ ) , RN,M (ν,secβ ) and tanβ −β + π in the corresponding formulas.
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5.1.2. Case (ii): λ = 1

First, we suppose that |argν| < π
2 . Our starting point is the representation (1.3),

written in the form

RN (ν,1) =
(−1)N

2πν2N+1

∫ +∞

0

t2Ne−πt

1− it/ν
iH(1)

it (it)dt +
(−1)N

2πν2N+1

∫ +∞

0

t2Ne−πt

1+ it/ν
iH(1)

it (it)dt.

(5.5)
Let 0 � M < 3N be a fixed integer such that M ≡ 0 mod 3. We use (1.5) to expand

the function H(1)
it (it) under the integrals in (5.5), to obtain

RN (ν,1) =
2
3π

M−1

∑
m=0

d2m sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

(−1)N+m ν
2m−2

3 −2N

2π
×

×
∫ +∞

0

t2N− 2m−2
3 −1e−πt

1− it/ν
dt

+
2
3π

M−1

∑
m=0

d2m sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

(−1)N+m ν
2m−2

3 −2N

2π
×

×
∫ +∞

0

t2N− 2m−2
3 −1e−πt

1+ it/ν
dt

+RN,M (ν,1) , (5.6)

with

RN,M (ν,1) =
(−1)N

2πν2N+1

∫ +∞

0

t2Ne−πt

1− it/ν
iR(H)

M (it)dt

+
(−1)N

2πν2N+1

∫ +∞

0

t2Ne−πt

1+ it/ν
iR(H)

M (it)dt. (5.7)

The integrals in (5.6) can be identified in terms of the Terminant function since

(−1)N+m ν
2m−2

3 −2N

2π

∫ +∞

0

t2N− 2m−2
3 −1e−πt

1− it/ν
dt = −ieπ iνe

2(2m+1)πi
3 T̂2N− 2m−2

3
(π iν)

and

(−1)N+m ν
2m−2

3 −2N

2π

∫ +∞

0

t2N− 2m−2
3 −1e−πt

1+ it/ν
dt = −ie−π iν T̂2N− 2m−2

3
(−π iν) .

Hence, we have the following expansion

RN (ν,1) = −ieπ iν 2
3π

M−1

∑
m=0

d2me
2(2m+1)πi

3 sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

T̂2N− 2m−2
3

(π iν)

− ie−π iν 2
3π

M−1

∑
m=0

d2m sin

(
(2m+1)π

3

)
Γ
( 2m+1

3

)
ν

2m+1
3

T̂2N− 2m−2
3

(−π iν)+RN,M (ν,1) .
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Taking ν = reiθ , the representation (5.7) takes the form

RN,M (ν,1) =
(−1)N

2π (eiθ )2N+1

∫ +∞

0

τ2Ne−πrτ

1− iτe−iθ iR(H)
M (irτ)dτ

+
(−1)N

2π (eiθ )2N+1

∫ +∞

0

τ2Ne−πrτ

1+ iτe−iθ iR(H)
M (irτ)dτ. (5.8)

In [6, Appendix B] it was shown that

1− (s/rτ)
4
3

1− (s/rτ)2 =
1− (s/r)

4
3

1− (s/r)2 +(τ −1) f (r,τ,s)

for positive r , τ and s , with some f (r,τ,s) satisfying | f (r,τ,s)| � 2. Using the

integral formula (1.9), R(H)
M (irτ) can be written as

R(H)
M (irτ) =

1
√

3π (rτ)
2M+1

3

∫ +∞

0
s

2M−2
3 e−2πs 1− (s/rτ)

4
3

1− (s/rτ)2 H(1)
is (is)ds

=
1

√
3π (rτ)

2M+1
3

∫ +∞

0
s

2M−2
3 e−2πs 1− (s/r)

4
3

1− (s/r)2 H(1)
is (is)ds

+
τ −1

√
3π (rτ)

2M+1
3

∫ +∞

0
s

2M−2
3 e−2πs f (r,τ,s)H(1)

is (is)ds.

Noting that

0 <
1− (s/r)

4
3

1− (s/r)2 < 1

for any positive r and s , substitution into (5.8) yields the upper bound

|RN,M (ν,1)| � |d2M|Γ( 2M+1
3

)
√

3π |ν| 2M+1
3

∣∣∣∣∣ 1
2π

∫ +∞

0

τ2N− 2M−2
3 −1e−πrτ

1− iτe−iθ dτ

∣∣∣∣∣
+

|d2M|Γ( 2M+1
3

)
√

3π2 |ν| 2M+1
3

∫ +∞

0
τ2N− 2M−2

3 −1e−πrτ
∣∣∣∣ τ −1
τ + ieiθ

∣∣∣∣dτ

+
|d2M|Γ( 2M+1

3

)
√

3π |ν| 2M+1
3

∣∣∣∣∣ 1
2π

∫ +∞

0

τ2N− 2M−2
3 −1e−πrτ

1+ iτe−iθ dτ

∣∣∣∣∣
+

|d2M|Γ( 2M+1
3

)
√

3π2 |ν| 2M+1
3

∫ +∞

0
τ2N− 2M−2

3 −1e−πrτ
∣∣∣∣ τ −1
τ − ieiθ

∣∣∣∣dτ .
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As
∣∣(τ −1)/

(
τ ± ieiθ)∣∣� 1, we find that

|RN,M (ν,1)| � |d2M|Γ( 2M+1
3

)
√

3π |ν| 2M+1
3

∣∣∣eπ iν T̂2N− 2M−2
3

(π iν)
∣∣∣

+
|d2M|Γ( 2M+1

3

)
√

3π |ν| 2M+1
3

∣∣∣e−π iν T̂2N− 2M−2
3

(−π iν)
∣∣∣

+
2 |d2M|Γ( 2M+1

3

)
Γ
(
2N− 2M−2

3

)
√

3π2π2N− 2M−2
3 |ν|2N+1

.

By continuity, this bound holds in the closed sector |argν| � π
2 . Assume that N =

1
2π |ν|+ ρ where ρ is bounded. Employing Stirling’s formula, we find that

2 |d2M|Γ( 2M+1
3

)
Γ
(
2N− 2M−2

3

)
√

3π2π2N− 2M−2
3 |ν|2N+1

= OM,ρ

(
e−π |ν|

|ν| 1
2

|d2M| Γ
( 2M+1

3

)
|ν| 2M+1

3

)

as ν → ∞ . Olver’s estimation (5.1) shows that∣∣∣e±π iν T̂2N− 2M−2
3

(±π iν)
∣∣∣= OM,ρ

(
e−π |ν|

)
for large ν . Therefore, we have that

RN,M (ν,1) = OM,ρ

(
e−π |ν| |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)
(5.9)

as ν → ∞ in the sector |argν| � π
2 .

Rotating the path of integration in (5.7) and applying the residue theorem yields

RN,M (ν,1) = ieπ iνR(H)
M (ν)+

(−1)N

2πν2N+1

∫ +∞

0

t2Ne−πt

1− it/ν
iR(H)

M (it)dt

+
(−1)N

2πν2N+1

∫ +∞

0

t2Ne−πt

1+ it/ν
iR(H)

M (it)dt

= ieπ iνR(H)
M (ν)−RN,M

(
νe−π i,1

)
,

when π
2 < argν < 3π

2 . It follows that

|RN,M (ν,1)| � e−πℑ(ν)
∣∣∣R(H)

M (ν)
∣∣∣+ ∣∣RN,M

(
νe−π i,1

)∣∣
in the closed sector π

2 � argν � 3π
2 , using continuity. It was proved in [6] that R(H)

M (ν) =

OM

(
|d2M|Γ( 2M+1

3

) |ν|− 2M+1
3

)
as ν →∞ in the closed sector − π

2 � argν � 3π
2 , whence,
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by (5.9), we deduce that

RN,M (ν,1) = OM

(
e−πℑ(ν) |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)
+OM,ρ

(
e−π |ν| |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)

= OM,ρ

(
e−πℑ(ν) |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)
(5.10)

as ν → ∞ in the sector π
2 � argν � 3π

2 .
The reflection principle gives the relation

RN,M (ν,1) = RN,M
(
ν ,1
)

= −ie−π iνR(H)
M

(
ν
)−RN,M

(
νeπ i,1

)
= −ie−π iνR(H)

M

(
νeπ i)−RN,M

(
νeπ i,1

)
,

valid when − 3π
2 < argν <− π

2 . Trivial estimation and a continuity argument show that

|RN,M (ν,1)| � eπℑ(ν)
∣∣∣R(H)

M

(
νeπ i)∣∣∣+ ∣∣RN,M

(
νeπ i,1

)∣∣
in the closed sector − 3π

2 � argν � − π
2 . Since

R(H)
M

(
νeπ i)= OM

(
|d2M|Γ

(
2M +1

3

)
|ν|− 2M+1

3

)
as ν → ∞ in the range − 3π

2 � argν � − π
2 , by (5.9), we find that

RN,M (ν,1) = OM

(
eπℑ(ν) |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)
+OM,ρ

(
e−π |ν| |d2M| Γ

(
2M+1

3

)
|ν| 2M+1

3

)

= OM,ρ

(
eπℑ(ν) |d2M| Γ

( 2M+1
3

)
|ν| 2M+1

3

)
(5.11)

as ν → ∞ with − 3π
2 � argν � − π

2 .
If M ≡ 1 mod 3 or M ≡ 2 mod 3, we write the remainder RN,M (ν,1) in the

form

RN,M (ν,1) =− ieπ iν 2
3π

d2M+2e
π
3 i

√
3

2

Γ
(

2M+3
3

)
ν

2M+3
3

T̂2N− 2M
3

(π iν)

+ ie−π iν 2
3π

d2M+2

√
3

2

Γ
(

2M+3
3

)
ν

2M+3
3

T̂2N− 2M
3

(−π iν)+RN,M+2 (ν,1)
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and

RN,M (ν,1) =− ieπ iν 2
3π

d2Me
π
3 i

√
3

2

Γ
( 2M+1

3

)
ν

2M+1
3

T̂2N− 2M−2
3

(π iν)

+ ie−π iν 2
3π

d2M

√
3

2

Γ
( 2M+1

3

)
ν

2M+1
3

T̂2N− 2M−2
3

(−π iν)+RN,M+1 (ν,1) ,

respectively. Applying the connection formula T̂p (w) = e2π ip
(
T̂p
(
we2π i

)−1
)

to-

gether with Olver’s result (5.1) and the bounds (5.9), (5.10), (5.11) we have established,
the estimates for the cases M ≡ 1 mod 3 and M ≡ 2 mod 3 follow.

5.2. Stokes phenomenon and Berry’s transition

5.2.1. Case (i): λ > 1

As usual, let λ = secβ with some 0 < β < π
2 . We study the Stokes phenomenon

related to the asymptotic expansion of Aν (ν secβ ) occurringwhen argν passes through
the values ± π

2 . In the range |argν| < π
2 , the asymptotic expansion

Aν (ν secβ ) ∼ 1
π

∞

∑
n=0

(2n)!an (secβ )
ν2n+1 (5.12)

holds as ν → ∞ . From (1.10) we have

Aν (ν secβ ) = ieπ iνH(1)
ν (ν secβ)−A−ν

(
νe−π i secβ

)
when π

2 < argν < 3π
2 , and

Aν (ν secβ ) = −ie−π iνH(2)
ν (ν secβ)−A−ν

(
νeπ i secβ

)
for − 3π

2 < argν < − π
2 . For the right-hand sides, we can apply the asymptotic expan-

sions of the Hankel functions and the Anger–Weber function to deduce that

Aν (ν secβ ) ∼ i
eiν(tanβ−β+π)− π

4 i(
1
2 νπ tanβ

) 1
2

∞

∑
m=0

(−1)m Um (icotβ )
νm +

1
π

∞

∑
n=0

(2n)!an (secβ )
ν2n+1

(5.13)
as ν → ∞ in the sector π

2 < argν < 3π
2 , and

Aν (ν secβ ) ∼−i
e−iν(tanβ−β+π)+ π

4 i(
1
2 νπ tanβ

) 1
2

∞

∑
m=0

Um (icotβ)
νm +

1
π

∞

∑
n=0

(2n)!an (secβ )
ν2n+1 (5.14)

as ν → ∞ in the sector − 3π
2 < argν <− π

2 . Therefore, as the line argν = π
2 is crossed,

the additional series

i
eiν(tanβ−β+π)− π

4 i( 1
2 νπ tanβ

) 1
2

∞

∑
m=0

(−1)m Um (icotβ )
νm (5.15)
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appears in the asymptotic expansion of Aν (ν secβ ) beside the original one (5.12).
Similarly, as we pass through the line argν = − π

2 , the series

− i
e−iν(tanβ−β+π)+ π

4 i( 1
2 νπ tanβ

) 1
2

∞

∑
m=0

Um (icotβ )
νm (5.16)

appears in the asymptotic expansion of Aν (ν secβ ) beside the original series (5.12).
We have encountered a Stokes phenomenon with Stokes lines argν = ± π

2 .
In his important paper [1], Berry gave a new interpretation of the Stokes phe-

nomenon; he proved that assuming optimal truncation, the transition between com-
pound asymptotic expansions is of Error function type, thus yielding a smooth and
rapid transition as a Stokes line is crossed.

Using the exponentially improved expansion given in Theorem 1.2, we show that
the asymptotic expansion of Aν (ν secβ ) exhibits the Berry transition between the two
asymptotic series across the Stokes lines argν = ± π

2 . More precisely, we shall find
that the first few terms of the series in (5.15) and (5.16) “emerge” in a rapid and smooth
way as argν passes through π

2 and − π
2 , respectively.

From Theorem 1.2, we conclude that if N ≈ 1
2 |ν|(tanβ −β + π) , then for large

ν , |argν| < π , we have

Aν (ν secβ ) ≈ 1
π

N−1

∑
n=0

(2n)!an (secβ )
ν2n+1

+ i
eiν(tanβ−β+π)− π

4 i( 1
2 νπ tanβ

) 1
2

∑
m=0

(−1)m Um (icotβ )
νm T̂2N−m+ 1

2
(iν (tanβ −β + π))

− i
e−iν(tanβ−β+π)+ π

4 i(
1
2 νπ tanβ

) 1
2

∑
m=0

Um (icotβ )
νm T̂2N−m+ 1

2
(−iν (tanβ −β + π)),

where ∑m=0 means that the sum is restricted to the first few terms of the series.
In the upper half-plane, the terms involving T̂2N−m+ 1

2
(−iν (tanβ −β + π)) are

exponentially small and the dominant contribution comes from the terms involving
T̂2N−m+ 1

2
(iν (tanβ −β + π)) . Under the above assumption on N , from (5.2) and (5.4),

the Terminant functions have the asymptotic behaviour

T̂2N−m+ 1
2
(iν (tanβ −β + π)) ∼ 1

2
+

1
2

erf

((
θ − π

2

)√1
2
|ν|(tanβ −β + π)

)

provided that argν = θ is close to π
2 , ν is large and m is small in comparison with N .

Therefore, when θ < π
2 , the Terminant functions are exponentially small; for θ = π

2 ,
they are asymptotically 1

2 up to an exponentially small error; and when θ > π
2 , the

Terminant functions are asymptotic to 1 with an exponentially small error. Thus, the
transition across the Stokes line argν = π

2 is effected rapidly and smoothly. Similarly,
in the lower half-plane, the dominant contribution is controlled by the terms involving
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T̂2N−m+ 1
2
(−iν (tanβ −β + π)) . From (5.3) and (5.4), we have

T̂2N−m+ 1
2
(−iν (tanβ −β + π)) ∼ 1

2
− 1

2
erf

((
θ +

π
2

)√1
2
|ν| (tanβ −β + π)

)

under the assumptions that argν = θ is close to − π
2 , ν is large and m is small in com-

parison with N ≈ 1
2 |ν| (tanβ −β + π) . Thus, when θ > − π

2 , the Terminant functions
are exponentially small; for θ = − π

2 , they are asymptotic to 1
2 with an exponentially

small error; and when θ < − π
2 , the Terminant functions are asymptotically 1 up to an

exponentially small error. Therefore, the transition through the Stokes line argν = − π
2

is carried out rapidly and smoothly.
We remark that from the expansions (5.13) and (5.14), it follows that (5.12) is an

asymptotic expansion of Aν (ν secβ ) in the wider sector |argν|� π −δ < π , with any
fixed 0 < δ � π .

5.2.2. Case (ii): λ = 1

The analysis of the Stokes phenomenon for the asymptotic expansion of Aν (ν) is
similar to the case λ > 1. In the range |argν| < π

2 , the asymptotic expansion

Aν (ν) ∼ 1
π

∞

∑
n=0

(2n)!an (1)
ν2n+1 (5.17)

holds as ν → ∞ . Employing the continuation formulas stated in Section 1, we find that

Aν (ν) = ieπ iνH(1)
ν (ν)−A−ν

(
νe−π i)

and
Aν (ν) = −ie−π iνH(2)

ν (ν)−A−ν
(
νeπ i) .

For the right-hand sides, we can apply the asymptotic expansions of the Hankel func-
tions and the Anger–Weber function to deduce that

Aν (ν) ∼−ieπ iν 2
3π

∞

∑
m=0

d2me
2(2m+1)πi

3 sin

(
(2m+1)π

3

)
Γ
( 2m+1

3

)
ν

2m+1
3

+
1
π

∞

∑
n=0

(2n)!an (1)
ν2n+1

(5.18)
as ν → ∞ in the sector π

2 < argν < 3π
2 , and

Aν (ν) ∼ ie−π iν 2
3π

∞

∑
m=0

d2me−
2(2m+1)πi

3 sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

+
1
π

∞

∑
n=0

(2n)!an (1)
ν2n+1

(5.19)
as ν → ∞ in the sector − 3π

2 < argν <− π
2 . Therefore, as the line argν = π

2 is crossed,
the additional series

− ieπ iν 2
3π

∞

∑
m=0

d2me
2(2m+1)πi

3 sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

(5.20)
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appears in the asymptotic expansion of Aν (ν) beside the original one (5.17). Similarly,
as we pass through the line argν = − π

2 , the series

ie−π iν 2
3π

∞

∑
m=0

d2me−
2(2m+1)πi

3 sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

(5.21)

appears in the asymptotic expansion of Aν (ν) beside the original series (5.17). We
have encountered a Stokes phenomenon with Stokes lines argν = ± π

2 . With the aid
of the exponentially improved expansion given in Theorem 1.3, we shall find that the
asymptotic series of Aν (ν) shows the Berry transition property: the two series in (5.20)
and (5.21) “emerge” in a rapid and smooth way as the Stokes lines argν = π

2 and
argν = − π

2 are crossed.
From Theorem 1.3, we infer that if N ≈ 1

2 π |ν| , then for large ν , |argν| < π , we
have

Aν (ν) ≈ 1
π

N−1

∑
n=0

(2n)!an (1)
ν2n+1

− ieπ iν 2
3π ∑

m=0
d2me

2(2m+1)πi
3 sin

(
(2m+1)π

3

)
Γ
( 2m+1

3

)
ν

2m+1
3

T̂2N− 2m−2
3

(π iν)

− ie−π iν 2
3π ∑

m=0
d2me−

2(2m+1)πi
3 sin

(
(2m+1)π

3

)
Γ
(

2m+1
3

)
ν

2m+1
3

e
2(2m−2)πi

3 T̂2N− 2m−2
3

(−π iν),

where, as before, ∑m=0 means that the sum is restricted to the first few terms of the
series.

In the upper half-plane, the main contribution comes from the terms involving
T̂2N− 2m−2

3
(π iν) . Under the above assumption on N , from (5.2) and (5.4), the Terminant

functions have the asymptotic behaviour

T̂2N− 2m−2
3

(π iν) ∼ 1
2

+
1
2

erf

((
θ − π

2

)√1
2

π |ν|
)

,

provided that argν = θ is close to π
2 , ν is large and m is small in comparison with N .

Therefore, when θ < π
2 , the Terminant functions are exponentially small; for θ = π

2 ,
they are asymptotically 1

2 up to an exponentially small error; and when θ > π
2 , the

Terminant functions are asymptotic to 1 with an exponentially small error. Thus, the
transition across the Stokes line argν = π

2 is effected rapidly and smoothly. Similarly,
in the lower half-plane, the dominant contribution is controlled by the terms containing
T̂2N− 2m−2

3
(−π iν) . From (5.3) and (5.4), we have

e
2(2m−2)πi

3 T̂2N− 2m−2
3

(−π iν) ∼−1
2

+
1
2

erf

((
θ +

π
2

)√1
2

π |ν|
)

,

under the assumptions that argν = θ is close to − π
2 , ν is large and m is small in com-

parison with N ≈ 1
2 π |ν| . Thus, when θ > − π

2 , the normalized Terminant functions
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are exponentially small; for θ = − π
2 , they are asymptotic to − 1

2 with an exponentially
small error; and when θ <− π

2 , the normalized Terminant functions are asymptotically
−1 up to an exponentially small error. Therefore, the transition through the Stokes line
argν = − π

2 is carried out rapidly and smoothly.
We note that from the expansions (5.18) and (5.19), it follows that (5.17) is an

asymptotic series of Aν (ν) in the wider range |argν| � π − δ < π , with any fixed
0 < δ � π .

6. Discussion

In this paper, we have discussed in detail the large order and argument asymptotics
of the Anger–Weber function Aν (λ ν) when λ > 0, using Howls’ method. The resur-
gence properties and the exponentially improved versions of the large ν asymptotics of
the associated Anger function Jν (λ ν) and Weber function Eν (λ ν) can be obtained
from the relations

Jν (λ ν) = Jν (λ ν)+ sin(πν)Aν (λ ν) ,

Eν (λ ν) = −Yν (λ ν)− cos(πν)Aν (λ ν)−A−ν (λ ν) ,

our previous results on the Bessel functions [6] and the results of the present series of
papers on the Anger–Weber function. Note that the resulting resurgence formulas have
different forms according to whether λ = 1 or λ > 1. From these new representations,
error bounds for the asymptotic expansions of the Anger and Weber functions can be
derived which, in the case λ = 1, may be compared with those given earlier by Olver
[8].
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