CERTAIN NON–LINEAR DIFFERENTIAL POLYNOMIALS
HAVING COMMON POLES SHARING A NON ZERO POLYNOMIAL WITH FINITE WEIGHT

ABHIJIT BANERJEE AND GOUTAM HALDAR

Abstract. With the notion of weighted sharing we study the uniqueness property of meromorphic functions having common poles when certain non-linear differential polynomials share a non zero polynomial function. Our theorems in the paper will improve, extend and supplement a number of recent results in a more compact and convenient way.

1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane.

Let \(f \) and \(g \) be two non-constant meromorphic functions and let \(a \) be a finite complex number. We say that \(f \) and \(g \) share \(a \) CM, provided that \(f - a \) and \(g - a \) have the same zeros with the same multiplicities. Similarly, we say that \(f \) and \(g \) share \(a \) IM, provided that \(f - a \) and \(g - a \) have the same zeros ignoring multiplicities. In addition we say that \(f \) and \(g \) share \(\infty \) CM, if \(1/f \) and \(1/g \) share 0 CM, and we say that \(f \) and \(g \) share \(\infty \) IM, if \(1/f \) and \(1/g \) share 0 IM.

We adopt the standard notations of value distribution theory (see [6]). We denote by \(T(r) \), the maximum of \(T(r, f) \) and \(T(r, g) \). The notation \(S(r) \) denotes any quantity satisfying \(S(r) = o(T(r)) \) as \(r \to \infty \), outside of a possible exceptional set of finite linear measure.

A finite value \(z_0 \) is said to be a fixed point of \(f(z) \) if \(f(z_0) = z_0 \). For a positive integer \(m \) and a number \(\mu \), let \(m^* = \chi_\mu m \), where \(\chi_\mu = 0 \) if \(\mu = 0 \) and \(\chi_\mu = 1 \) if \(\mu \neq 0 \). Throughout this paper, we need the following definition.

\[
\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)},
\]

where \(a \) is a value in the extended complex plane.

We start with the following famous theorem of W.K. Hayman (see [5], Corollary of Theorem 9) obtained in 1959.

Theorem A. Let \(f \) be a transcendental meromorphic function and \(n(\geq 3) \) is an integer. Then \(f^n f' = 1 \) has infinitely many solutions.

Keywords and phrases: uniqueness; meromorphic function; non-linear differential polynomials..
In 1997, Yang and Hua obtained the following uniqueness result corresponding to Theorem A:

Theorem B. [17] Let f and g be two non-constant meromorphic functions, $n \geq 11$ be a positive integer and $a \in \mathbb{C} - \{0\}$. If $f^n f'$ and $g^n g'$ share a CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$ or $f \equiv tg$ for a constant t such that $t^{n+1} = 1$.

Using the idea of sharing fixed points, in 2002, M.L. Fang and H.L. Qiu further extended Theorem B in the following manner.

Theorem C. [4] Let f and g be two non-constant meromorphic functions, and let $n \geq 11$ be a positive integer. If $f^n f' - z$ and $g^n g' - z$ share 0 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three nonzero complex numbers satisfying $4(c_1 c_2)^{n+1} c^2 = -1$ or $f \equiv tg$ for a complex number t such that $t^{n+1} = 1$.

For the past few years researchers have become more interested in the value sharing of nonlinear differential polynomials which are the k-th derivative of some linear expression of f and g.

In 2010, J.F. Xu, F. Lu and H.X. Yi proved the following results.

Theorem D. [15] Let f and g be two non-constant meromorphic functions, and let n, k be two positive integers with $n > 3k + 10$. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share z CM, f and g share ∞ IM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $4n^2(c_1 c_2)^{n+1} c^2 = -1$ or $f \equiv tg$ for a constant t such that $t^n = 1$.

Theorem E. [15] Let f and g be two non-constant meromorphic functions satisfying $\Theta(\infty, f) > \frac{2}{n}$, and let n, k be two positive integers with $n > 3k + 12$. If $(f^n(f-1))^{(k)}$ and $(g^n(g-1))^{(k)}$ share z CM, f and g share ∞ IM, then $f \equiv g$.

In the mean time in 2008 Zhang and Lin [21, 22] obtained a more generalised result for entire function as follows.

Theorem F. [21, 22] Let f and g be two non-constant entire functions, and n, m, k be three positive integers with $n > 2k + m^* + 4$. Suppose $(f^n(\mu f^m + \lambda))^{(k)}$, $(g^n(\mu g^m + \lambda))^{(k)}$ share 1 CM, where λ, μ are constants such that $|\lambda| + |\mu| \neq 0$. If

(i) $\lambda \mu \neq 0$, and gcd $(n,m) = d$, then $f^d \equiv g^d$; especially when $d = 1$, $f \equiv g$. or while $m = 1$ and $\Theta(\infty, f) > \frac{2}{n}$, then $f \equiv g$;

(ii) if $\lambda \mu = 0$, then either $f = tg$, where t is a constant satisfying $t^{n+m^*} = 1$ or $f = c_1 e^{cz}$, $g = c_2 e^{-cz}$, where c_1, c_2 and c are three constants such that $(-1)^k \lambda^2(c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1$ or $(-1)^k \mu^2(c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1$.

In 2001 an idea of gradation of sharing of values was introduced in {[8], [9]} which measures how close a shared value is to being share CM or to being shared IM. This notion is known as weighted sharing and is defined as follows.

Definition 1. [8, 9] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m > k$. If $E_k(a; f) = E_k(a; g)$, we say that f, g share the value a with weight k.
The definition implies that if \(f, g \) share a value \(a \) with weight \(k \) then \(z_0 \) is an \(a \)-point of \(f \) with multiplicity \(m (\leq k) \) and only if it is an \(a \)-point of \(g \) with multiplicity \(m (\leq k) \) and \(z_0 \) is an \(a \)-point of \(f \) with multiplicity \(m (\leq k) \) and only if it is an \(a \)-point of \(g \) with multiplicity \(n (> k) \), where \(m \) is not necessarily equal to \(n \).

We write \(f, g \) share \((a, k)\) to mean that \(f, g \) share the value \(a \) with weight \(k \). Clearly if \(f, g \) share \((a, k)\), then \(f, g \) share \((a, p)\) for any integer \(p, 0 \leq p < k \). Also we note that \(f, g \) share a value \(a \) IM or CM if and only if \(f, g \) share \((a, 0)\) or \((a, \infty)\) respectively. If \(a \) is a small function we define that \(f, g \) share \((a, l)\) which means \(f \) and \(g \) share \(a \) with weight \(l \) if \(f - a \) and \(g - a \) share \((0, l)\).

With the notion of weighted sharing in 2011, X. Q. Lin [12] improved Theorem F as follows.

Theorem G. [12] Let \(f \) and \(g \) be two non-constant entire functions, and let \(n, m, \) and \(k \) be three positive integers. Suppose \((f^n(\mu f^m + \lambda))^k, (g^n(\mu g^m + \lambda))^k \) share \((1, l)\), where \(\lambda, \mu \) are constants such that \(|\lambda| + |\mu| \neq 0 \) and one of the following conditions holds:

(i) \(l = 2 \) and \(n > 2k + m^* + 4 \);
(ii) \(l = 1 \) and \(n > \frac{5k+3m^*+9}{2} \);
(iii) \(l = 0 \) and \(n > 5k + 4m^* + 7 \).

then conclusion of Theorem F holds.

In 2012 Wang and Luo [13] investigated Theorem F for meromorphic functions and replaced value sharing by fixed point sharing.

Theorem H. [13] Let \(f \) and \(g \) be two transcendental meromorphic functions and \(n, m, k \) be three positive integers with \(n > 3k + m^* + 7 \). Suppose \((f^n(\mu f^m + \lambda))^k, (g^n(\mu g^m + \lambda))^k \) share \((z, \infty)\), \(f, g \) share \((\infty, 0)\); where \(\lambda(\neq 0), \mu \) be constants. then one of the following results holds:

(i) if \(\mu = 0 \), then either \(f = tg \), where \(t \) is a constant satisfying \(t^n = 1 \), or \(k = 1, f = c_1e^{cz^2}, g = c_2e^{-cz^2} \), where \(c_1, c_2 \) and \(c \) are three constants such that \(4\lambda^2(c_1c_2)^{n|nc|^2} = -1 \).
(ii) \(\mu \neq 0 \) and \(m \geq 2 \) and \(\text{gcd} (n,m) = 1 \), then \(f \equiv g \).
(iii) If \(\mu \neq 0 \) and \(m = 1 \) then either \(f \equiv g \) or \(f = -\frac{\lambda(h^n - 1)}{\mu(h^n + 1 - 1)}, \ f = -\frac{\lambda(h^n - 1)}{\mu(h^n + 1 - 1)}; \)

where \(h \) is a non-constant meromorphic function.

Also J. Wang, W. Lu and Y. Chen [14] investigated the IM value sharing counterpart of Theorem H as follows.

Theorem I. [14] Let \(f \) and \(g \) be two non-constant meromorphic functions, and \(n, k, m \) be three positive integers with \(n > 9k + 6m^* + 13 \). Suppose \((f^n(\mu f^m + \lambda))^k, (g^n(\mu g^m + \lambda))^k \) share \((1, 0)\), where \(\lambda, \mu \) are constants such that \(|\lambda| + |\mu| \neq 0 \), and \(f, g \) share \((\infty, 0)\).
If \(\lambda \mu \neq 0 \), \(m > 1 \) and \((n,n+m) = 1 \), or while \(m = 1 \) and \(\Theta(\infty, f) > 2/n \), then \(f \equiv g \);

(ii) if \(\lambda \mu = 0 \), then either \(f = tg \), where \(t \) is a constant satisfying \(t^{n+m^*} = 1 \) or \(f = c_1 e^{cz^2}, \ g = c_2 e^{-cz^2} \), where \(c_1, c_2 \) and \(c \) are three constants such that

\[
[(n+m^*)c]^{2k} = 1 \text{ or } (-1)^k \lambda^2 (c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = 1.
\]

The purpose of the paper is to unify all the above mentioned theorems into a single result under relaxed sharing hypothesis, which will improve, extend and generalize all the results discussed above in a large extent. We present the main result as follows.

THEOREM 1. Let \(f \) and \(g \) be two transcendental meromorphic functions sharing \((\infty,0) \); \((f^m(\mu f^m + \lambda))^{(k)}, \ (g^n(\mu g^m + \lambda))^{(k)} \) share \((p(z),l) \), where \(p(z) \) be a nonzero polynomial with \(\deg(p) = r, \ \lambda, \ \mu \) are constants such that \(|\lambda| + |\mu| \neq 0 \) and \(n, m, k \) be three positive integers. Suppose one of the following conditions hold:

(a) \(l \geq 3 \text{ and } n > \max\{3k+m^*+6,k+2r\} \);

(b) \(l = 2 \text{ and } n > \max\{3k+m^*+8,k+2r\} \);

(c) \(l = 1 \text{ and } n > \max\{4k+\frac{3m^*}{2}+9,k+2r\} \);

(d) \(l = 0 \text{ and } n > \max\{9k+4m^*+14,k+2r\} \).

Then

(i) if \(\lambda \mu \neq 0 \) and (a) \(m = 1, \ \Theta(\infty, f) + \Theta(\infty, g) > 4/n \); or (b) \(m \geq 2 \) and for some constant \(t \), satisfying \(t^d \equiv 1 \), we have \(f \equiv tg \), where \(d = (n+m,n) \).

(ii) if \(\lambda \mu = 0 \), then either \(f = tg \), where \(t \) is a constant satisfying \(t^{n+m^*} = 1 \) or if \(p(z) \) is not a constant, then \(f = c_1 e^{Q(z)}, \ g = c_2 e^{-Q(z)} \), where \(Q(z) = \int_0^z p(z)dz \), \(c_1, c_2 \) and \(c \) are constants such that \(a^{2k}_m(c_1 c_2)^{n+m^*} [(n+m^*)c]^{2k} = -1 \);

if \(p(z) \) is a nonzero constant \(b \), then \(f = c_3 e^{cz^2}, \ g = c_4 e^{-cz^2} \), where \(c_3, c_4 \) and \(c \) are constants such that \((-1)^k a^{2k}_m(c_3 c_4)^{n+m^*} [(n+m^*)c]^{2k} = 2^2 \), when \(m^* = m \) and \(a_{m^*} = \mu \), when \(m^* = 0 \).

THEOREM 2. Let \(f \) and \(g \) be two transcendental entire functions sharing \((\infty,0) \); \((f^m(\mu f^m + \lambda))^{(k)}, \ (g^n(\mu g^m + \lambda))^{(k)} \) share \((p(z),l) \), where \(p(z) \) be a nonzero polynomial with \(\deg(p) = r, \ \lambda, \ \mu \) are constants such that \(|\lambda| + |\mu| \neq 0 \) and \(n, m, k \) be three positive integers. Suppose one of the following conditions holds:

(a) \(l \geq 2 \text{ and } n > \max\{2k+m^*+4,k+2r\} \);

(b) \(l = 1 \text{ and } n > \max\{\frac{5k+3m^*+9}{2},k+2r\} \);

(c) \(l = 0 \text{ and } n > \max\{4k+3m^*+6,k+2r\} \).

Then

(i) if \(\lambda \mu \neq 0 \) and (a) \(m = 1, \ \Theta(\infty, f) \geq 2/n \), we have \(f \equiv tg \), where \(d = (n+m,n) \).

(ii) if \(\lambda \mu = 0 \), then either \(f = tg \), where \(t \) is a constant satisfying \(t^{n+m^*} = 1 \) or
if \(p(z) \) is not a constant, then \(f = c_1e^{cQ(z)}, \ g = c_2e^{-cQ(z)} \), where \(Q(z) = \int_0^z p(z)dz \), \(c_1, c_2 \) and \(c \) are constants such that \(a_{m^*}^2(c_1c_2)^{n+m^*}[(n+m^*)c]^2 = -1 \);

if \(p(z) \) is a nonzero constant \(b \), then \(f = c_3e^{cz}, \ g = c_4e^{-cz} \), where \(c_3, c_4 \) and \(c \) are constants such that \((-1)^k a_{m^*}^2(c_3c_4)^{n+m^*}[(n+m^*)c]^2k = b^2 \), where \(a_{m^*} = \mu \), when \(m^* = m \) and \(a_{m^*} = \lambda \), when \(m^* = 0 \).

Remark 1. In both the theorems when \(p(z) \) is a constant \(f \) and \(g \) can be taken as non-constant instead of transcendental.

We now explain following definitions and notations which are used in the paper.

Definition 2. [7] Let \(p \) be a positive integer and \(a \in \mathbb{C} \cup \{\infty\} \).

(i) \(N(r,a;f \geq p) \) (\(N(r,a;f \geq p) \)) denotes the counting function (reduced counting function) of those \(a \)-points of \(f \) whose multiplicities are not less than \(p \).

(ii) \(N(r,a;f \leq p) \) (\(N(r,a;f \leq p) \)) denotes the counting function (reduced counting function) of those \(a \)-points of \(f \) whose multiplicities are not greater than \(p \).

Definition 3. [11, cf.[18]] For \(a \in \mathbb{C} \cup \{\infty\} \) and a positive integer \(p \) we denote by \(N_p(r,a;f) \) the sum \(N(r,a;f) + N(r,a;f \geq 2) + \ldots N(r,a;f \geq p) \). Clearly \(N_1(r,a;f) = N(r,a;f) \).

Definition 4. Let \(a, b \in \mathbb{C} \cup \{\infty\} \). Let \(p \) be a positive integer. We denote by \(N(r,a;f \geq p \mid g = b) \) (\(N(r,a;f \geq p \mid g \neq b) \)) the reduced counting function of those \(a \)-points of \(f \) with multiplicities \(\geq p \), which are the \(b \)-points (not the \(b \)-points) of \(g \).

Definition 5. [cf.[1], 2] Let \(f \) and \(g \) be two non-constant meromorphic functions such that \(f \) and \(g \) share the value 1 IM. Let \(z_0 \) be a 1-point of \(f \) with multiplicity \(p \), a 1-point of \(g \) with multiplicity \(q \). We denote by \(N_L(r,1;f) \) the counting function of those 1-points of \(f \) and \(g \) where \(p > q \), by \(N_E^{(1)}(r,1;f) \) the counting function of those 1-points of \(f \) and \(g \) where \(p = q = 1 \) and by \(N_E^{(2)}(r,1;f) \) the counting function of those 1-points of \(f \) and \(g \) where \(p = q \geq 2 \), each point in these counting functions is counted only once. In the same way we can define \(N_L(r,1;g), N_E^{(1)}(r,1;g), N_E^{(2)}(r,1;g) \).

Definition 6. [cf.[1], 2] Let \(k \) be a positive integer. Let \(f \) and \(g \) be two non-constant meromorphic functions such that \(f \) and \(g \) share the value 1 IM. Let \(z_0 \) be a 1-point of \(f \) with multiplicity \(p \), a 1-point of \(g \) with multiplicity \(q \). We denote by \(N_{f,k}(r,1;g) \) the reduced counting function of those 1-points of \(f \) and \(g \) such that \(p > q = k \). \(N_{g,k}(r,1;f) \) is defined analogously.

Definition 7. [8, 9] Let \(f, g \) share a value \(a \) IM. We denote by \(N_*(r,a;f,g) \) the reduced counting function of those \(a \)-points of \(f \) whose multiplicities differ from the multiplicities of the corresponding \(a \)-points of \(g \).

Clearly \(N_*(r,a;f,g) \equiv N_*(r,a;g,f) \) and \(N_*(r,a;f,g) = N_L(r,a;f) + N_L(r,a;g) \).

Definition 8. Let \(a,b_1,b_2,\ldots,b_q \in \mathbb{C} \cup \{\infty\} \). We denote by \(N(r,a;f \mid g \neq b_1,b_2,\ldots,b_q) \) the counting function of those \(a \)-points of \(f \), counted according to multiplicity, which are not the \(b_i \)-points of \(g \) for \(i = 1,2,\ldots,q \).
2. Lemmas

Let F and G be two non-constant meromorphic functions defined in \mathbb{C}. We denote by H the function as follows:

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1} \right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1} \right),$$

and

$$V = \left(\frac{F'}{F - 1} - \frac{F'}{F} \right) - \left(\frac{G'}{G - 1} - \frac{G'}{G} \right).$$

Lemma 1. [13] Let f be a non-constant meromorphic function and let $a_n(z)(\neq 0)$, $a_{n-1}(z)$, ..., $a_0(z)$ be meromorphic functions such that $T(r,a_i(z)) = S(r,f)$ for $i = 0, 1, 2, \ldots, n$. Then

$$T(r,a_nf^n + a_{n-1}f^{n-1} + \ldots + a_1f + a_0) = nT(r,f) + S(r,f).$$

Lemma 2. [20] Let f be a non-constant meromorphic function, and p, k be positive integers. Then

$$N_p \left(r, 0; f^{(k)} \right) \leq T \left(r, f^{(k)} \right) - T(r,f) + N_{p+k}(r,0;f) + S(r,f),$$

and

$$N_p \left(r, 0; f^{(k)} \right) \leq k\overline{N}(r,\infty;f) + N_{p+k}(r,0;f) + S(r,f).$$

Lemma 3. [10] If $N(r,0;f^{(k)} | f \neq 0)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity then

$$N(r,0;f^{(k)} | f \neq 0) \leq k\overline{N}(r,\infty;f) + N(r,0;f | < k) + k\overline{N}(r,0;f | \geq k) + S(r,f).$$

Lemma 4. Suppose that f and g be two non-constant meromorphic functions. Let $F = \left[f^n(\mu f^m + \lambda) \right]^{(k)}$, $G = \left[g^n(\mu g^m + \lambda) \right]^{(k)}$, where n, k, m are positive integers. If f, g share ∞ IM and $V \equiv 0$, then $F \equiv G$.

Proof. Suppose $V \equiv 0$. Then by integration we obtain

$$1 - \frac{1}{F} \equiv A(1 - \frac{1}{G}).$$

If z_0 is a pole of f then it is a pole of g. Hence from the definition of F and G we have $\frac{1}{F(z_0)} = 0$ and $\frac{1}{G(z_0)} = 0$. So $A = 1$ and hence $F \equiv G$. \(\square\)

Lemma 5. [11] Let f_1 and f_2 be two non-constant meromorphic functions satisfying $\overline{N}(r,0;f_i) + \overline{N}(r,\infty;f_i) = S(r,f_1,f_2)$ for $i = 1, 2$. If $f_1^s f_2^t - 1$ is not identically zero for arbitrary integers s and $t(|s| + |t| > 0)$, then for any positive ε, we have

$$N_0(r,1;f_1,f_2) \leq \varepsilon T(r) + S(r,f_1,f_2),$$
where \(N_0(r, 1; f_1, f_2) \) denotes the reduced counting function related to the common 1-points of \(f_1 \) and \(f_2 \) and \(T(r) = T(r, f_1) + T(r, f_2) \), \(S(r, f_1, f_2) = o(T(r)) \) as \(r \to \infty \) possibly outside a set of finite linear measure.

Lemma 6. [6] Suppose that \(f \) is a non-constant meromorphic function, \(k \geq 2 \) is an integer. If

\[
N(r, \infty, f) + N(r, 0; f) + N(r, 0; f^{(k)}) = S(r, \frac{f'}{f}),
\]

then \(f = e^{az+b} \), where \(a \neq 0 \), \(b \) are constants.

Lemma 7. Let \(f \) and \(g \) be two non-constant meromorphic functions and \(k, m, n > 3k + m^* \) be three positive integers. If \([f^n(\mu f^m + \lambda)]^{(k)} = [g^n(\mu g^m + \lambda)]^{(k)} \), then \(f^n(\mu f^m + \lambda) \equiv g^n(\mu g^m + \lambda) \).

Proof. We have \([f^n(\mu f^m + \lambda)]^{(k)} = [g^n(\mu g^m + \lambda)]^{(k)} \).

When \(k \geq 2 \), integrating we get

\[
[f^n(\mu f^m + \lambda)]^{(k-1)} = [g^n(\mu g^m + \lambda)]^{(k-1)} + c_{k-1}.
\]

If possible suppose \(c_{k-1} \neq 0 \).

Now in view of Lemma 2 for \(p = 1 \) and using the second fundamental theorem we get

\[
(n + m^*) T(r, f)
\leq T(r, [f^n(\mu f^m + \lambda)]^{(k-1)}) + \overline{N}(r, \infty; f) + \overline{N}(r, c_{k-1}; [f^n(\mu f^m + \lambda)]^{(k-1)}) + N_k(r, 0; f^n(\mu f^m + \lambda)) + S(r, f)
\leq \overline{N}(r, \infty; f) + \overline{N}(r, 0; [g^n(\mu g^m + \lambda)]^{(k-1)}) + k \overline{N}(r, 0; f) + N(r, 0; \mu f^m + \lambda) + S(r, f)
\leq \{k + 1 + m^*\} T(r, f) + \{k - 1\} \overline{N}(r, \infty; g) + N_k(r, 0; g^n(\mu g^m + \lambda)) + S(r, f)
\leq \{k + 1 + m^*\} T(r, f) + k \overline{N}(r, 0; g) + N(r, 0; \mu g^m + \lambda)
\leq \{k + 1 + m^*\} T(r, f) + \{2k - 1 + m^*\} T(r, g) + S(r, f) + S(r, g)
\leq \{3k + 2m^*\} T(r) + S(r).
\]

Similarly we get

\[
(n + m^*) T(r, g) \leq \{3k + 2m^*\} T(r) + S(r).
\]

Combining these we get

\[
(n - m^* - 3k) T(r) \leq S(r),
\]

which is a contradiction since \(n > 3k + m^* \).
Therefore \(c_{k-1} = 0 \) and so \([f^n(\mu f^m + \lambda)]^{(k-1)} \equiv [g^n(\mu g^m + \lambda)]^{(k-1)}\). Repeating \(k-1 \) times, we obtain

\[f^n(\mu f^m + \lambda) \equiv g^n(\mu g^m + \lambda) + c_0. \]

If \(k = 1 \), clearly integrating once we obtain the above. If possible suppose \(c_0 \neq 0 \).

Now using the second fundamental theorem we get

\[
(n + m^*) T(r, f) \\
\leq \overline{N}(r, 0; f^n(\mu f^m + \lambda)) + \overline{N}(r, \infty; f^n(\mu f^m + \lambda)) + \overline{N}(r, c_0; f^n(\mu f^m + \lambda)) \\
\leq (m^* + 2) T(r, f) + \overline{N}(r, 0; g^n(\mu g^m + \lambda)) \\
\leq (m^* + 2) T(r, f) + (m^* + 1) T(r, g) + S(r, f) + S(r, g) \\
\leq (3 + 2m^*) T(r) + S(r).
\]

Similarly we get

\[
(n + m^*) T(r, g) \leq (3 + 2m^*) T(r) + S(r).
\]

Combining these we get

\[
(n - m^* - 3) T(r) \leq S(r),
\]

which is a contradiction since \(n > 3 + m^* \).

Therefore \(c_0 = 0 \) and so

\[f^n(\mu f^m + \lambda) \equiv g^n(\mu f^m + \lambda). \]

This completes the Lemma. \(\square \)

Lemma 8. Suppose that \(f \) and \(g \) be two non-constant meromorphic functions. \(F, G \) be defined as in Lemma 4 and \(H \neq 0 \). If \(f, g \) share \((\infty, 0)\) and \(F, G \) share \((1, k_1)\), then

\[
(n + m^* - k - 1) \overline{N}(r; \infty; f) \leq (k + m^* + 1) \{T(r, f) + T(r, g)\} + \overline{N}_s(r; 1; F, G) \\
+ S(r, f) + S(r, g).
\]

Similar result holds for \(g \) also.

Proof. Suppose \(\infty \) is an e.v.P. of \(f \) and \(g \) then the lemma follows immediately.

Next suppose \(\infty \) is not an e.v.P of \(f \) and \(g \). Since \(H \neq 0 \) from Lemma 4 we have \(V \neq 0 \). We suppose that \(z_0 \) is a pole of \(f \) with multiplicity \(q \) and a pole of \(g \) with multiplicity \(r \). Clearly \(z_0 \) is a pole of \(F \) with multiplicity \((n + m)q + k \) and a pole of \(G \) with multiplicity \((n + m)r + k \). Noting that \(f, g \) share \((\infty, 0)\) from the definition of \(V \) it is clear that \(z_0 \) is a zero of \(V \) with multiplicity at least \(n + m + k - 1 \). Now using the Milloux theorem [6], p. 55, and Lemma 1, we obtain from the definition of \(V \) that

\[m(r, V) = S(r, f) + S(r, g). \]
Thus using Lemma 1 and (2.4) we get
\[(n + m^* + k - 1) N(r, \infty; f) \leq N(r, 0; V) \leq T(r, V) + O(1) \leq N(r, \infty; V) + m(r, V) + O(1)
\leq \overline{N}(r, 0; F) + \overline{N}(r, 0; G) + \overline{N}_*(r, 1; F, G)
\]
\[+ S(r, f) + S(r, g) \leq N_{k+1}(r, 0; f^n(\mu f^m + \lambda)) + N_{k+1}(r, 0; g^n(\mu g^m + \lambda)) + k\overline{N}(r, \infty; f)
\]
\[+ k\overline{N}(r, \infty; g) + \overline{N}_*(r, 1; F, G) + S(r, f) + S(r, g) \leq (k + 1) \overline{N}(r, 0; f) + N(r, 0; (\mu f^m + \lambda)) + (k + 1) \overline{N}(r, 0; g)
\]
\[+ N(r, 0; (\mu g^m + \lambda)) + 2k\overline{N}(r, \infty; f) + \overline{N}_*(r, 1; F, G)
\]
\[+ S(r, f) + S(r, g).
\]

This gives
\[(n + m^* - k - 1) \overline{N}(r, \infty; f) \leq (k + m^* + 1) \{T(r, f) + T(r, g)\} + \overline{N}_*(r, 1; F, G)
\]
\[+ S(r, f) + S(r, g).
\]

This completes the proof of the lemma. □

Lemma 9. Let \(f, g\) be two transcendental meromorphic functions and \(F = \frac{f^n(\mu f^m + \lambda)^{(k)}}{p(z)^{(k)}}\), \(G = \frac{g^n(\mu g^m + \lambda)^{(k)}}{p(z)^{(k)}}\), where \(p(z)\) is a non zero polynomial with \(\text{deg}(p) = r, n(\geq 1), k(\geq 1), m(\geq 2)\) are positive integers such that \(n > 3k + m^* + 3\). If \(f, g\) share \((\infty, 0)\) and \(H \equiv 0\) then either \([f^n(\mu f^m + \lambda)^{(k)}][g^n(\mu g^m + \lambda)^{(k)}] \equiv p^2\) or \(f^n(\mu f^m + \lambda) \equiv g^n(\mu g^m + \lambda)\).

Proof. Since \(H \equiv 0\), on integration we get
\[
\frac{1}{F - 1} \equiv \frac{bG + a - b}{G - 1},
\]
where \(a, b\) are constants and \(a \neq 0\). From (2.5) it is clear that \(F\) and \(G\) share \((1, \infty)\).

We now consider the following cases.

Case 1. Let \(b \neq 0\) and \(a \neq b\).

If \(b = -1\), then from (2.5) we have
\[
F \equiv \frac{-a}{G - a - 1}.
\]
Therefore
\[
\overline{N}(r, a + 1; G) = \overline{N}(r, \infty; F) = \overline{N}(r, \infty; f) + S(r, f).
\]
So in view of Lemma 2 and the second fundamental theorem we get
\[
(n + m^*) \, T(r, g)
\leq T(r, G) + N_{k+1}(r, 0; g^n(\mu g^m + \lambda)) - \overline{N}(r, 0; G) + S(r, g)
\leq \overline{N}(r, \infty; G) + \overline{N}(r, 0; G) + \overline{N}(r, a + 1; G) + N_{k+1}(r, 0; g^n(\mu g^m + \lambda)) - \overline{N}(r, 0; G) + S(r, g)
\leq \overline{N}(r, \infty; g) + N_{k+1}(r, 0; g^n(\mu g^m + \lambda)) + \overline{N}(r, \infty; f) + S(r, f) + S(r, g)
\leq 2\overline{N}(r, \infty; g) + (k + 1)\overline{N}(r, 0; g) + T(r, (\mu g^m + \lambda)) + S(r, f) + S(r, g)
\leq (k + m^* + 3) \, T(r, g) + S(r, f) + S(r, g).
\]

Without loss of generality, we suppose that there exists a set \(I \) with infinite measure such that \(T(r, f) \leq T(r, g) \) for \(r \in I \). So for \(r \in I \), \(S(r, f) \) can be replaced by \(S(r, g) \). So for \(r \in I \), we get a contradiction from above since \(n > 3k + m^* + 3 \).

If \(b \neq -1 \), from (2.5) we obtain that
\[
F - (1 + \frac{1}{b}) \equiv \frac{-a}{b^2[G + \frac{a}{b}]}.
\]
So
\[
\overline{N}(r, \frac{(b-a)}{b}; G) = \overline{N}(r, \infty; F) = \overline{N}(r, \infty; f) + S(r, f).
\]

Using Lemma 2 and the same argument as used in the case when \(b = -1 \) we can get a contradiction.

Case 2. Let \(b \neq 0 \) and \(a = b \).

If \(b = -1 \), then from (2.5) we have
\[
FG \equiv p^2,
\]
that is
\[
[f^n(\mu f^m + \lambda)](k)g^n(\mu g^m + \lambda)](k) \equiv p^2.
\]
If \(b \neq -1 \), from (2.5) we have
\[
\frac{1}{F} \equiv \frac{bG}{(1 + b)G - 1}.
\]
Therefore
\[
\overline{N}(r, \frac{1}{1+b}; G) = \overline{N}(r, 0; F).
\]

So in view of Lemma 2 and the second fundamental theorem we get
\[
(n + m^*) \, T(r, g)
\leq T(r, G) + N_{k+1}(r, 0; g^n(\mu g^m + \lambda)) - \overline{N}(r, 0; G) + S(r, g)
\leq \overline{N}(r, \infty; G) + \overline{N}(r, 0; G) + \overline{N}(r, \frac{1}{1+b}; G) + N_{k+1}(r, 0; g^n(\mu g^m + \lambda)) - \overline{N}(r, 0; G) + S(r, g)
\leq (k + m^* + 3) \, T(r, g) + S(r, f) + S(r, g)
\]
\[
\begin{align*}
&\leq N(r, \infty; g) + (k + 1)N(r, 0; g) + T(r, (\mu g^m + \lambda)) + N(r, 0; F) + S(r, g) \\
&\leq N(r, \infty; g) + (k + 1)N(r, 0; g) + T(r, (\mu g^m + \lambda)) + (k + 1)N(r, 0; f) \\
&\quad + T(r, (\mu f^m + \lambda)) + kN(r, \infty; f) + S(r, f) + S(r, g) \\
&\leq (k + m^*) + 2) T(r, g) + (2k + m^* + 1) T(r, f) + S(r, f) + S(r, g).
\end{align*}
\]

So for \(r \in I \) we have
\[
(n + m^*) T(r, g) \leq (3k + 2m^* + 3) T(r, g) + S(r, g),
\]
which is a contradiction since \(n > 3k + m^* + 3 \).

Case 3. Let \(b = 0 \). From (2.5) we obtain
\[
F \equiv \frac{G + a - 1}{a}.
\] (2.6)

If \(a \neq 1 \) then from (2.6) we obtain
\[
N(r, 1 - a; G) = N(r, 0; F).
\]

We can similarly deduce a contradiction as in Case 2. Therefore \(a = 1 \) and from (2.6) we obtain
\[
F \equiv G.
\]

Then by the Lemma 7 we have
\[
f^n P(f) \equiv g^n P(g).
\]

\[\square\]

Lemma 10. Let \(f, g \) be two transcendental meromorphic functions and \(p(z) \) be a non-constant polynomial, where \(n \) and \(k \geq 2 \) be two positive integers. If \(f = e^{\alpha z} \) and \(g = e^{\beta z} \), where \(\alpha, \beta \) are non-constant entire functions such that \([f^n]^{(k)} - p(z)\) and \([g^n]^{(k)} - p(z)\) share 0 CM, then \([f^n]^{(k)}[g^n]^{(k)} \neq p^2\).

Proof. Suppose
\[
[f^n]^{(k)}[g^n]^{(k)} \equiv p^2. \tag{2.7}
\]

From (2.7) we have
\[
N(r, 0; [f^n]^{(k)}) = S(r, f) \quad \text{and} \quad N(r, 0; [g^n]^{(k)}) = S(r, g).
\]

Let
\[
F_1 = \frac{[f^n]^{(k)}}{p} \quad \text{and} \quad G_1 = \frac{[g^n]^{(k)}}{p}. \tag{2.8}
\]

We note that \(T(r, F_1) \leq n(k + 1)T(r, f) + S(r, f) \) and so \(T(r, F_1) = O(T(r, f)) \). By Lemma 2, one can obtain \(T(r, F_1) = O(T(r, F_1)) \). Hence \(S(r, F_1) = S(r, f) \). Similarly we get \(S(r, G_1) = S(r, g) \). From (2.7) we get
\[
F_1 G_1 \equiv 1. \tag{2.9}
\]
It is clear that $T(r, F_1) = T(r, G_1) + O(1)$. So $S(r, F_1) = S(r, G_1)$. If $F_1 \equiv cG_1$, where c is a nonzero constant, then F_1 is a constant and so f is a polynomial, which contradicts our assumption. Hence $F_1 \not\equiv cG_1$ and so in the view of (2.9) we see that F_1 and G_1 share -1 IM.

Now by Lemma 2 we have

$$N(r, 0; F_1) \leq nN(r, 0; f) + k\overline{N}(r, \infty; f) + S(r, f) \leq S(r, F_1).$$

Similarly we have

$$N(r, 0; G_1) \leq nN(r, 0; g) + k\overline{N}(r, \infty; g) + S(r, g) \leq S(r, G_1).$$

Also we see that

$$N(r, \infty; F_1) = S(r, F_1), \quad N(r, \infty; G_1) = S(r, G_1).$$

Let

$$f_1 = \frac{F_1}{G_1}.$$

and

$$f_2 = \frac{F_1 - 1}{G_1 - 1}.$$

Clearly f_1 is non-constant. If f_2 is a nonzero constant then F_1 and G_1 share ∞ CM and so from (2.9) we conclude that F_1 and G_1 have no poles.

Next we suppose that f_2 is non-constant. We see that

$$F_1 = \frac{f_1(1 - f_2)}{f_1 - f_2}, \quad G_1 = \frac{1 - f_2}{f_1 - f_2}.$$

Clearly

$$T(r, F_1) \leq 2[T(r, f_1) + T(r, f_2)] + O(1)$$

and

$$T(r, f_1) + T(r, f_2) \leq 4T(r, F_1) + O(1).$$

These give $S(r, F_1) = S(r, f_1, f_2)$. Also we note that

$$\overline{N}(r, 0; f_i) + \overline{N}(r, \infty; f_i) = S(r; f_1, f_2)$$

for $i = 1, 2$.

We note that $\overline{N}(r, -1; F_1) \neq S(r, F_1)$, since otherwise by the second fundamental theorem F_1 will be a constant.

Also we see that

$$\overline{N}(r, -1; F_1) \leq N_0(r, 1; f_1, f_2).$$
Thus we have
\[T(r,f_1) + T(r,f_2) \leq 4 N_0(r,1; f_1, f_2) + S(r,F_1). \]
Then by Lemma 5 there exist two mutually prime integers \(s \) and \(t(|s| + |t| > 0) \) such that
\[f_1^s f_2^t \equiv 1, \]
i.e.,
\[\left[\frac{F_1}{G_1} \right]^s \left[\frac{F_1 - 1}{G_1 - 1} \right]^t \equiv 1. \quad (2.10) \]
If either \(s \) or \(t \) is zero then we arrive at a contradiction and so \(st \neq 0 \).

We now consider following cases:

Case (i): Suppose \(s > 0 \) and \(t = -t_1 \), where \(t_1 > 0 \). Then we have
\[\left[\frac{F_1}{G_1} \right]^{s t_1} \equiv \left[\frac{F_1 - 1}{G_1 - 1} \right]^{t_1} . \quad (2.11) \]
Let \(z_1 \) be a pole of \(F_1 \) of multiplicity \(p \). Then from (2.11) we see that \(z_1 \) must be a zero of \(G_1 \) of multiplicity \(p \). Now from (2.11) we get \(2s = t_1 \), which is impossible. Hence \(F_1 \) has no pole. Similarly we can prove that \(G_1 \) also has no poles.

Case (ii): Suppose either \(s > 0 \) and \(t > 0 \) or \(s < 0 \) and \(t < 0 \). Then from (2.11) one can easily prove that \(F_1 \) and \(G_1 \) have no poles.

Consequently from (2.9) we see that \(F_1 \) and \(G_1 \) have no zeros.

Since \(F_1 \) and \(G_1 \) have no zeros and poles, we have
\[F_1 \equiv e^{\gamma_1} G_1, \]
i.e.,
\[\left[f^n \right]^{(k)} \equiv e^{\gamma_1} \left[g^n \right]^{(k)} , \quad (2.12) \]
where \(\gamma_1 \) is a non-constant entire function.

First suppose that \(\alpha \) and \(\beta \) both are both transcendental entire functions. Moreover from (2.7) we see that we see that
\[N(r,0; \left[f^n \right]^{(k)}) \leq N(r,0; p^2) = O(\log r) \]
and we see that
\[N(r,0; \left[g^n \right]^{(k)}) \leq N(r,0; p^2) = O(\log r). \]
From this we get
\[N(r,\infty; f^s) + N(r,0; f^s) + N(r,0; \left[f^s \right]^{(k)}) = S(r,n\alpha') = S(r, \frac{\left[f^n \right]'}{f^n}) \quad (2.13) \]
and
\[N(r,\infty; g^s) + N(r,0; g^s) + N(r,0; \left[g^s \right]^{(k)}) = S(r,n\beta') = S(r, \frac{\left[g^n \right]'}{g^n}) . \quad (2.14) \]
Then from (2.13), (2.14) and Lemma 6 we must have
\[f = e^{ax + b}, \quad g = e^{cz + d}, \]
(2.15)
where \(a \neq 0, \ b, \ c \neq 0 \) and \(d \) are constants. But these types of \(f \) and \(g \) do not agree with the relation (2.7).

Next suppose \(\alpha, \beta \) both are polynomials. Since \(f = e^{\alpha} \) and \(g = e^{\beta} \), it follows that
\[[f^n]^{(k)} = A[(\alpha')^k + P_{k-1}(\alpha')]e^{n\alpha}, \quad [g^n]^{(k)} = B[(\beta')^k + P_{k-1}(\beta')]e^{n\beta}, \]
where \(A, B \) are non-zero constants, \(P_{k-1}(\alpha'), P_{k-1}(\beta') \) are differential polynomials in \(\alpha' \) and \(\beta' \) of degree at most \(k - 1 \) respectively. From (2.7) we see that \(\alpha + \beta = C \), i.e., \(\alpha' = \beta' \). So \(\deg(\alpha) = \deg(\beta) \).

If \(\deg(\alpha) = \deg(\beta) = 1 \), then from (2.7) we again get a contradiction. So we suppose \(\deg(\alpha) = \deg(\beta) = 2 \). From (2.12) we see that \([f^n]^{(k)} \) and \([g^n]^{(k)} \) share \(0 \) CM. So we have for some non-zero constant \(D \)
\[[(\alpha')^k + P_{k-1}(\alpha')] \equiv D[(\beta')^k + Q_{k-1}(\beta')], \]
which is impossible as \(k \geq 2 \).

Actually \([(\alpha')^k + P_{k-1}(\alpha')] \) and \([(\beta')^k + Q_{k-1}(\beta')] \) contain the terms \((\alpha')^k + K(\alpha')^{k-2}\alpha'' \) and \((\beta')^k + K(\beta')^{k-2}\beta'' \) respectively, where \(K \) is a suitably chosen positive integer. But these two terms are not identical. \(\square \)

Lemma 11. ([19], Lemma 6) If \(H \equiv 0 \), then \(F, G \) share \(1 \) CM. If further \(F, G \) share \(\infty \) IM then \(F, G \) share \(\infty \) CM.

Lemma 12. Let \(f \) and \(g \) be two transcendental meromorphic functions, let \(p(z) \) be a nonzero polynomial with \(\deg(p) = r; \ n, k \) and \(m \) be three positive integers with \(n > k + 2r \). Suppose that \(H \equiv 0 \). If \([f^n(\mu f^m + \lambda)]^{(k)} [g^n(\mu g^m + \lambda)]^{(k)} \equiv p^2 \), where \(\lambda, \mu \) are constants such that \(|\lambda| + |\mu| \neq 0 \), \(f \) and \(g \) share \((\infty, 0)\); if \(p(z) \) is not a constant, then \(f = c_1 e^{Q(z)}, g = c_2 e^{-Q(z)} \), where \(Q(z) = \int_0^z p(z)dz \), \(c_1, c_2 \) and \(c \) are constants such that \(a_{m^*}^2 (c_1 c_2)^{n+m^*}[(n+m^*)c]^{2k} = -1 \), if \(p(z) \) is a nonzero constant \(b \), then \(f = c_3 e^{cz}, g = c_4 e^{-cz} \), where \(c_3, c_4 \) and \(c \) are constants such that \((-1)^k a_{m^*}^2 (c_3 c_4)^{n+m^*}[(n+m^*)c]^{2k} = b^2 \), where \(a_{m^*} = \mu \), when \(m^* = m \) and \(a_{m^*} = \lambda \), when \(m^* = 0 \). Also when \(p(z) \) is a nonzero constant \(b \), then \(f \) and \(g \) can be taken as non-constant.

Proof. Since \(H \equiv 0 \). It follows from Lemma 11 that \(F, G \) share \(1 \) CM. So \([f^n]^{(k)} - p(z) \) and \([g^n]^{(k)} - p(z) \) share \(0 \) CM except the zeros of \(p(z) \). Let
\[[f^n(\mu f^m + \lambda)]^{(k)} [g^n(\mu g^m + \lambda)]^{(k)} \equiv p^2. \]
(2.16)
First suppose that \(\lambda \mu \neq 0 \)

Note that \(f \) and \(g \) share \((\infty, 0)\), we have \(f \neq \infty, g \neq \infty \). Suppose that \(z_0 \) is a zero of \(f \) of order \(p \), then \(z_0 \) will be a zero of \([f^n(\mu f^m + \lambda)]^{(k)} \) of order \(np - k \). Since \(n > k + 2r \), we can deduce that \(z_0 \) must be a zero of \(p^2(z) \) with order at least
2r + 1. This is impossible. Thus \(f \) has no zero. Similarly \(g \) has no zero. So \(f = e^{\alpha(z)} \), \(g = e^{\beta(z)} \), where \(\alpha(z) \) and \(\beta(z) \) are two non constant entire functions. Then we get

\[
(\mu f^{n+m})^{(k)} = t_2(\alpha', \alpha'', ..., \alpha^{(k)})e^{(n+m)\alpha},
\]

\[
(\lambda f^n)^{(k)} = t_1(\alpha', \alpha'', ..., \alpha^{(k)})e^{n\alpha},
\]

where \(t_i(\alpha', \alpha'', ..., \alpha^{(k)}) \) (\(i = 1, 2 \)) are differential polynomials in \(\alpha', \alpha'', ..., \alpha^{(k)} \). Obviously

\[
t_i(\alpha', \alpha'', ..., \alpha^{(k)}) \neq 0
\]

for \(i = 1, 2 \). From (2.16) and (2.17) we obtain

\[
N(r, 0; t_2(\alpha', \alpha'', ..., \alpha^{(k)})e^{m\alpha(z)} + t_1(\alpha', \alpha'', ..., \alpha^{(k)}))
\]

\[
\leq N(r, 0; p^2(z)) = S(r, f).
\]

Since \(\alpha \) is an entire function, we obtain \(T(r, \alpha^{(j)}) = S(r, f) \) for \(j = 1, 2 \). Hence \(T(r, t_i) = S(r, f) \) for \(i = 1, 2 \).

So from (2.19) we obtain

\[
mT(r, f) = T(r, t_2e^{m\alpha}) + S(r, f)
\]

\[
\leq N(r, 0; t_2e^{m\alpha}) + N(r, 0; t_2e^{m\alpha} + t_1) + S(r, f)
\]

\[
= S(r, f),
\]

which is a contradiction.

Hence we have \(\lambda \mu = 0 \). Here also \(f = e^{\alpha} \) and \(g = e^{\beta} \), where \(\alpha \) and \(\beta \) are two non constant entire function. Then from (2.16) we have

\[
a_m^2[f^{n+m}]^{(k)}g^{n+m} \equiv p^2.
\]

Let \(s = n + m^* \).

Case 1: Let \(\text{deg}(p(z)) = r(\geq 1) \). First suppose \(k \geq 2 \). Then from Lemma 10 we get a contradiction.

Next suppose \(k = 1 \). Suppose that \(\alpha \) and \(\beta \) are transcendental. Then from (2.20) we get

\[
AB \alpha' \beta' e^{s(\alpha + \beta)} \equiv p^2(z),
\]

where \(AB = (n + m^*)^2a_m^2 \).

Let \(\alpha + \beta = \gamma \). From (2.21) we know that \(\gamma \) is not a constant since in that case we get a contradiction. Now from (2.21) we get

\[
AB \alpha' (\gamma' - \alpha')e^{n\gamma} \equiv p^2(z).
\]

We have \(T(r, \gamma') = m(r, \gamma') = m(r, \frac{(n^*)'}{\gamma'}) = S(r, e^{n\gamma}) \). Thus from (2.22) we get

\[
T(r, e^{n\gamma}) \leq T(r, \frac{p^2}{\alpha' (\gamma' - \alpha)}) + O(1)
\]
\[
\begin{align*}
\leq T(r, \alpha') + T(r, \gamma' - \alpha') + O(\log r) + O(1) \\
\leq 2 T(r, \alpha') + S(r, \alpha') + S(r, e^{n\gamma}),
\end{align*}
\]
which implies that \(T(r, e^{n\gamma}) = O(T(r, \alpha')) \) and so \(S(r, e^{n\gamma}) \) can be replaced by \(S(r, \alpha') \). Thus we get \(T(r, \gamma') = S(r, \alpha') \) and so \(\gamma' \) is a small with respect to \(\alpha' \). In view of (2.22) and by the second fundamental theorem for small functions we get
\[
T(r, \alpha') \leq \mathcal{N}(r, \infty; \alpha') + \mathcal{N}(r, 0; \alpha') + \mathcal{N}(r, 0; \alpha' - \gamma') + S(r, \alpha')
\leq O(\log r) + S(r, \alpha'),
\]
which shows that \(\alpha' \) is a polynomial and so \(\alpha \) is a polynomial. Similarly we can prove that \(\beta \) is also a polynomial. This contradicts the fact that \(\alpha \) and \(\beta \) are transcendental.

Next suppose without loss of generality that \(\alpha \) is a polynomial and \(\beta \) is a transcendental entire function. Then \(\gamma \) is transcendental. So in view of (2.22) we can obtain
\[
nT(r, e^{\gamma}) \leq T(r, \frac{p^2}{\alpha' (\gamma' - \alpha')}) + O(1)
\leq T(r, \alpha') + T(r, \gamma' - \alpha') + S(r, \gamma)
\leq T(r, \gamma') + S(r, e^{\gamma}) = S(r, e^{\gamma}),
\]
which leads to a contradiction. Thus \(\alpha \) and \(\beta \) both are polynomials. Also from (2.21) we can conclude that \(\gamma(z) = \alpha(z) + \beta(z) \equiv C \) for a constant \(C \) and so \(\alpha'(z) + \beta'(z) \equiv 0 \).

Again from (2.21) we get \(a_m^2 (n + m^*)^2 e^{\gamma} \alpha' \beta' \equiv p^2(z) \). By computation we get
\[
\alpha' = cp(z), \beta' = -cp(z).
\tag{2.23}
\]
Hence
\[
\alpha = cQ(z) + l_1, \beta = -cQ(z) + l_2,
\tag{2.24}
\]
where \(Q(z) = \int_0^z p(z)dz \) and \(l_1, l_2 \) are constants. Finally we take \(f \) and \(g \) as
\[
f(z) = c_1 e^{cQ(z)}, g(z) = c_2 e^{-cQ(z)},
\]
where \(c_1, c_2 \) and \(c \) are constants such that \(a_m^2 [(n + m^*)c]^2 (c_1 c_2)^{n+i} = -1 \).

Case 2: Let \(p(z) \) be a nonzero constant \(b \). Obviously we get \(f = e^{cz} \) and \(g = e^{-cz} \), where \(\alpha \) and \(\beta \) are two non-constant entire functions. Proceeding in the same as above we get in view of (2.20), \(\alpha = cz + l_3, \beta = -cz + l_4 \). We can rewrite \(f \) and \(g \) as
\[
f = c_3 e^{cz}, g = c_4 e^{-cz},
\]
where \(c_3, c_4 \) and \(c \) are nonzero constants such that \((-1)^k a_m^2 (c_3 c_4)^{n+m^*} [(n + m^*)c]^{2k} = b^2 \).

This completes the proof of the lemma. \(\square \)
Lemma 13. Let f and g be two non-constant meromorphic (entire) functions and $n(\geq 2)$, m be two distinct integers satisfying $n+m \geq d+7$ $(n+m \geq d+3)$. Then for two constants λ, μ, with $|\lambda| + |\mu| \neq 0$,

$$f^n (\mu f^m + \lambda) \equiv g^n (\mu g^m + \lambda) \quad (2.25)$$

implies the following.

(i) if $\lambda \mu \neq 0$ and

(a) $m = 1$, $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n}$; or

(b) $m \geq 2$ and for some constant t, satisfying $t^d \equiv 1$, we have $f \equiv tg$, where $d = (n+m,n)$.

(ii) if $\lambda \mu = 0$, then $f = tg$, where t is a constant satisfying $t^{n+m} = 1$.

Proof. First suppose $\lambda \mu \neq 0$.

Let $m = 1$. In this case noting that $d = 1 = (n+1,n)$, proceeding in the same way as done in Lemma 6 of [10] we can show when $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{n}$, we have $f \equiv g$.

Next suppose $m \geq 2$. Let $f \neq tg$ for a constant t satisfying $t^d = 1$. We put $h = \frac{f}{g}$. Then $h^d \neq 1$, i.e., $(h-v_0)(h-v_1)\ldots(h-v_{d-1}) \neq 0$, where $v_k = \exp \left(\frac{2k\pi i}{d}\right)$, $k = 0, 1, 2, \ldots, d-1$. First suppose that h is constant. Now (2.25) implies

$$\mu g^m(h^{n+m}-1) \equiv -\lambda(h^n-1).$$

Since $gcd(n+m,n) = d$, eliminating d common factors namely $h-v_k$, $k = 0, 1, \ldots, d-1$ from both sides we are left with

$$ag^m(h-\alpha_1)(h-\alpha_2)\ldots(h-\alpha_{n+m-d}) \equiv (h-\beta_1)(h-\beta_2)\ldots(h-\beta_{n-d}),$$

where α_i and β_j are those zeros of $h^{n+m}-1$ and h^n-1 which are not the zeros of h^d-1, $i = 1, 2, \ldots, n+m-d$ and $j = 1, 2, \ldots, n-d$. Also we note that none of the α_i’s coincides with β_j’s. So if $h = \alpha_i$ or β_j, then we have either $(h-\beta_1)(h-\beta_2)\ldots(h-\beta_{n-d}) \equiv 0$ or $g \equiv 0$ and in both case we get contradictions. Consequently we assume neither $h^{n+m} \equiv 1$ nor $h^n \equiv 1$. Hence we may write

$$g^m = -\frac{\lambda}{\mu} \frac{h^n-1}{h^{n+m}-1}. \quad (2.26)$$

It follows from (2.26) that g is a constant, which is impossible. So h is non-constant. We observe that since a non-constant meromorphic function can not have more than two Picard exceptional values h can take at least $n+m-d-2$ values among $u_j = \exp \left(\frac{2\pi i j}{n+m}\right)$, where $j = 0, 1, 2, \ldots, n+m-1$. Since f^m has no simple pole $h-u_j$ has no simple zero for at least $n+m-d-2$ values of u_j, for $j = 0, 1, 2, \ldots, n+m-1$ and for these $n+m-d-2$ values of j within $j = 0, 1, 2, \ldots, n+m-1$, we have $\Theta(u_j; h) \geq \frac{1}{2}$. So by the maximum deficiency sum we have \(\frac{n+m-d-2}{2} \leq 2 \) i.e., $n+m \leq d+6$, which leads to a contradiction as $n+m > d+7$.

When f and g are entire functions, proceeding in the same way we can obtain (2.26) where h is non-constant. Since g has no pole and h can omit at most 2 values, we must have $n+m \leq d+2$, which is a contradiction.
Next suppose $\lambda \mu \neq 0$. Then from the give condition either λ or μ will be zero. So we get $f = tg$, where t is a constant satisfying $t^{n+m'} = 1$. This proves the lemma.

Lemma 14. [3] Let f and g be two non-constant meromorphic functions sharing $(1, k_1)$, where $2 \leq k_1 \leq \infty$. Then

$$N(r; f) = 2 + 2N(r; f| = 3) + \ldots + (k_1 - 1) N(r; f| = k_1) + k_1 N_L(r; f) + (k_1 + 1) N_L(r; g) + k_1 \mathcal{N}^{k_1+1}_E(r; g) \leq N(r; g) - N(r; g).$$

Lemma 15. [2] Let f, g share $(1, 1)$. Then

$$N_{f > 2}(r; g) \leq \frac{1}{2} N(r; f) + \frac{1}{2} N(r; f) - \frac{1}{2} N_0(r; f') + S(r, f),$$

where $N_0(r; f')$ is the counting function of those zeros of f' which are not the zeros of $f(f - 1)$.

Lemma 16. [2] Let f and g be two non-constant meromorphic functions sharing $(1, 0)$. Then

$$N_L(r; f) + 2N_L(r; g) + \mathcal{N}^2_L(r; f) - N_{f > 1}(r; g) - N_{g > 1}(r; f) \leq N(r; g) - N(r; g).$$

Lemma 17. [2] Let f, g share $(1, 0)$. Then

$$N_L(r; f) \leq N(r; f) + N(r; f) + S(r, f)$$

Lemma 18. [2] Let f, g share $(1, 0)$. Then

(i) $N_{f > 1}(r; g) \leq N(r; f) + N(r; f) - N_0(r; f') + S(r, f)$

(ii) $N_{g > 1}(r; f) \leq N(r; f) + N(r; f) - N_0(r; g') + S(r, g)$.

3. Proofs of the theorems

Proof of Theorem 1. Let $F = [f^n p(f)]^{(k)} / p(z)$ and $G = [g^n p(g)]^{(k)} / p(z)$, where $P(w) = \mu w^m + \lambda$. It follows that F and G share $(1, l)$ except the zeros of $p(z)$ and f, g share $(\infty, 0)$.

Case 1. Let $H \neq 0$.

Subcase 1.1. $l \geq 1$

From (2.1) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are different, (iii) poles of F and G with different multiplicities, (iv) zeros of $F' (G')$ which are not the zeros of $F(F - 1)(G(G - 1))$.

Since H has only simple poles we get

$$N(r; H) \quad (3.1)$$
\[\leq \mathcal{N}_*(r, \infty; f, g) + \mathcal{N}_*(r, 1; F, G) + \mathcal{N}(r, 0; F \mid 2) + \mathcal{N}(r, 0; G \mid 2) + \mathcal{N}_0(r, 0; F') + \mathcal{N}_0(r, 0; G') , \]

where \(\mathcal{N}_0(r, 0; F') \) is the reduced counting function of those zeros of \(F' \) which are not the zeros of \(F(F - 1) \) and \(\mathcal{N}_0(r, 0; G') \) is similarly defined.

Let \(z_0 \) be a simple zero of \(F - 1 \) but \(a(z_0) \neq 0, \infty \). Then \(z_0 \) is a simple zero of \(G - 1 \) and a zero of \(H \). So

\[N(r, 1; F \mid 1) \leq N(r, 0; H) \leq N(r, \infty; H) + S(r, f) + S(r, g). \tag{3.2} \]

While \(l \geq 3 \), using (3.1) and (3.2) we get

\[\begin{aligned}
\mathcal{N}(r, 1; F) &
\leq N(r, 1; F \mid 1) + \mathcal{N}(r, 1; F \mid 2) \\
&\leq \mathcal{N}(r, \infty; f) + \mathcal{N}(r, 0; F \mid 2) + \mathcal{N}(r, 0; G \mid 2) + \mathcal{N}_*(r, 1; F, G) \\
&+ \mathcal{N}(r, 1; F \mid 2) + \mathcal{N}_0(r, 0; F') + \mathcal{N}_0(r, 0; G') + S(r, f) + S(r, g).
\end{aligned} \tag{3.3} \]

Now in view of Lemmas 14 and 3 we get

\[\begin{aligned}
\mathcal{N}_0(r, 0; G') + \mathcal{N}_*(r, 1; F \mid 2) + \mathcal{N}_*(r, 1; F, G) &
\leq \mathcal{N}_0(r, 0; G') + N(r, 1; F \mid 2) + \mathcal{N}(r, 1; F \mid 3) + \ldots + \mathcal{N}(r, 1; F \mid l)

+ \mathcal{N}_{+1}^E(r, 1; F) + \mathcal{N}_L(r, 1; F) + \mathcal{N}_L(r, 1; G) + \mathcal{N}_*(r, 1; F, G)

\leq \mathcal{N}_0(r, 0; G') - \mathcal{N}(r, 1; F \mid 1) - \ldots - (l - 2)\mathcal{N}(r, 1; F \mid l) - (l - 1)\mathcal{N}_L(r, 1; F)

- l\mathcal{N}_L(r, 1; G) - (l - 1)\mathcal{N}_{+1}^E(r, 1; F) + N(r, 1; G) - \mathcal{N}(r, 1; G) + \mathcal{N}_*(r, 1; F, G)

\leq \mathcal{N}_0(r, 0; G') + N(r, 1; G) - \mathcal{N}(r, 1; G) - (l - 2)\mathcal{N}_L(r, 1; F) - (l - 1)\mathcal{N}_L(r, 1; G)

\leq N(r, 0; G' \mid G \neq 0) - (l - 2)\mathcal{N}_L(r, 1; F) - (l - 1)\mathcal{N}_L(r, 1; G)

\leq \mathcal{N}(r, 0; G) + \mathcal{N}(r, \infty; g) - (l - 2)\mathcal{N}_*(r, 1; F, G) - \mathcal{N}_L(r, 1; G)

\leq N(r, 0; G) + \mathcal{N}(r, \infty; g) - \mathcal{N}_*(r, 1; F, G) - \mathcal{N}_L(r, 1; G).
\end{aligned} \tag{3.4} \]

Hence using (3.3), (3.4), Lemmas 2 and 8 we get from the second fundamental theorem that

\[\begin{aligned} (n + m^*)T(r, f) &
\leq T(r, F) + N_{k+1}(r, 0; f^n P(f)) - N_2(r, 0; F) + S(r, f)

\leq \mathcal{N}(r, 0; F) + \mathcal{N}(r, \infty; F) + \mathcal{N}(r, 1; F) + N_{k+2}(r, 0; f^n P(f)) - N_2(r, 0; F)

\leq \mathcal{N}(r, 0; F')

\leq \mathcal{N}(r, \infty; f) + \mathcal{N}(r, \infty; g) + \mathcal{N}(r, 0; F) + N_{k+2}(r, 0; f^n P(f)) + \mathcal{N}(r, 0; F \mid 2)

+ \mathcal{N}(r, 0; G \mid 2) + \mathcal{N}(r, 1; F \mid 2) + \mathcal{N}_*(r, 1; F, G) + \mathcal{N}_0(r, 0; G') - N_2(r, 0; F)

+ S(r, f) + S(r, g)

\leq 3 \mathcal{N}(r, \infty; f) + N_{k+2}(r, 0; f^n P(f)) + N_2(r, 0; G) - \mathcal{N}_*(r, 1; F, G) - \mathcal{N}_L(r, 1; G). \tag{3.5} \]
In a similar way we can obtain

\[
\begin{align*}
&+ S(r, f) + S(r, g) \\
&\leq 3 \overline{N}(r, \infty; f) + N_{k+2}(r, 0; f^n P(f)) + k \overline{N}(r, \infty; g) + N_{k+2}(r, 0; g^n P(g)) \\
&- \overline{N}_*(r, 1; F, G) + S(r, f) + S(r, g) \\
&\leq (3 + k) \overline{N}(r, \infty; f) + (k + 2) \overline{N}(r, 0; f) + T(r, P(f)) + (k + 2) \overline{N}(r, 0; g) \\
&+ T(r, P(g)) - \overline{N}_*(r, 1; F, G) + S(r, f) + S(r, g) \\
&\leq (k + m^* + 2) \{T(r, f) + T(r, g)\} + (3 + k) \overline{N}(r, \infty; f) - \overline{N}_*(r, 1; F, G) \\
&+ S(r, f) + S(r, g) \\
&\leq (k + m^* + 2) \{T(r, f) + T(r, g)\} + \frac{(3 + k)(k + m^* + 1)}{n + m^* - k - 1} \{T(r, f) + T(r, g)\} \\
&\leq \left[k + m^* + 2 + \frac{(3 + k)(k + m^* + 1)}{n + m^* - k - 1} \right] \{T(r, f) + T(r, g)\} + S(r, f) + S(r, g),
\end{align*}
\]

In a similar way we can obtain

\[
(n + m^*) T(r, g) \\
\leq \left[k + m^* + 2 + \frac{(3 + k)(k + m^* + 1)}{n + m^* - k - 1} \right] \{T(r, f) + T(r, g)\} + S(r, f) + S(r, g).
\]

Adding (3.5) and (3.6) we get

\[
\left[n - m^* - 2k - 4 - \frac{(6 + 2k)(k + m^* + 1)}{n + m^* - k - 1} \right] \{T(r, f) + T(r, g)\} \leq S(r, f) + S(r, g).
\]

Since the quantity in the third bracket can be written as

\[
\left[\frac{(n + m^* - k - 1)^2 - (2m^* + k + 3)(n + m^* - k - 1) - 2(k + 3)(k + m^* + 1)}{n + m^* - k - 1} \right], \quad (3.7)
\]

by a simple computation one can easily verify that when

\[
n + m^* - k - 1 > 2m^* + 2k + 5 > \frac{2m^* + k + 3 + \sqrt{(2m^* + k + 3)^2 + 8(k + 3)(k + m^* + 1)}}{2},
\]

i.e., when \(n > 3k + m^* + 6 \) we get a contradiction from (3.7).

While \(l \geq 2 \), like (3.3), (3.4) and not using Lemma 8 in (3.5) we can deduce a contradiction when \(n > 3k + m^* + 7 \). So we omit the detail.

While \(l = 1 \), using Lemmas 3, 14, 15, (3.1) and (3.2) we get

\[
\overline{N}(r, 1; F) \\
\leq N(r, 1; F) + \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + \overline{N}_E(r, 1; F) \\
\leq \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}(r, 0; F) \geq 2 \geq \overline{N}(r, 0; G) \geq 2 + \overline{N}_*(r, 1; F, G) \\
+ \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + \overline{N}_E(r, 1; F) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') \\
+ S(r, f) + S(r, g),
\]

(3.8)
\[\begin{align*}
&\leq \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}(r, 0; F) \geq 2 + 2N_L(r, 1; F) \\
&\quad + 2N_L(r, 1; G) + N_E^2(r, 1; F) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') \\
&\quad + S(r, f) + S(r, g) \\
&\leq \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}(r, 0; F) \geq 2 + 2N_L(r, 1; G) \\
&\quad + N(r, 1; G) - \overline{N}(r, 1; G) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') \\
&\quad + S(r, f) + S(r, g) \\
&\leq \frac{3}{2} \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}(r, 0; F) \geq 2 + \frac{1}{2} \overline{N}(r, 0; F) + \overline{N}(r, 0; G) \geq 2 \\
&\quad + N(r, 0; G' | G \neq 0) + \overline{N}_0(r, 0; F') + S(r, f) + S(r, g) \\
&\leq \frac{3}{2} \overline{N}(r, \infty; f) + 2\overline{N}(r, \infty; g) + \overline{N}(r, 0; F) \geq 2 + \frac{1}{2} \overline{N}(r, 0; F) + N_2(r, 0; G) \\
&\quad + \overline{N}_0(r, 0; F') + S(r, f) + S(r, g).
\end{align*} \]

Hence using (3.8), Lemmas 1 and 2 we get from second fundamental theorem that

\[(n + m^*) T(r, f) \]
\[\leq T(r, F) + N_{k+2}(r, 0; f^n P(f)) - N_2(r, 0; F) + S(r, f) \]
\[\leq \overline{N}(r, 0; F) + \overline{N}(r, \infty; F) + \overline{N}(r, 1; F) + N_{k+2}(r, 0; f^n P(f)) - N_2(r, 0; F) \\
- N_0(r, 0; F') \]
\[\leq \frac{5}{2} \overline{N}(r, \infty; f) + 2\overline{N}(r, \infty; g) + N_2(r, 0; F) + \frac{1}{2} \overline{N}(r, 0; F) + N_{k+2}(r, 0; f^n P(f)) \\
+ N_2(r, 0; G) - N_2(r, 0; F) + S(r, f) + S(r, g) \]
\[\leq \frac{5}{2} \overline{N}(r, \infty; f) + 2\overline{N}(r, \infty; g) + N_{k+2}(r, 0; f^n P(f)) + \frac{1}{2} \overline{N}(r, 0; F) + N_2(r, 0; G) \\
+ S(r, f) + S(r, g) \]
\[\leq \frac{5}{2} \overline{N}(r, \infty; f) + 2\overline{N}(r, \infty; g) + N_{k+2}(r, 0; f^n P(f)) + \frac{k}{2} \overline{N}(r, \infty; g) + N_{k+2}(r, 0; g^n P(g)) \\
+ \frac{1}{2} \{ k \overline{N}(r, \infty; f) + \overline{N}_{k+1}(r, 0; f^n P(f)) \} + S(r, f) + S(r, g) \]
\[\leq \frac{5 + k}{2} \overline{N}(r, \infty; f) + (k + 2)\overline{N}(r, \infty; g) + \frac{3k + 5}{2} \overline{N}(r, 0; f) + \frac{3}{2} T(r, P(f)) \\
+ (k + 2) \overline{N}(r, 0; g) + T(r, P(g)) + S(r, f) + S(r, g) \]
\[\leq (2k + 5 + \frac{3m^*}{2}) T(r, f) + (2k + 4 + m^*) T(r, g) + S(r, f) + S(r, g) \]
\[\leq (4k + 9 + \frac{5m^*}{2}) T(r) + S(r). \]
In a similar way we can obtain

\[(n + m^*) T(r, g) \leq \left(4k + 9 + \frac{5m^*}{2} \right) T(r) + S(r). \tag{3.10} \]

Combining (3.9) and (3.10) we see that

\[(n + m^*) T(r) \leq \left(4k + 9 + \frac{5m^*}{2} \right) T(r) + S(r), \]

i.e

\[
\left(n - 4k + 9 - \frac{3m^*}{2} \right) T(r) \leq S(r). \tag{3.11}
\]

Since \(n > 4k + 9 + \frac{3m^*}{2} \), (3.11) leads to a contradiction.

Subcase 1.2. \(l = 0 \). Here (3.2) changes to

\[N^1_E \left(r, 1; F^{(k)} \mid = 1 \right) \leq N(r, 0; H) \leq N(r, \infty; H) + S(r, F) + S(r, G) \tag{3.12} \]

using Lemmas 3, 16, 17, 18, (3.1) and (3.12) we get

\[
\overline{N}(r, 1; F) \\
\leq N^1_E(r, 1; F) + \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + \overline{N}_E^2(r, 1; F) \\
\leq \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}(r, 0; F) + 2 + \overline{N}(r, 0; G) \geq 2 + 2\overline{N}_L(r, 1; F) \\
+ 2\overline{N}_L(r, 1; G) + \overline{N}_E^2(r, 1; F) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') + S(r, f) + S(r, g) \\
\leq \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + \overline{N}(r, 0; F) + 2 + \overline{N}(r, 0; G) \geq 2 + \overline{N}_{F > 1}(r, 1; G) \\
+ \overline{N}_{G > 1}(r, 1; F) + \overline{N}_L(r, 1; F) + N(r, 1; G) - \overline{N}(r, 1; G) + \overline{N}_0(r, 0; F') \\
+ \overline{N}_0(r, 0; G') + S(r, f) + S(r, g) \\
\leq 3 \overline{N}(r, \infty; f) + 2\overline{N}(r, \infty; g) + N_2(r, 0; F) + \overline{N}(r, 0; F) + N_2(r, 0; G) \\
+ N(r, 1; G) - \overline{N}(r, 1; G) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') + S(r, f) + S(r, g) \\
\leq 3 \overline{N}(r, \infty; f) + 2\overline{N}(r, \infty; g) + N_2(r, 0; F) + \overline{N}(r, 0; F) + N_2(r, 0; G) \\
+ N(r, 0; G') G \neq 0 \) + \overline{N}_0(r, 0; F') + S(r, f) + S(r, g) \\
\leq 3 \overline{N}(r, \infty; f) + 3\overline{N}(r, \infty; g) + N_2(r, 0; F) + \overline{N}(r, 0; F) + N_2(r, 0; G) \\
+ \overline{N}(r, 0; G) + \overline{N}_0(r, 0; F') + S(r, f) + S(r, g).
Hence using (3.13), Lemmas 1 and 2 we get from second fundamental theorem that

\[(n + m^*) T(r, f) \leq T(r, F) + N_{k+2}(r, 0; f^n P(f)) - N_2(r, 0; F) + S(r, f)\]

\[\leq N(r, 0; F) + N(r, 1; F) + N_{k+2}(r, 0; f^n P(f)) - N_2(r, 0; F) + N_0(r, 0; F') + S(r, f)\]

\[\leq 4N(r, 0; F) + 3N(r, 0; F) + 2N_2(r, 0; F) + N_{k+2}(r, 0; f^n P(f)) + 2N_2(r, 0; G) + S(r, f) + S(r, g)\]

\[\leq 4N(r, 0; F) + 3N(r, 0; F) + 2N_{k+2}(r, 0; f^n P(f)) + 2N_2(r, 0; G) + S(r, f) + S(r, g)\]

\[\leq (2k + 4) N(r, 0; F) + (2k + 3) N(r, 0; F) + 3T(r, P(f)) + 2T(r, P(g)) + S(r, f) + S(r, g)\]

\[\leq (5k + 8 + 3m^*) T(r, f) + (4k + 6 + 2m^*) T(r, g) + S(r, f) + S(r, g)\]

\[\leq (9k + 14 + 5m^*) T(r) + S(r),\]

where \(T(r) = \max\{T(r, f), T(r, g)\}\). In a similar way we can obtain

\[(n + m^*) T(r, g) \leq (9k + 14 + 5m^*) T(r) + S(r).\] (3.15)

Combining (3.14) and (3.15) we see that

\[(n + m^*) T(r) \leq (9k + 14 + 5m^*) T(r) + S(r),\]

i.e

\[(n - 9k - 14 - 4m^*) T(r) \leq S(r).\] (3.16)

Since \(n > 9k + 14 + 4m^*, (3.16)\) leads to a contradiction.

Case 2. Let \(H \equiv 0\). Then by Lemma 9 we obtain either

\[f^n(\mu f^m + \lambda)]^{(k)}[g^n(\mu g^m + \lambda)]^{(k)} \equiv p^2\]

or

\[f^n(\mu f^m + \lambda) \equiv g^n(\mu g^m + \lambda).\]

So the theorem follows from Lemma 12 and 13. \(\square\)

Proof of Theorem 1. Proceeding in the same way the proof of Theorem 2 can be carried out in the line of proof of Theorem 1. \(\square\)
REFERENCES

(Received October 19, 2014)

A. Banerjee
Department of Mathematics
University of Kalyani
West Bengal 741235, India

e-mail: abanerjee_kal@yahoo.co.in, abanerjeekal@gmail.com.

G. Halder
Department of Mathematics
Malda College
Rabindra Avenue, Malda
West Bengal 732101, India.

e-mail: goutamiitm@gmail.com