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GENERALISED ITERATION OF ENTIRE
FUNCTIONS WITH FINITE ITERATED ORDER

DIBYENDU BANERJEE AND BISWAJIT MANDAL

Abstract. In this paper, considering the generalised iteration of two entire functions we inves-
tigate the growth of iterated entire functions of finite iterated order to generalise some earlier
results.

1. Introduction and definitions

For two transcendental entire functions f(z) and g(z) Clunie [4] showed that
I(r,fog8) T(r.fog)
T(rf) T(rg)
growth properties of logT (r, fg) and T (r, f); also raised the question of investigating

the comparative growth of log 7T (r, fg) and T(r,g). During the past decades several
authors [3, 4, 7, 8,9, 10, 11, 12, 15] made close investigations on growth properties
of composition of two entire functions with finite order to achieve various remarkable
results. After this in 2009, Jin Tu et.al [ 14] investigate the growth of two composite en-
tire functions of finite iterated order. In the present paper using the idea of generalised
iteration introduced by Banerjee and Mondal [1], generalise the results of Jin Tu et.al
[14] for generalised iterated entire functions with finite iterated order.

We do not explain the standard notations and definitions of the theory of mero-
morphic functions as those are available in [5].

Following Sato [13], we write log[o] X=X, exp[o] x = x and for positive integer m,
let log!" x = log(log!™x), expl™ x = exp(expl™!x).

In [2], Bernal introduced the notions of finite iterated order and finiteness degree
of the order as follows.

lim, e =oco and lim, . = co. Singh [12] proved some comparative

DEFINITION 1.1. [2, 6] The iterated i order p;(f) of an entire function f is
defined by

log ™ IM(rf) log! T (r. f)

pi(f) =limsup ——————= = limsup

€ N).
oo logr oo logr (F€N)

Similarly, the iterated i lower order u;(f) of an entire function f is defined by

. ot pm(r . logllT(r, ,
wi(f) = liming 28 ML) g0 TS oy,
r—eo logr r—eo logr
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DEFINITION 1.2. [2, 6] The finiteness degree of the order of an entire function f
is defined by

0 if f(z) is a polynomial;
i(f) = ¢ min{k € {1,2,...}, pe(f) <o} if f(z) is transcendental; (1.1)
oo when py(f) = oo for all k.

In 2012, Banerjee and Mondal [1] introduced a new type of iteration called gener-
alised iteration.

DEFINITION 1.3. [1] Let f(z) and g(z) be entire functions and o € (0,1] be any
real number. Then the generalised iteration of f(z) with respect to g(z) is defined as
follows:

fig(a) = (1= a)z+af(z)
fo(2) = (1 —)g1(2) + 0t f(g1,6(2))
frg(2) = (1 —)ga,(2) + 0t f(g2,6(2))

fug(z) = (1— O‘)gn—hf(z) + O‘f(gn—l,f(z))

and so are

g1.7(2) = (1 —o)z+ ag(z)
82.£(z) = (1 — ) fi4(2) + 0g(fi4(2))
83.5(2) = (1 — ) f2.4(2) + 0g(f24(2))

gnf(2) = (1= &) fu-1,4(2) + g (fu-14(2))-

Clearly all f,(z) and g, f(z) are entire functions.

Throughout the paper we consider f(z) and g(z) are entire functions having finite
iterated order if p,(f) < e, p,4(g) < ecand positive iterated lower order if u,(f) >0,
Hq(g) > 0.

2. Known lemmas

Following lemmas will be needed in the sequel.

LEMMA 2.1. [10] Let f(z) and g(z) be entire functions. If M(r,g) > 2££ |g(0)]
forany € >0, then

T(r,f(g)) <(1+&)T(M(rg),f)-
In particular if g(0) =0, then T(r,f(g)) < T(M(r,g),f) forall r > 0.
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LEMMA 2.2. [4] Let f(z) and g(z) be entire functions with g(0) = 0. Let p
satisfy 0 < B < 1 andlet ¢(B) = %. Then for r > 0,

> M(r,f(g))
> M(c(B)M(Br.g).f)-

Furthermore if B = %, for sufficiently large r

1 r
> — - .
M f(2) >M(M(5:8) /)
LEMMA 2.3. [5] Let f(z) and g(z) be transcendental entire functions. Then

T(rf)
T(r.g(f))

MM(rg),f)

—0asr— oo,

3. Finite iterated order and finiteness degree of the order

THEOREM 3.1. Let f(z) and g(z) be entire functions of finite iterated order and
positive iterated lower order with i(f) = p, i(g) = q.

(i) If n is odd, then i(fng) = "F'p+"5tq and pus,, v1 (fag) = Pp(f)
and

(ii) if n is even, then i(f.g) = %(p+ ) and Py g (fug) = Pol8)-

Proof. By Definition 1.1, we have for given € > 0 and for sufficiently large r
T(r,f) <explP~ U (Pr)+e), M(r,g) < expld (rPa(8)+E),
For sufficiently large r, we have

T(rafn,g) < T(ragn—l,f) +T(r7f(gn—l,f)) +0(1)
(I+0(1))T(r,f(gn-1,r)), using Lemma 2.3
2T (M(r,gn—1,¢),f), usingLemma 2.1

exp” {M(r, gn717f)}pp(.f)+25

= exp”!{(p,(f) +2¢€)logM(r, g, 1.5)} (3.1)
explP[(py(f) +2€){logM(r, fu-2,4) +10gM (r,g(fa—2,)) + O(1)}]
expl”[(py (1) +26) {10g M(M(r. f-2.0),8) +1ogM(M(r fu2).)
+0(1)}], using Lemma 2.2 and since g is clearly transcendental

< explP{3(pp(f) +2€) logM(M(r, fr-2,4),8)}

< exp”[3(py(f) +2€) log{exp {M(r, fu-2,0)}P/1+}]

< exp” U (pg(g) +2€) logM (1, f-24)}

NN

NN
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expl”*[(p,(g) +2¢){logM (1, g,—3,7) +1ogM(r, f(gn-3.,5)) + O(1)}]

[

[(pp(s) +2€) {IogM(M(r.gu_3 ). ) + 1ogM(M(r, 803 )
+0(1)}], using Lemma 2.2 and since f is clearly transcendental

expl” 4 {3(p,(g) +2€)logM(M(r,gn-3.), )}

exp”*[3(py(g) +2€) log{expl” { (M (1, ga-3.7) 1PV}

exp ™ U { (p, (f)+2¢) logM(r, 8,3 1)}

expPP U (py(f) +2€) {logM(r, fy-a.g) +10gM (1,8 (fu-4)) + O(1)}]

exp?? U [(py(f) +2) {log M(M(r, fu-4,0),8) +10gM(M(r, fu-a).8)

+0(1)}] using Lemma 2.2 and since g is clearly transcendental

< exp®P {3 (p,(f) +2€) logM(M(r, fu-a),2)}

< expP T [3(p,(f) +2€) log{exp M (r, fy-a.4) P19}

< expP 24 (py(g) +2€) logM(r, fyag)}-

<
< exp [p+d]

—

INCINCIN NN

Here two cases may arise.

Case (i). Suppose n is odd. Then

T(r, fug) < exp??P24{ (p,(g) +2€)logM(r, fu_ag)}

< expl'2 P70 (py () +2¢) logM(r, i )}

< expl'2 P+ 9)[(p,(g) +2€){logM (r,2) + logM(r, f) + O(1)}]

< expl T (P91 (p, (g) +2¢€) (1 +0(1)) logM(r. )} (3.2)
< exp[%lﬂr%q]{log(rp”(f)+2£)}. (3.3)

Therefore,
n+1

p+" = q (r’f",g)

logr

log[

<pp(f)+2¢e, r>rn. (3.4)
On the otherhand, since i(f) = p, we have

1 p+1
limsup 08" WS M(rf)
F—seo logr

=pp(f)-

Since p,(f) > 0, there exists a sequence {r,} tending to infinity such that for
given € [0 < & < p,(f)] and for sufficiently large r,,, we have

M(r, f) > expl? (55775, (3.5)

We denote {r,}, a sequence, tending to infinity, not necessarily the same at each
occurence. Since U,(f) >0, uy(g) > 0 and by the same reasoning as K. Niino and C.
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C. Yang [11], for sufficiently large r,,, we have

T(rm, fng) = T (rms f(gn-1,£)) = T (rm,8n—1.¢) + O(1)
= (1+0(1))T(rm,f(gn—1,r)), using Lemma 2.3

(1 +0(1))10gM<%M<iTm,gn_1’f) +0(1),f>

(1 o(1))togh (5M(™2 0 1), f)
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> el { 21y ()~ 2€)(1 + o) toght (M (% fi ) ) }

> eXp[p] [exp[lﬂ {log {M<;_n217fn—2’g> }ﬂq( g)—2 H

— expl” 9 { (1, () —~ 2€) logM (25 . u-2,) }

expl”2 ) { (1, (g) — 26)logM (. i) |
expl”2 ) { (1, (g) — 26) (1 +0(1)) log ( 7./ ) |

= exp["%ll’*"Tfl‘A{log(rm)pl’(f)*%}, using (3.5).

WV

Therefore,

IOg[%IH_%q] T(rmafn,g)
logry,

From (3.4) and (3.9), we get

(5 p+25td
limsup (7 fng)

F—so0 logr

log

=pp(f)-

Therefore, i(f,) = %P‘F %q and

P%lp_,_%q(fn,g) = pp(f)

> pp(f)—2¢, for r=ry, — oo.

51
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(3.9)
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Case (ii). Suppose n is even. Then

T (1, frg) < exp?P 24{(py(g) +2€) logM(r, fy_aq)}

< explE7 TN (p, (f) +2€)logM(r,g1.4)}

< expl+ 79 [(p, (f) +2¢){logM(r.2) + logM(r.g) + O(1)}]

< expl7+ 70 (p, (f) +2€) (1 +o(1)) logM(r,g)} (3.11)
< expl2 (PHal{log(rPa(8) 28}, (3.12)

Therefore,

log[ (p+9)] T(r, fug)
logr

<pg(g)+2¢, r>rn. (3.13)

By similar argument as in case (i) and from (3.6), we have

T(rms fug) = expl” " { (g (g) ~ 26)102M (25 fu-2.) |

> expltr 70 { (1, () ~ 20 togM (251 ) }
> expli 0 (u, (1)~ 26)(1 +o())loght (575.8) ) G4
> expld7+79 [, (£) —26)(1 +o(1)log { expld (2)" ]
= expl2(PT9l{1og(r,,Pal8)=28) ], (3.15)

Therefore,
log[% (p+4) T(Fmy frg)
logry,

> py(g) —2¢, for r=r, — oo, (3.16)
From (3.13) and (3.16), we get

logl2 (P+4)
limsup o8 logr(r )

= pq(8)-

Therefore,

i(fug) = (p +q)

and
P3(p+a) (fng) = pqlg). O
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COROLLARY 3.1. Let f(z) and g(z) be entire functions of finite iterated order
and positive iterated lower order with p <i(f) <1 and i(g) = q.
(i) If n is odd, then

n;1p+n; Ly <ilfg) < nTHlJrn; L
and
Pusty not (fag) 2 Pp(f)s Pugrync (fag) < Pp(f);
and

(ii) if n is even, then

Z(p+q) <ilfag) < 2(+4)

l\JIE

2

and
P%(erq)(fn.,g) > Pq(g)7p’§(l+q) (fng) < Pg(8)-

Proof. Case (i). Suppose n is odd.

Let i(f) =m. Then m =min{j: p;(f) < oo}.

S0, Pmik(f) <eo, for k=0,1,2,... and p,,_x(f) = oo, for k=1,2,....
Now, since i(f) =m and i(g) = ¢, from case (i) of Theorem 3.1, we have

i(fug) = n;1m+n;1 (3.17)
Now p <m <1 gives
n+1 n—1 n+1 n—1 n+1 n—1
g PP Tas —mt s it
ie.,
n;lp+n;1 i(fog) < ”;Lll+n;1. (3.18)

Now from (3.17), (3.18) and (3.10), we get

P_;_ q(fmg) :pp(f)7
p%l.:,."*lq(f ) P%m q(fmg) = pp(f)-

T
.— .—

Case (ii). Suppose n is even.
Then the proof is omitted since it is as in case (i). [

COROLLARY 3.2. Let f(z) and g(z) be entire functions of finite iterated order
and positive iterated lower order.

(i) If n is odd and i(f,.4) = %p—f— %q then

i(f)=p and P%;,Jr%q(fn,g) =pp(f);



54 D. BANERJEE AND B. MANDAL

and
(ii) if n is even and i(fu ) = 5(p +q) then

i(g) =q and p%(p-&-q)(fn,g) :pq(g)'

Proof. Case (i). Suppose n is odd.
Since i(fn) = 2 p+251g, we have

Pnzillﬂr"%qu(fn,g) =0 and P"%II,JF"T*lq(fn,g) <eo.

Since Pust (fn,g) = o, then for any arbitrary large A

p+"%lq71
log[ +n l]T(r fng)

> A
logr ’

for large values of r.
But from (3.2),for large r, we have

T(r, frg) < explT P+ (p, () +2€) (1 + (1)) logM (r; f)}.

Therefore, for all large r

log[% +itq-1] T(r, fug) < log[p]M(r,f) +0(1)
[M 1ozl P
iﬁﬁl% g;ﬁ@()>l% z P iy T(nfug) < .
So,
pp-1(f) == (3.19)

Again p%ﬁ,%lq(fn’g) < 0. Let pnTHHn%lq(fmg) =1<oo.
Then for given € (> 0) there exists a sequence {r,,} tending to infinity such that
for large r,,, we get

log[% %q]T(rmafn,g)
logry,

<l+e.

Again from (3.7), we have

T fug) > e 0000 L (11 () — 26)(1 +0(1)logh (725 £) }.

Therefore,

(25 p+-27L4) T(rms fog) > log[p+1]M<4ZTl ,

log f>+0(1)

ie.,

log” I M( 2, )+ 0(1) < log!*s P+ T (1, frg)

<l+e

10g 'm 10g 'm
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i.e.,
logl” ! pM(r,,
og—(r,f) <l+eg, for r=r,; — o
logry

ie.,
pp(f) <ee. (3.20)
From (3.19) and (3.20), we get i(f) = p.
Again from (3.10), p%lp“%lq(fn’g) =pp(f)-

Case (ii). Suppose n is even.
Then the proof is omitted since it is as in case (i). [

COROLLARY 3.3. Let f(z) and g(z) be entire functions of finite iterated order
and positive iterated lower order with i(f,.;) = p (n>2)and 3 < o <1 then p,(f) =
0.

Proof. Since i(fy4) = p, 80 pp(fng) =B (say) <eo. Then for any given € (> 0)
and for sufficiently large r, we have

M(r, frg) <exp (1), (3.21)

Clearly f and g are transcendental. So we have for all sufficiently large » and
arbitrary large m

M) < Ca— 1M (M (3.6015).7)

(o))t ()
ocM(éMG,gn—l,f),f) —(1—=a)M(r,gn-1¢)

oM(r, f(gn-1,£)) — (1 —0)M(r,gs—1,r), using Lemma 2.2
M(rafn,g)
exp” (PPFE), by (3.21).

INCINCIN N

Therefore, M(r, f) < exp[P]{r%“’}, where &' = £.
So, pp(f) < % and since m is arbitrarily large, we get p,(f) =0. O

4. Growth of generalised iterated entire functions

THEOREM 4.1. Let f(z), g(z) be entire functions of finite iterated order and
positive iterated lower order with i(f) = p, i(g) = q and py(g) < U,(f).
(i) If n is odd, then

logl" T (p+a)+1 Ty £
lim og 2 (1 fug) —0

roee T(r.f)
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and B
i log[T(PW)”]M(r,fn,g) o
r—eo logM(r, f)

and
(ii) if n is even, then

log 2= P24 7 (1, £, )

lim =0
roe T(r.f)
and | 1
llm log[(__ )p+2q+ (r,fn7g) _ 0.
r—e logM(r, f)
Proof. For sufficiently large r, we have
expl? U (rrN)=€) < T(r, ) <logM(r, f) < expl?~ (PP )+, (4.1)

Case (i). Suppose n is odd. Then for sufficiently large r and for given € [0 < € <
Up(f)] by (3.3) and (4.1), we have

logl"T- (Pra+1 (. fog) _ explP=2)(rPr(1)+2€)
T(rf) " expl (%)

n—1
log[ > (p+a)+1] (ang)

) =0.

Therefore, lim, .
For sufficiently large r,

M(7, fog) < M(r,8n-1,7) +M(r, f(gn-1,)) +O(1)
M(M(r,gn-1.¢):f) +MM(r.gn-1,f), )+ O(1),
using Lemma 2.2and since f is clearly transcendental

N

< 24o(1)MM(r.gn-1,f).f)

< (240(1)) expP{M(r, g,1,7)}Pr V)78

< explexp” {(p, () +2¢) logM (r,8,-1,5)}]

< explexpl"T P79 [log (P26 11] using (3.1) and (3.3)

< expl"t PHIT Al (ppr(H)12e), 4.2)

By (4.1), (4.2) and sufficiently large r and for any given € [0 < & < p,(f)], we
have
log[ (p+q +2 (r fn&) < exp[p_z]{rpl’(f)+2g} .
IOgM(V, f) exp[l’*l]{rﬂp(.f)*g}

u([)Jrq +2) (rf )

log[ 2
logM(r.f)

=0.

Therefore, lim, .
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Case (ii). Suppose n is even. Then for sufficiently large r and for any given €
[0 <3e < up(f)—py(g)], by (3.12) and (4.1), we have

IOg[(%il)p+%q]T(r7fn7g) < explP—!{rPals +2£}

T(r,f) = exp[F 1]{,#/7 }
[(3-Dp+34]
Therefore, lim,_.., 2% ;(rz;)T(r’f"ﬂg) =0.

By similar reasoning as in case (i), we get

- 10g[('7’*1)p+'%f1+1] M(r, fug)
reo logM(r, f)

=0. O
NOTE 4.1. When n is odd, the restriction p,(g) < 1, (f) may be relaxed.

THEOREM 4.2. Let f(2), g(z) be entire functions of finite iterated order and pos-
itive iterated lower order with i(f) = p, i(g) = q and py(g) < pp(f).
(i) If n is odd, then

logl" P+ HIT (1, )

liminf =0
r—ee T(rf)
and
(2L (p+4) +2I
liminf 0 M fug) _
r—e logM(r, f)
and
(ii) if n is even, then
- oglEmOPt AT f )
liminf =2 =0,
r—ee T(r.f)
and
logl(Z=Dp+3a+1] pr
liminf —2 (ifug) _
re logM(r, f)

Proof. There exists a sequence {r;,} — oo such that for given € (> 0) and for
sufficiently large r,,, we have

T (rm, f) = explP~U(r2r )78, (4.3)

Let n be even. Then using (4.3) instead of (4.1) we proceed as in Theorem 4.1 to
getresults. [
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THEOREM 4.3. Let f(z), g(z) be entire functions of finite iterated order and
positive iterated lower order with i(f) = p, i(g) = q and Ug(g) < up(f).

(i) If n is odd, then

liminf =0
r—ee (r,f)
and
1 (25 (p+q) 2l
liminf —& M fg) _
roo logM(r, f)
and
(ii) if n even, then
loglz—Vpr+3d
iminf & Trfus) _
AT
and
[(3-Dp+3q+1]
liminf 28T M fug) _
roes logM(r, f)

Proof. Case (i). Suppose n is odd.
Given € [0 < & < u,(f)] and for sufficiently large r, from (4.1) and (3.3), we get

10g[%(p+q)+1] T(r, fog) _ expl?—2) (pPr(1)+2¢)
T(rf) = exp[l’—l](rﬂp(f)—g) ’

log[%(lﬂrq )+1]

Therefore, liminf,_... 7 T(nfng) _ .

Case (ii). Suppose n is even. Thenthere exists a sequence {r,,} — oo such that for
sufficiently large r,, and for given € (> 0), we have from (3.11)

T(rim, fog) < expl 2P G040 (p, () +2€)(1+0(1)) logM (r,8)}

<
< expl2 (P9l {log(r,, )Ha8) 2], (4.4)

From (4.1) and (4.4), for chosen € [0 < 3e < u,(f) — Uy(g)]and for sufficiently

large r,,, we get

logl(z=Dr+34] T(rmyfrg) _ explP=(r,)Hal8)+2e
T(”'m»f) = exp[!’—l](rm)ﬂp(f)—g

10g[( % *I)PJF %‘]] T(r7fn,g)
T(r.f)

Therefore, liminf,_... =0. O
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THEOREM 4.4. Let f(z), g(z) be entire functions having positive iterated lower
order and finite iterated order of f(z) such that p,(f) < pq(g)-
(i) If n is odd, then

n—1

logl = P+=1T (s £, )

hrrnjotlp T(r,f) -
and log"T P+ M (r, £, )

s = et
and

(ii) if n is even, then

logl&=Dr+3d T (r, £, )

limsu =00
o (/)
and . .
i lo [(7*1)P+7q+1]M(,@fn’g>
g logM(r, /) -

Proof. There exists a sequence {r,,} — = such that for any given (> 0) and for
sufficiently large r,,, we have

T (rm, f) < explP~U(r 227, (4.5)

Case (i). Suppose n is odd. Then from relation (3.8) and (4.5), for chosen €
[0 < 2e < p,(f)] and for sufficiently large r,,  we have

n—1

log T )T (1, fue) _ expll(rfr )

T(rm,f) - exp[pfl](rﬁlp(f)ﬁ‘&‘).
Hence,
n—1
log T PHOTUT (s f, )
limsu 07— oo
i T(r.f)

Case (ii). Suppose n is even. Then from relation (3.15) and (4.5), for chosen &
[0 < 3e < py(g) — pp(f)] and for sufficiently large r,,, we have

logl(z—Dr+3d] T(Fms fog) N exp[p—l](rsqq(g)—%)
T(rm7f) exp[[’*l](rﬁlp(f)Jrg)

and hence the result. [

NOTE 4.2. When n is odd, the restriction p,(f) < p,(g) may be relaxed.
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THEOREM 4.5. Let f(2), g(z) be entire functions having positive iterated lower
order such that t,(f) < pq(g).
(i) If n is odd, then

log!"T P OUT(r, f,0)

limsu oo
i T(r.f)
and .
log "= POl p(r, £,
limsup 0g 2 (r7f7$) _
r—ro0 IOgM(ra f)
and

(ii) if n is even, then

loglB=Dp+3dT(r, £, )

limsu =
i T(r.f)
and [(5=1)p+5g+1]
5—1)p+3q
lim sup log"* . M(r, fug) —
r—oo IOgM(r7f)

Proof. There exists a sequence {r,} — oo such that for chosen &£ [0 < 2e <
Up(f)] and for sufficiently large r,,, we have

T (1, f) < expl? (o), (4.6)

Case (i). Suppose n is odd. Then from (3.7), for sufficiently large r,,, we have

T(rms frg) = exp "™ 050 (g >—Ze><1+o<1>>logM( 1)}
> expl"T 7T U {log(r, ) ()21 (4.7)

By (4.6) and (4.7), we have for sufficiently large r,,

[n

i (p+a)-1] T(rm, fng) y exp[l’](r,'“,l/’(f)_zg)
T(rm,f) - exp[pfl](r#lp(f)ﬂ)'

log

So,
logl"z (Pra)=1]
lim sup o8 (7 fng) = oo,
F—so0 T(”, f)
Case (ii). Suppose n is even. Then from (3.14), for sufficiently large r,, and for
given € [0 < 3e < uy(g) — up(f)], we have

T(rms fug) = expl#HE00{ (uy (1)~ 22)(1+ o(1) logM ( 2. }
> expl? (P9 {log(r,, Hal8) 728} (4.8)
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From (4.6) and (4.8), we have

logl(3=Vp+3d T (r, £ ) - exp[p—l](rll;iq(g)—%)
T(rm, f)  exple-1l (A U)TE
and hence the result. [
THEOREM 4.6. Let f(z), g(z) be entire functions having positive iterated lower
order and finite iterated order of f(z) such that p,(f) < Ug(g)-
(i) If n is odd, then

logl' T P+ 01T (1, )

T Ten
and
lim log!“T POl M(r, £, ) _
r—es logM(r, f)
and

(ii) if n is even, then

log 8P 34T (1, )

lim 2L — oo
r—ee T(r,f)
and n n
i log[(f’l)”f’f“]M(r,fn,g) _
r—oo logM(r, f)

Proof. Case (i). Suppose n is odd. Then by (4.1) and (4.7), we have for chosen
€0 < 2& < p,(f)] and for sufficiently large r

log[n (p+q) 1]T(r fn&) - exp[p](ruﬁ(f)_zg)
T(r,f) - exp[P—l](rpp(f)+£) '

So,

fim 10277 (e U fg) _

ree T(r.f)

Case (ii). Suppose n is even. Then from (4.8) and (4.1) for sufficiently large r
and chosen € [0 < 3e < gy(g) — pp(f)], we have

loglz=Vptad T T(r, fog) explP~1(rta(e)=22)
(r,f) - exp[l’*l](rpp(f)Jrg)

and the result follows. [
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