THE NECESSARY AND SUFFICIENT CONDITIONS FOR GENERAL
HADAMARD PRODUCT OF CLASSES OF ANALYTIC FUNCTIONS

LIANGPENG XIONG

Abstract. Let $P_a(A,B)$ be the classes of analytic functions $f(z)$, where $f(z) \sim \frac{a+Az}{1-Bz}, A+eB \neq 0$ and $|B| \leq 1$. For classes $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n$ of analytic functions, we define the general hadamard product of the form $\mathcal{H}_1 *_{m_1} \mathcal{H}_2 *_{m_2} \mathcal{H}_3 *_{m_3} \cdots *_{m_{n-1}} \mathcal{H}_n (z) = \{ f_1 *_{m_1} f_2 *_{m_2} f_3 *_{m_3} \cdots *_{m_{n-1}} f_n(z) : f_i \in \mathcal{H}_i, i = 1, 2, \ldots, n \in \mathbb{Z}^+, m_i \in \mathbb{C} \}$. In this paper, we discuss the conditions for equality $P_{a_1}(A_1, B_1) *_{m_1} P_{a_2}(A_2, B_2) *_{m_2} *_{m_3} \cdots *_{m_{n-1}} P_{a_n}(A_n, B_n) = P_a(X, Y)$. Some consequences of the main results for known classes of analytic functions are also pointed out.

1. Introduction

Let \mathcal{A} be the class of function analytic in the unit disc $\mathcal{U} = \{ z : |z| < 1 \}$. Let Ω denote the subclass of \mathcal{A} consisting of functions such that $w(0) = 0$ and $|w(z)| < 1$. Suppose that functions $g \in \mathcal{A}$ and $F \in \mathcal{A}$, then the function g is said to be subordinate to F, written $g \prec F$, if there exists a function $w(z) \in \Omega$ and such that $g(z) = F(w(z))$, $z \in \mathcal{U}$. Many classes of functions studied in geometric function theory can be described in terms of subordination. If $f_i(z) \in \mathcal{A}$ are given by

$$f_i(z) = \sum_{k=0}^{\infty} a_{k,i} z^k, \quad i = 1, 2, \ldots, n, \quad z \in \mathcal{U},$$

then the Hadamard product $f_1 * f_2 * \ldots * f_n(z)$ of f_1, f_2, \ldots, f_n is defined by

$$f_1 * f_2 * \ldots * f_n(z) = \sum_{k=0}^{\infty} a_{k,1} a_{k,2} \cdots a_{k,n} z^k, \quad z \in \mathcal{U}. \quad (1.1)$$

Kinds of Hadamard product problems were studied in [3, 4, 8, 9, 11, 12, 13, 16, 17]. Moreover, if m_i $(i = 1, 2, \ldots, n - 1)$ are the fixed complex numbers, then we can also give the general finite Hadamard product as

$$f_1 *_{m_1} f_2 *_{m_2} *_{m_3} *_{m_{n-1}} f_n(z) = a_{0,1} a_{0,2} \cdots a_{0,n} + \prod_{j=1}^{n-1} m_j \sum_{k=1}^{\infty} a_{k,1} a_{k,2} \cdots a_{k,n} z^k. \quad (1.2)$$

In fact, $f_1 *_{1} f_2 *_{1} *_{1} f_n(z) = f_1 *_{2} f_2 *_{2} *_{2} f_n(z)$. In [13], Piejko defined and studied the following class

$$P_{a}(A,B) = \left\{ f \in \mathcal{A} : f(z) \sim \frac{a + Az}{1 - Bz}, \quad z \in \mathcal{U} \right\}, \quad (1.3)$$

Keywords and phrases: Analytic function, Hadamard product, subordination, geometric function.
where a, A, B are given complex numbers such that $A + aB \neq 0$ and $|B| \leq 1$. The class $P_a(A, B)$ is the natural generalization of the class $P = P_1(1, 1)$ of functions $f \in A$ with positive real part in A. W. Janowski [7] introduced and considered the $P(A, B) = P_1(A, B)$ with some real A, B. Subsequently, several properties of various subclasses concerning $P(A, B)$ were obtained, see [1, 2, 14, 15].

Let $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n$ be the subclasses of A. For certain complex numbers $m_1, m_2, \ldots, m_{n-1}$, we denote $\mathcal{H}_1 \ast m_1 \mathcal{H}_2 \ast m_2 \mathcal{H}_3 \ast \cdots \ast m_{n-1} \mathcal{H}_n(z)$ be the general Hadamard product of $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n$, where

$$\mathcal{H}_1 \ast m_1 \mathcal{H}_2 \ast m_2 \mathcal{H}_3 \ast \cdots \ast m_{n-1} \mathcal{H}_n(z) = \{f_1 \ast m_1 f_2 \ast m_2 f_3 \ast \cdots \ast m_{n-1} f_n(z) : f_i \in \mathcal{H}_i, i = 1, 2, \ldots, n, n \in \mathbb{Z}^+\}.$$

Komatu [8] and Nehari, Netanyahu [10] gave the function $f_1^g g(z) \in P$ if $f \in P$ and $g \in P$. As the more general results, Goel and Merhok [5] obtained $f_1^g g(z) \in P(A, B)$ for $f \in P(A, B)$ and $g \in P(A, B)$. In 1996, London [9] completed solution of the problem with the inclusion: $P(A, B) \ast P(C, D) \subset P(X, Y)$. The problem of equality of the $P(A, B) \ast P(C, D) = P(X, Y)$ was also solved by Piejko [11]. Furthermore, Piejko [12] studied the problem of inclusion of the classes $P_a(A, B) \ast m P_b(C, D)$ and $P_c(X, Y)$ and the problem of inverse inclusion was also solved by Piejko [13]. In 2014, Liangpeng Xiong, Xiaoli Liu [18] extended these studies and obtained the general conditions for equality $P(A_1, B_1) \ast P(A_2, B_2) \ast \cdots \ast P(A_n, B_n) = P(X, Y)$.

In the present paper we establish some interesting on the problem of equality of classes $P_{a_1}(A_1, B_1) \ast m_1 P_{a_2}(A_2, B_2) \ast \cdots \ast m_{n-1} P_{a_n}(A_n, B_n) = P_c(X, Y)$.

2. Main result

To discuss our problem, we have to recall here the following lemmas due to Piejko [13] and Janowski [7]:

Lemma 1. ([13]) Let m, a, b, A, B, C, D be given complex numbers such that $m \neq 0$, $A + aB \neq 0$, $C + bD \neq 0$, $|B| \leq 1$, $|D| \leq 1$, then

$$P_a(A, B) \ast m P_b(C, D) \subset P_{ab}(m(A + aB)(C + bD) – abBD, BD).$$

Lemma 2. ([7]) If $f \prec g$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $g(z) = \sum_{n=0}^{\infty} b_n z^n$, then

$$\sum_{n=0}^{\infty} |a_n|^2 \leq \sum_{n=0}^{\infty} |b_n|^2.$$

Theorem 1. Let a_i, A_i, B_i, $(i = 1, 2, \ldots, n, n \in \mathbb{Z}^+)$ and m_j, $(j = 1, 2, \ldots, n-1, n \in \mathbb{Z}^+)$ are given complex numbers such that $m_j \neq 0$, $A_i + a_i B_i \neq 0$, $|B_i| \leq 1$, then

$$P_{a_1}(A_1, B_1) \ast m_1 P_{a_2}(A_2, B_2) \ast \cdots \ast m_{n-1} P_{a_n}(A_n, B_n) \subset P_c(X, Y).$$
then there exists

\[c = \prod_{i=1}^{n} a_i, X = \prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, Y = \prod_{i=1}^{n} B_i. \]

Proof. Proof of the Theorem is based on mathematical induction.

(i) We first consider the case \(n = 2 \). In view of the Lemma 1, it is easily seen that

\[
P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \subset P_{a_1,a_2}(m_1(A_1 + a_1 B_1)(A_2 + a_2 B_2) - a_1 a_2 B_1 B_2)
= P_{a_1,a_2}\left(\prod_{j=1}^{1} m_j \prod_{i=1}^{2} (A_i + a_i B_i) - \prod_{i=1}^{2} a_i B_i, \prod_{i=1}^{2} B_i\right).
\]

(ii) Suppose that the inclusion

\[
P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \ast_{m_2} P_{a_3}(A_3, B_3) \ast \cdots \ast_{m_{n-2}} P_{a_{n-1}}(A_{n-1}, B_{n-1})
\subset P_{n-1}\left(\prod_{i=1}^{n-1} m_i \prod_{i=1}^{n-1} (A_i + a_i B_i) - \prod_{i=1}^{n-1} a_i B_i, \prod_{i=1}^{n-1} B_i\right)
\]

is true. Now, we want to prove that

\[
P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \ast_{m_2} P_{a_3}(A_3, B_3) \ast \cdots \ast_{m_{n-1}} P_{a_n}(A_n, B_n)
\subset P_n\left(\prod_{i=1}^{n-1} m_i \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \prod_{i=1}^{n} B_i\right)
\]

is also true.

In fact, for any function

\[\mathcal{H}^*(z) \in P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \ast_{m_2} P_{a_3}(A_3, B_3) \ast \cdots \ast_{m_{n-1}} P_{a_n}(A_n, B_n), \]

then there exists \(f_i \in P_{a_i}(A_i, B_i) \), \(i = 1, 2, 3, \ldots, n \) such that \(\mathcal{H}^*(z) = f_1 \ast_{m_1} f_2 \ast_{m_2} f_3 \ast \cdots \ast_{m_{n-1}} f_n(z) \).

Let \(\mathcal{H} = f_1 \ast_{m_1} f_2 \ast_{m_2} f_3 \ast \cdots \ast_{m_{n-1}} f_n(z) \). From the above assumption we have

\[\mathcal{H} \in P_{n-1}\left(\prod_{i=1}^{n-1} m_i \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \prod_{i=1}^{n} B_i\right). \]

On the one hand, since \(A_i + a_i B_i \neq 0, m_j \neq 0 \) and \(|B_i| \leq 1(i = 1, 2, \ldots, n, n \in \mathbb{Z}^+) \), it makes sure that

\[
\prod_{i=1}^{n-1} m_i \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i + \prod_{i=1}^{n} a_i B_i \neq 0, \prod_{i=1}^{n-1} B_i = \prod_{i=1}^{n} |B_i| \leq 1.
\]
On the other hand, we note that \(f_n \in P_{a_n}(A_n, B_n) \) and \(A_n + a_n B_n \neq 0, |B_n| \leq 1 \). Hence by Lemma 1 we have

\[
\mathcal{H}^*(z) = \mathcal{H}^*_{m_{n-1}} f_n(z) = \frac{P_n}{\prod_{i=1}^{n-1} a_i} \left(\prod_{j=1}^{n-2} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) - \prod_{i=1}^{n-1} a_i B_i, \prod_{i=1}^{n-1} B_i \right) \ast P_{a_n}(A_n, B_n)
\]

\[
\subset \frac{P_n}{\prod_{i=1}^{n-1} a_i} \left(m_{n-1} \prod_{j=1}^{n-2} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i)(A_n + B_n) - \prod_{i=1}^{n-1} a_i B_i, \prod_{i=1}^{n-1} B_i, B_n \right)
\]

\[
= \frac{P_n}{\prod_{i=1}^{n-1} a_i} \left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) - \prod_{i=1}^{n-1} a_i B_i, \prod_{i=1}^{n-1} B_i \right).
\]

Therefore we prove that Theorem 1 is true for any \(n \in \mathbb{Z}^+ \), which complete the proof. \(\square \)

Theorem 2. Let \(a_i, A_i, B_i (i = 1, 2, \ldots, n, n \in \mathbb{Z}^+) \) and \(m_j (j = 1, 2, \ldots, n-1, n \in \mathbb{Z}^+) \) are given complex numbers such that \(m_j \neq 0, A_i + B_i \neq 0, |B_i| \leq 1 \). If moreover \(|B_{s_n}| = 1 \) or \(|B_{s_1}B_{s_2} \cdots B_{s_{n-1}}| = 1 \), where \(s_1, s_2, \ldots, s_n \in \{1, 2, \ldots, n\} \), then

\[
P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \ast \cdots \ast_{m_{n-1}} P_{a_n}(A_n, B_n) = P_c(X, Y),
\]

where

\[
c = \prod_{i=1}^{n} a_i, \quad X = \prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \quad Y = \prod_{i=1}^{n} B_i.
\]

Proof. As in Theorem 1, it is sufficient to show that if \(|B_{s_n}| = 1 \) or \(|B_{s_1}B_{s_2} \cdots B_{s_{n-1}}| = 1 \), then

\[
P_n \prod_{i=1}^{n-1} a_i \left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \prod_{i=1}^{n} B_i \right)
\]

\[
\subset P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \ast \cdots \ast_{m_{n-1}} P_{a_n}(A_n, B_n).
\]

Without loss of generality, we assume that \(|B_1 B_2 \cdots B_{n-1}| = 1 \) and

\[
G(z) \in P_n \prod_{i=1}^{n-1} a_i \left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \prod_{i=1}^{n} B_i \right),
\]

now we will prove that \(G(z) \in P_{a_1}(A_1, B_1) \ast_{m_1} P_{a_2}(A_2, B_2) \ast \cdots \ast_{m_{n-1}} P_{a_n}(A_n, B_n) \). Let

\[
f_i(z) \in P_{a_i}(A_i, B_i), i = 1, 2, \ldots, n.
\]

From Theorem 1, we know that

\[
H(z) = f_1 \ast_{m_1} f_2 \ast_{m_2} f_3 \ast \cdots \ast_{m_{n-2}} f_{n-1}(z) \in P_n \prod_{i=1}^{n-1} a_i \left(\prod_{j=1}^{n-2} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) - \prod_{i=1}^{n-1} a_i B_i, \prod_{i=1}^{n-1} B_i \right).
\]
The same proof works for the results proved by J. Stankiewicz, Z. Stankiewicz [16].

we can obtain the results proved by L. Xiong, X. Liu ([18], Theorem 2.2).

Since $|B_1 B_2 \cdots B_{n-1}| = 1$, so $|B_1 B_2 \cdots B_{n-1}| = 1$. Let

$$
\mathcal{X}(z) = \frac{\prod_{i=1}^{n-1} a_i B_i - m_{n-1} \prod_{i=1}^{n-1} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) + \prod_{i=1}^{n-1} a_i B_i - m_{n-1} \prod_{i=1}^{n-1} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) \prod_{i=1}^{n-1} a_i B_i}{\prod_{i=1}^{n-1} m_{n-1} \prod_{i=1}^{n-1} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) \prod_{i=1}^{n-1} a_i B_i} \cdot \frac{1}{\prod_{i=1}^{n-1} B_i}.
$$

(2.1)

In view of Lemma 1, it is easy to obtain

$$
\mathcal{G}(z) * m_{n-1} \mathcal{X}(z) \in P_{P_{a_i}} \left(\prod_{i=1}^{n-1} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) - \prod_{i=1}^{n-1} a_i B_i \prod_{i=1}^{n-1} B_i \right) \subset P(A_n, B_n). \quad (2.2)
$$

Furthermore, from Lemma 1,

$$
\mathcal{H}(z) * m_{n-1} \mathcal{X}(z) \in P_{P_{a_i}} \left(\prod_{i=1}^{n-1} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) - \prod_{i=1}^{n-1} a_i B_i \prod_{i=1}^{n-1} B_i \right) \subset P(0, 1) \quad (2.3)
$$

and $\mathcal{H}(z) * m_{n-1} \mathcal{X}(z) = 1 + \frac{1}{m_{n-1}}(z + z^2 + z^3 + \cdots + z^n + \cdots)$. Obviously,

$$
\mathcal{G}(z) = \mathcal{G}(z) * m_{n-1} \left(\mathcal{H}(z) * m_{n-1} \mathcal{X}(z) \right) = \mathcal{H}(z) * m_{n-1} \left(\mathcal{G}(z) * m_{n-1} \mathcal{X}(z) \right)
$$

$$
\in P_{a_1}(A_1, B_1) * m_{1} P_{a_2}(A_2, B_2) * \cdots * m_{n-1} P_{a_n}(A_n, B_n).
$$

The same proof works for $|B_n| = 1$. This is the end of the proof. □

Remark 1. (1) Putting $n = 2$, $a_1 = a_2 = 1$, $m_1 = 1$ in Theorem 2, we can obtain the results proved by J. Stankiewicz, Z. Stankiewicz [16].

(2) Putting $n = 2$, $a_1 = a$, $a_2 = b$, $m_1 = m$, $A_1 = A$, $B_1 = B$, $A_2 = C$, $A_2 = D$ in Theorem 2, we can obtain the results proved by Piejko ([13], Theorem 1).

(3) Putting $a_1 = a_2 = \cdots = a_n = 1$ and $m_1 = m_2 = \cdots = m_{n-1} = 1$ in Theorem 2, we can obtain the results proved by L. Xiong, X. Liu ([18], Theorem 2.2).
Theorem 3. Let $a_i, A_i, B_i, \ (i=1,2,\ldots,n, \ n \in \mathbb{Z}^+)$, X, Y and $m_j \ (j=1,2,\ldots,\ n-1, n \in \mathbb{Z}^+)$ are given complex numbers such that $m_j \neq 0$, $A_i + a_i B_i \neq 0$, $|B_i| \leq 1$, $|Y| \leq 1$. Then

$$P_{a_1}(A_1, B_1) \ast m_1 P_{a_2}(A_2, B_2) \cdots \ast m_{n-1} P_{a_n}(A_n, B_n) = P_c(X, Y) \quad (2.4)$$

if and only if $|\prod_{i=1}^n B_i| = |Y|, \ \left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^n (A_i + a_i B_i) - \prod_{i=1}^n a_i B_i\right) = (\prod_{i=1}^n B_i) X, c = \prod_{i=1}^n a_i, |B_{s_1}B_{s_2}B_{s_{n-1}}| = 1$ or $|B_{s_n}| = 1$, where $s_1, s_2, \ldots, s_n \in \{1,2,\ldots,n\}$.

Proof. Assume the formula (2.4) holds for some complex $m_j \neq 0 \ (j=1,2,\ldots,n-1)$, $A_i + B_i \neq 0 \ (i=1,2,\ldots,n)$, $|B_i| \leq 1$, $|Y| \leq 1$. Now we prove that $|B_{s_1}B_{s_2}\cdots B_{s_{n-1}}| = 1$ or $|B_{s_n}| = 1$, where $s_1, s_2, \ldots, s_n \in \{1,2,\ldots,n\}$. To obtain the contradiction, suppose that $|B_{s_1}B_{s_2}\cdots B_{s_{n-1}}| < 1$ and $|B_{s_n}| < 1$. Without loss of generality, we can set $0 \leq B_1 B_2 \cdots B_{n-1} < 1$, $0 \leq B_n < 1$, $0 \leq Y < 1$. Using the method of Piejko [12] we show that there exists a sequence of functions $w_\nu(z)$ of the class Ω such that for all positive integers ν,

$$w_\nu(z) = \sum_{n=1}^{\infty} r_{\nu,n} z^n \quad (2.5)$$

and that coefficients $r_{\nu,n}$ of power series have the following properties: $r_{\nu,n} > 0$ for all ν and $n \in \{1,2,\ldots,n+1\}$ and $S_\nu \to \infty$ as $\nu \to \infty$, where $S_\nu = r_{\nu,1} + r_{\nu,2} + \cdots + r_{\nu,n+1}$. Consider the sequence of functions T_ν, where

$$T_\nu(z) = \frac{\prod_{i=1}^n a_i + X w_\nu(z)}{1 - Y w_\nu(z)} \quad (2.6)$$

and $w_\nu(z) \in \Omega$ is given by (2.5). For all $\nu \in \mathbb{Z}^+$, we have $T_\nu(z) \in P_n \left(\prod_{i=1}^n a_i, X, Y\right)$. Obviously, from the above assumption, there exists $f_i \in P_{a_i}(A_i, B_i), \ i = 1,2,\cdots,n$, such that $f_1 \ast m_1 f_2 \ast m_2 f_3(z) \ast \cdots \ast m_{n-1} f_n(z) = T_\nu(z)$. Let

$$\mathcal{H} = f_1 \ast m_1 f_2 \ast m_2 f_3(z) \ast \cdots \ast m_{n-2} f_{n-1}(z),$$

then from Theorem 1, we have

$$\mathcal{H} \in P_{n-1} \prod_{i=1}^{n-1} (\prod_{j=1}^{m_j} \prod_{i=1}^n (A_i + a_i B_i) - \prod_{i=1}^n a_i B_i, \prod_{i=1}^n B_i)$$

and $\mathcal{H} \ast m_{n-1} f_n(z) = T_\nu(z)$. Let the functions $\mathcal{H}(z), f_n(z)$ and $T_\nu(z)$ have the following forms:

$$\mathcal{H}(z) = \prod_{i=1}^{n-1} a_i + \prod_{j=1}^{n-2} m_j \prod_{i=1}^{n-1} (A_i + a_i B_i) \mathcal{H},$$

$$f_n(z) = a_n + (A_n + a_n B_n) f_n, \quad T_\nu(z) = \prod_{i=1}^n a_i + (X + Y T_\nu(z).$$
where
\[
\mathcal{H} = \frac{w_1(z)}{1 - (\prod_{i=1}^{n-1} B_i)w_1(z)} = \sum_{n=1}^{\infty} a_n z^n,
\]
\[
\mathcal{f}_n(z) = \frac{w_2(z)}{1 - B_n w_2(z)} = \sum_{n=1}^{\infty} b_n z^n,
\]
\[
\mathcal{T}_v = \frac{w_v(z)}{1 - Yw_v(z)} = \sum_{n=1}^{\infty} c_{v,n} z^n,
\] (2.7)

Since \(\mathcal{H} * m_{n-1} f_n(z) = T_v(z)\), using the notations we can rewrite as
\[
\mathcal{H} * f_n(z) = X + Y \prod_{j=1}^{n} m_j \prod_{i=1}^{n} (A_i + a_i B_i),
\]

So
\[
a_n b_n = \frac{X + Y}{\prod_{j=1}^{n} m_j \prod_{i=1}^{n} (A_i + a_i B_i)} c_{v,n},
\] (2.8)

On the one hand, from (2.7) we have
\[
\sum_{n=1}^{\infty} c_{v,n} z^n = \sum_{n=1}^{\infty} r_{v,n} z^n + Y(\sum_{n=1}^{\infty} r_{v,n} z^n)^2 + Y^3(\sum_{n=1}^{\infty} r_{v,n} z^n)^3 + \ldots
\]
\[= r_{v,1} z + (r_{v,2} + Y(r_{v,1})^2) z^2 + (r_{v,3} + 2Y r_{v,1} r_{v,2} + Y^2(r_{v,1})^3) z^3 + \ldots (2.9)\]

Thus, since \(0 \leq Y < 1\) and \(r_{v,n} > 0\) \((n = 1, 2, \ldots, v + 1)\), so (2.9) makes sure that
\[
\sum_{n=1}^{\infty} |c_{v,n}| \geq \sum_{n=1}^{v+1} |c_{v,n}| \geq r_{v,1} + r_{v,2} + r_{v,3} + \ldots + r_{v,v} + r_{v,v+1} = S_v. \] (2.10)

On the other hand, we have
\[
\mathcal{H} \prec \frac{z}{1 - (\prod_{i=1}^{n-1} B_i)z} = z + (\prod_{i=1}^{n-1} B_i) z^2 + (\prod_{i=1}^{n-1} B_i)^2 z^3 + \ldots
\]
and \(0 \leq B_1 B_2 \cdots B_{n-1} < 1\), \(0 \leq B_n < 1\), then from Lemma 2, we obtain:
\[
\sum_{n=1}^{\infty} |a_n|^2 \leq \frac{1}{1 - (\prod_{i=1}^{n-1} B_i)^2}
\]
and
\[
\sum_{n=1}^{\infty} |b_n|^2 \leq \frac{1}{1 - (B_n)^2}. \] (2.11)
Combining (2.8), (2.10) and (2.11), it gives:

$$0 \leq \sum_{n=1}^{\infty} (|a_n| - |b_n|)^2 \leq \frac{1}{1 - \left(\prod_{i=1}^{n-1} B_i\right)^2} + \frac{1}{1 - B_n^2} - \left|\frac{2(X + Y)}{\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i)}\right| \sum_{n=1}^{\infty} |c_{v,n}|$$

As $S_v \to +\infty$ when $v \to \infty$, it follows from (2.5) that we are able to choose a suitable v such that the right side of (2.12) is negative. In this way, (2.12) follows the contradiction and so we prove that $|B_1 B_2 \cdots B_{n-1}| = 1$ or $|B_n| = 1$. In fact, the progress of the proof implies that $|B_{s_1} B_{s_2} \cdots B_{s_{n-1}}| = 1$ or $|B_{s_n}| = 1$, where $s_1, s_2, \cdots, s_n \in \{1, 2, \ldots, n\}$.

From Theorem 2, if $|B_{s_1} B_{s_2} \cdots B_{s_{n-1}}| = 1$ or $|B_{s_n}| = 1$, we have

$$P_{a_1}(A_1, B_1) * P_{a_2}(A_2, B_2) * \cdots * P_{a_n}(A_n, B_n) = P_c(X, Y).$$

However, following the assumption, it gives

$$P_{a_1}(A_1, B_1) * P_{a_2}(A_2, B_2) * \cdots * P_{a_n}(A_n, B_n) = P_c(X, Y).$$

So $c = \prod_{i=1}^{n} a_i$ and

$$P_c\left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \prod_{i=1}^{n} B_i\right) = P_c(X, Y).$$

Piejko [13] gave $P_a(A, B) = P_a(X, Y)$ if and only if $X = Ae^{i\theta}$, $Y = Be^{i\theta}$, where θ is a real number. Thus $|Y| = \left|\prod_{i=1}^{n} B_i e^{i\theta}\right| = \prod_{i=1}^{n} |B_i|$, $(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i)Y = X e^{-i\theta} \prod_{i=1}^{n} B_i e^{i\theta} = (\prod_{i=1}^{n} B_i)X$. This ends the first part of the proof.

Conversely, if $|B_{s_1} B_{s_2} \cdots B_{s_{n-1}}| = 1$ or $|B_{s_n}| = 1$, where $s_1, s_2, \cdots, s_n \in \{1, 2, \ldots, n\}$, then from the Theorem 2, it has

$$P_{a_1}(A_1, B_1) * P_{a_2}(A_2, B_2) * \cdots * P_{a_n}(A_n, B_n)$$

$$= P_n \prod_{i=1}^{n} a_i \left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i, \prod_{i=1}^{n} B_i\right).$$

Since $\left|\prod_{i=1}^{n} B_i\right| = |Y|$, so $B_1 B_2 B_3 \cdots B_n e^{i\theta} = Y$, where θ is a real number. Moreover, it notes

$$\left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i\right)Y = \left(\prod_{i=1}^{n} B_i\right)X = Ye^{-i\theta}X,$$
thus $X = \left(\prod_{j=1}^{n-1} m_j \prod_{i=1}^{n} (A_i + a_i B_i) - \prod_{i=1}^{n} a_i B_i \right) e^{i\theta}$. This is the end of the proof. \qed

Remark 2.
(1) Putting $n = 2$, $a_1 = a_2 = 1$, $m_1 = 1$, $A_1 = A$, $B_1 = B$, $A_2 = C$, $B_2 = D$ in Theorem 3, we can obtain the results proved by Piejko ([12], Theorem 1).

(2) Putting $n = 2$, $a_1 = a$, $a_2 = b$, $m_1 = m$, $A_1 = A$, $B_1 = B$, $A_2 = C$, $B_2 = D$ in Theorem 3, we can obtain the results proved by Piejko ([13], Corollary 1).

(3) Putting $a_1 = a_2 = \ldots = a_n = 1$, $m_1 = m_2 = \ldots = m_{n-1} = 1$ in Theorem 3, we can obtain the results proved by L. Xiong, X. Liu ([18], Theorem 2.3).

(4) Theorem 1 and Theorem 2 imply that we can choose some suitable complex numbers X, Y such that

$$P_{a_1}(A_1, B_1) * P_{a_2}(A_2, B_2) * P_{a_3}(A_3, B_3) * \cdots * P_{a_{n-1}}(A_{n-1}, B_{n-1}) \subset P_c(X, Y)$$

but the problem of inverse inclusion can hold unless A_1, B_i, m_i, X, Y satisfy for some conditions. Moreover, following the proof of Theorem 3, we can know that there exists some functions belonging to $P_c(A, B)$ which can not be represented as the finite Hadamard product of the form (2.4). In fact, it is clear that there do not exist complex m_i, a_i, A_i, B_i, X, Y with $A_i + a_i B_i \neq 0$, $X + c Y \neq 0$, $|B_i| < 1$, $|Y| < 1$ such that $P_c(X, Y) = P_{a_1}(A_1, B_1) * P_{a_2}(A_2, B_2) * P_{a_3}(A_3, B_3) * \cdots * P_{a_{n-1}}(A_{n-1}, B_{n-1}).$

Acknowledgement. The author is grateful to the editors and referees for many helpful suggestions. This Project was supported by the Scientific Research Found of Sichuan Provincial Education Department of China (14ZB0364).

References

(Received November 6, 2013)

Liangpeng Xiong
The Engineering and Technical College of ChengDu University of Technology
LeShan, SiChuan, 614000, P. R. China
e-mail: xlpwxf@163.com