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SOME INEQUALITIES FOR THE VOLUME OF THE UNIT BALL

LI YIN AND LI-GUO HUANG

Abstract. In the paper, the authors establish some new inequalities involving the volume of the
unit ball in R

n and refine some results of Alzer.

1. Introduction

In the recent past, inequalities about the gamma function Γ(x) have attracted atten-
tion of many experts. In particular, several authors established interesting monotonicity
properties of the volume of the unit ball in R

n ,

Ωn =
πn/2

Γ(n/2+1)
,n = 1,2, · · · . (1.1)

Anderson, Vamanamurthy and Vuorinen [6] proved that Ω1/n
n is strictly decreas-

ing, and Klain and Rota [11] proved that the sequence nΩn
Ωn−1

is increasing. A remarkable

monotonicity theorem was published by Anderson and Qiu [5]: the sequence Ω1/(n lnn)
n

decreases to e−1/2 . Guo and Qi [10] proved that for n � 2, the sequence Ω1/(n lnn)
n is

logarithmically convex and the sequence

Ω1/(n lnn)
n

Ω1/[(n+1) ln(n+1)]
n+1

(1.2)

is decreasing.
Borgwardt [7] proved that for n � 2,

√
n
2π

� Ωn−1

Ωn
�

√
n+1
2π

. (1.3)

Alzer [2] and Qiu [16] showed that for n � 1,√
n+1/2

2π
<

Ωn−1

Ωn
<

√
n+ π/2−1

2π
. (1.4)
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This double inequality was recovered in the paper [9].
In [3], Alzer provided sharp upper and lower bounds for Ωn

Ωn−1+Ωn+1
: for all natural

numbers n � 2,
α∗√

n
<

Ωn

Ωn−1 + Ωn+1
<

β∗√
n
, (1.5)

where the constants α∗ = 3
√

2π
6+4π = 0.7178 · · · and β ∗ =

√
2π = 2.5066 · · · are the best

possible.
For more information on this topic, please refer to the papers [8, 9, 10, 13, 15, 17,

18] and closely related references therein.
The aim of this paper is to refine inequalities (1.3), (1.5), and the right hand side

inequality of (1.4). In addition, we also give several new inequalities involving the
volume of the unit ball in R

n .

2. Lemmas

In order to prove the main results, we need the following lemmas.

LEMMA 2.1. ([17, p. 1178, Legendre]) For every z �= −1,−2, · · · ,

22z−1Γ(z)Γ
(

z+
1
2

)
= π1/2Γ(2z). (2.1)

LEMMA 2.2. ([4, p. 383, Theorem 8]) For every n, the functions

Fn(x) = lnΓ(x)−
(

x− 1
2

)
lnx+ x− 1

2
ln2π −

2n

∑
j=1

B2 j

2 j(2 j−1)x2 j−1 (2.2)

and

Gn(x) = − lnΓ(x)+
(

x− 1
2

)
lnx− x+

1
2

ln2π +
2n+1

∑
j=1

B2 j

2 j(2 j−1)x2 j−1 (2.3)

are completely monotonic on (0,∞) , where the Bernoulli number Bn may be defined
by

x
ex −1

=
∞

∑
n=0

Bn
xn

n!
, |x| < 2π .

LEMMA 2.3. The function h(x) = [g(x)]2 − 2x is strictly decreasing on [2,∞) ,
where

g(x) =
(e

x

)x Γ(x+1)√
π

. (2.4)

Consequently, h(∞) < h(x) < h(2).
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Proof. Using Lemma 2.2, we easily know Gn > 0 and F ′
n < 0. Therefore, we

have
Γ(x+1)√
2πx(x/e)x < exp

[
2n+1

∑
j=1

B2 j

2 j(2 j−1)x2 j−1

]
(2.5)

and

ψ(x) < lnx− 1
2x

−
2n

∑
j=1

B2 j

2 jx2 j , (2.6)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function. Applying the above inequalities to n = 0

and n = 1 yields
Γ(x+1)√
2πx(x/e)x < exp

1
12x

(2.7)

and

ψ(x) < lnx− 1
2x

− 1
12x2 +

1
120x4 , (2.8)

from which we have

lng(x) <
1
2

ln2x+
1

12x
(2.9)

and

ψ(x)− lnx+
1
x

<
1
2x

− 1
12x2 +

1
120x4 . (2.10)

Easy computation yields

h′(x) = 2g(x)g′(x)−2 (2.11)

and

g′(x) = g(x)
[
ψ(x)− lnx+

1
x

]
. (2.12)

The requested inequality h′(x) < 0 can be equivalently written as

g′(x)g(x) < 1, g2(x)
[
ψ(x)− lnx+

1
x

]
< 1,

2lng(x)+ ln
[
ψ(x)− lnx+

1
x

]
< 0. (2.13)

Taking into account inequalities (2.9) and (2.10), it suffices to show that

k(x) = ln2x+
1
6x

+ ln

(
1
2x

− 1
12x2 +

1
120x4

)
< 0. (2.14)

Because k′(x) = P(x)
6xQ(x) , where P(x) = 10x2−18x−1 and Q(x) = 60x4−10x3 +x , and

all the coefficients of the polynomials P(x + 2) and Q(x + 2) are positive, we obtain
P(x) > 0 and Q(x) > 0 for x ∈ [2,∞) . As a result, k′(x) > 0 for x ∈ [2,∞) . Therefore,
k(x) is strictly increasing on x ∈ [2,∞) with k(∞) = 0, so k(x) < 0 on x ∈ [2,∞) . The
proof is complete. �
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COROLLARY 2.1. For x ∈ [2,∞) , we have

√
π
(x

e

)x√
2x+ α < Γ(x+1) �

√
π
(x

e

)x√
2x+ β , (2.15)

where the constants α = 1
3 and β = e4

4π −4 are best possible.

REMARK 2.1. Corollary (2.1) is an improvement of [14, Theorem 1].

LEMMA 2.4. ([12, p. 390]) Let xi ∈ (0,∞) and
n
∑
i=1

xi = nx . Then

n

∏
i=1

Γ(xi) � [Γ(x)]n. (2.16)

3. Main results

In what follows, we always suppose β = e4

4π −4.

THEOREM 3.1. For every integer n > 3 , we have

n+1/3√
π(2n+ β )

<
Ωn−1

Ωn
<

n+ β√
π(2n+1/3)

. (3.1)

Proof. It is easy to see that

Ωn−1

Ωn
=

π (n−1)/2Γ(n/2+1)
πn/2Γ

(
(n−1)/2+1

) =
Γ
(
(n+2)/2

)
√

πΓ
(
(n+1)/2

) . (3.2)

Taking z = n+1
2 in Lemma 2.1, we obtain

2nΓ
(

n+1
2

)
Γ

(
n+2

2

)
= π1/2n!. (3.3)

Easy computation and simplification yield

Ωn−1

Ωn
=

2n [Γ(n/2+1)]2

πn!
. (3.4)

Using Corollary 2.1, we have

√
π
( n

2e

)n/2
√

n+
1
3

< Γ
(n

2
+1

)
<
√

π
( n

2e

)n/2 √
n+ β (3.5)

and
√

π
(n

e

)n
√

2n+
1
3

< n! <
√

π
(n

e

)n√
2n+ β . (3.6)
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Considering the left-hand side of (3.5) and the right-hand side of (3.6), we easily
obtain

Ωn−1

Ωn
>

2nπ (n/2e)n (n+1/3)
π
√

π (n/e)n
√

2n+ β
=

n+1/3√
π(2n+ β )

.

Similarly, we can also prove the right-hand side of (3.1) by the right-hand side of (3.5)
and the left-hand side of (3.6). The proof is complete. �

THEOREM 3.2. For every integer n > 3 , we have
√

π(n+1)
√

2n+1/3
(2π +n+1)(n+ β )

<
Ωn

Ωn−1 + Ωn+1
<

√
π(n+1)

√
2n+ β

(2π +n+1)(n+1/3)
. (3.7)

Proof. Using (3.3) and easy computation, we have

Ωn

Ωn−1 + Ωn+1
=

π(n+1)n!
2n(2π +n+1)[Γ(n/2+1)]2

. (3.8)

Using (3.5) and (3.6), we have

Ωn

Ωn−1 + Ωn+1
<

π(n+1)
[√

π (n/e)n √
2n+ β

]
2n(2π +n+1)

[√
π (n/2e)n/2 √

n+1/3
]2

<

√
π(n+1)

√
2n+ β

(2π +n+1)(n+1/3)
(3.9)

and

Ωn

Ωn−1 + Ωn+1
>

π(n+1)
[√

π (n/e)n
√

2n+1/3
]

2n(2π +n+1)
[√

π (n/2e)n/2 √
n+ β

]2

>

√
π(n+1)

√
2n+1/3

(2π +n+1)(n+ β )
. (3.10)

The proof of Theorem 3.2 is complete. �

REMARK 3.1. It is clear that the double inequality (1.3) was thoroughly strength-
ened by (3.1) for n > 3. On the other hand, the right hand side of (3.1) is better than the
right hand side of (1.4), whereas the left hand side of (3.1) and (1.4) are not included
each other.

REMARK 3.2. Inequality (3.7) improves inequality (1.5).

THEOREM 3.3. For every integer n > 3 , we have

(n+1)2(n+3)(2n+1/3)2

4(n−1)(n+ β )4 <
Ω4

n

Ωn−3Ωn−1Ωn+1Ωn+3

<
(n+1)2(n+3)(2n+ β )2

4(n−1)(n+1/3)4 . (3.11)
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Proof. Setting z = n+1
2 , n+3

2 , n−1
2 , n+4

2 in Lemma 2.1, we obtain (3.3) and

2n+2Γ
(n+3

2

)
Γ
(n+4

2

)
= π1/2(n+2)!, (3.12)

2n−2Γ
(n−1

2

)
Γ
(n

2

)
= π1/2(n−2)!, (3.13)

2n+3Γ
(n+4

2

)
Γ
(n+5

2

)
= π1/2(n+3)!. (3.14)

Easy computation and simplification yield

Ω4
n

Ωn−3Ωn−1Ωn+1Ωn+3

=
Γ
(
(n−1)/2

)
Γ
(
(n+1)/2

)
Γ
(
(n+3)/2

)
Γ
(
(n+5)/2

)
[
Γ
(
(n+2)/2

)]4

=
π2(n+1)2(n+3)(n!)4

(n−1)24n+2
[
Γ
(
(n+2)/2

)]8 ,

(3.15)

where we apply Γ
(

n+4
2

)
= n+2

2 Γ
(

n+2
2

)
and Γ

(
n+2
2

)
= n

2Γ
(

n
2

)
.

Using (3.5) and (3.6), we have

Ω4
n

Ωn−3Ωn−1Ωn+1Ωn+3

<
π2

[√
π (n/e)n

√
2n+ β

]4
(n+1)2(n+3)

24n+2
[√

π (n/2e)n/2 √
n+1/3

]8(n−1)

=
(n+1)2(n+3)(2n+ β )2

4(n−1)(n+1/3)4

(3.16)

and
Ω4

n

Ωn−3Ωn−1Ωn+1Ωn+3
>

(n+1)2(n+3)(2n+1/3)2

4(n−1)(n+ β )4 . (3.17)

The proof is complete. �

REMARK 3.3. Using Lemma 2.4, we can easily obtain

Γ
(n−1

2

)
Γ
(n+1

2

)
Γ
(n+3

2

)
Γ
(n+5

2

)
�

[
Γ
((n−1)/2+(n+1)/2+(n+3)/2+(n+5)/2

4

)]4

=
[
Γ
(n+2

2

)]4
.

Therefore, we have

Ω4
n

Ωn−3Ωn−1Ωn+1Ωn+3
�

[
Γ
(
(n+2)/2

)]4[
Γ
(
(n+2)/2

)]4 = 1.
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By equalities

Ω3
n

Ωn−1Ωn+1Ωn+3
=

(n+1)2(n+3)(n!)3

23n+3
[
Γ
(
(n+2)/2

)]6 (3.18)

and

(n+1)Ωn+1−Ωn−1 =
(

2− 1
π

)
πn/22nΓ

(
(n+2)/2

)
n!

, (3.19)

completely similar to the proofs of Theorem 3.1 to Theorem 3.3, we can easily obtain
the following results.

THEOREM 3.4. For every integer n > 3 , we have

(n+1)2(n+3)
(√

2n+1/3
)3

8
(√

π
)3(n+ β )3

<
Ω3

n

Ωn−1Ωn+1Ωn+3

<
(n+1)2(n+3)

(√
2n+ β

)3

8(
√

π)3(n+1/3)3
. (3.20)

THEOREM 3.5. For every integer n > 3 , we have

(
2− 1

π

)√
n+1/3√
2n+ β

(2πe
n

)n/2
< (n+1)Ωn+1−Ωn−1

<
(
2− 1

π

) √
n+ β√

2n+1/3

(2πe
n

)n/2
. (3.21)
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