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GENERALISED ITERATION OF ENTIRE

FUNCTIONS WITH FINITE ITERATED ORDER

DIBYENDU BANERJEE AND BISWAJIT MANDAL

Abstract. In this paper, considering the generalised iteration of two entire functions we inves-
tigate the growth of iterated entire functions of finite iterated order to generalise some earlier
results.

1. Introduction and definitions

For two transcendental entire functions f (z) and g(z) Clunie [4] showed that

limr→∞
T (r, f◦g)
T (r, f ) = ∞ and limr→∞

T (r, f◦g)
T (r,g) = ∞ . Singh [12] proved some comparative

growth properties of logT (r, f g) and T (r, f ) ; also raised the question of investigating
the comparative growth of logT (r, f g) and T (r,g) . During the past decades several
authors [3, 4, 7, 8, 9, 10, 11, 12, 15] made close investigations on growth properties
of composition of two entire functions with finite order to achieve various remarkable
results. After this in 2009, Jin Tu et.al [14] investigate the growth of two composite en-
tire functions of finite iterated order. In the present paper using the idea of generalised
iteration introduced by Banerjee and Mondal [1], generalise the results of Jin Tu et.al
[14] for generalised iterated entire functions with finite iterated order.

We do not explain the standard notations and definitions of the theory of mero-
morphic functions as those are available in [5].

Following Sato [13], we write log[0] x = x, exp[0] x = x and for positive integer m ,
let log[m] x = log(log[m−1] x), exp[m] x = exp(exp[m−1] x).

In [2], Bernal introduced the notions of finite iterated order and finiteness degree
of the order as follows.

DEFINITION 1.1. [2, 6] The iterated i order ρi( f ) of an entire function f is
defined by

ρi( f ) = limsup
r→∞

log[i+1] M(r, f )
logr

= limsup
r→∞

log[i] T (r, f )
logr

(i ∈ N).

Similarly, the iterated i lower order μi( f ) of an entire function f is defined by

μi( f ) = liminf
r→∞

log[i+1] M(r, f )
logr

= liminf
r→∞

log[i] T (r, f )
logr

(i ∈ N).

Mathematics subject classification (2010): 30D35.
Keywords and phrases: Entire function, generalised iteration, finite iterated order, finiteness degree,

growth.

c© � � , Zagreb
Paper JCA-07-05

47

http://dx.doi.org/10.7153/jca-07-05


48 D. BANERJEE AND B. MANDAL

DEFINITION 1.2. [2, 6] The finiteness degree of the order of an entire function f
is defined by

i( f ) =

⎧⎪⎨
⎪⎩

0 if f (z) is a polynomial;

min{k ∈ {1,2, . . .}, ρk( f ) < ∞} if f (z) is transcendental;

∞ when ρk( f ) = ∞ for all k.

(1.1)

In 2012, Banerjee and Mondal [1] introduced a new type of iteration called gener-
alised iteration.

DEFINITION 1.3. [1] Let f (z) and g(z) be entire functions and α ∈ (0,1] be any
real number. Then the generalised iteration of f (z) with respect to g(z) is defined as
follows:

f1,g(z) = (1−α)z+ α f (z)
f2,g(z) = (1−α)g1, f (z)+ α f (g1, f (z))
f3,g(z) = (1−α)g2, f (z)+ α f (g2, f (z))

...

fn,g(z) = (1−α)gn−1, f (z)+ α f (gn−1, f (z))

and so are

g1, f (z) = (1−α)z+ αg(z)
g2, f (z) = (1−α) f1,g(z)+ αg( f1,g(z))
g3, f (z) = (1−α) f2,g(z)+ αg( f2,g(z))

...

gn, f (z) = (1−α) fn−1,g(z)+ αg( fn−1,g(z)).

Clearly all fn,g(z) and gn, f (z) are entire functions.
Throughout the paper we consider f (z) and g(z) are entire functions having finite

iterated order if ρp( f ) < ∞ , ρq(g) < ∞and positive iterated lower order if μp( f ) > 0,
μq(g) > 0.

2. Known lemmas

Following lemmas will be needed in the sequel.

LEMMA 2.1. [10] Let f (z) and g(z) be entire functions. If M(r,g) > 2+ε
ε |g(0)|

for any ε > 0, then
T (r, f (g)) < (1+ ε)T (M(r,g), f ).

In particular if g(0) = 0, then T (r, f (g)) � T (M(r,g), f ) for all r > 0.
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LEMMA 2.2. [4] Let f (z) and g(z) be entire functions with g(0) = 0. Let β
satisfy 0 < β < 1 and let c(β ) = (1−β )2

4β . Then for r > 0,

M(M(r,g), f ) � M(r, f (g))
� M(c(β )M(β r,g), f ).

Furthermore if β = 1
2 , for sufficiently large r

M(r, f (g)) � M
(1

8
M

( r
2
,g

)
, f

)
.

LEMMA 2.3. [5] Let f (z) and g(z) be transcendental entire functions. Then

T (r, f )
T (r,g( f ))

→ 0 as r → ∞.

3. Finite iterated order and finiteness degree of the order

THEOREM 3.1. Let f (z) and g(z) be entire functions of finite iterated order and
positive iterated lower order with i( f ) = p, i(g) = q.

(i) If n is odd, then i( fn,g) = n+1
2 p+ n−1

2 q and ρ n+1
2 p+ n−1

2 q( fn,g) = ρp( f )
and

(ii) if n is even, then i( fn,g) = n
2 (p+q) and ρ n

2 (p+q)( fn,g) = ρq(g).

Proof. By Definition 1.1, we have for given ε > 0 and for sufficiently large r

T (r, f ) � exp[p−1](rρp( f )+ε), M(r,g) � exp[q](rρq(g)+ε).

For sufficiently large r , we have

T (r, fn,g) � T (r,gn−1, f )+T(r, f (gn−1, f ))+O(1)
= (1+o(1))T(r, f (gn−1, f )), using Lemma 2.3

� 2T (M(r,gn−1, f ), f ), using Lemma 2.1

� exp[p−1]{M(r,gn−1, f )}ρp( f )+2ε

= exp[p]{(ρp( f )+2ε) logM(r,gn−1, f )} (3.1)

� exp[p][(ρp( f )+2ε){logM(r, fn−2,g)+ logM(r,g( fn−2,g))+O(1)}]
� exp[p][(ρp( f )+2ε){logM(M(r, fn−2,g),g)+ logM(M(r, fn−2,g),g)

+O(1)}], using Lemma 2.2 and since g is clearly transcendental

� exp[p]{3(ρp( f )+2ε) logM(M(r, fn−2,g),g)}
� exp[p][3(ρp( f )+2ε) log{exp[q]{M(r, fn−2,g)}ρq(g)+ε}]
� exp[p+q]{(ρq(g)+2ε) logM(r, fn−2,g)}
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� exp[p+q][(ρp(g)+2ε){logM(r,gn−3, f )+ logM(r, f (gn−3, f ))+O(1)}]
� exp[p+q][(ρp(g)+2ε){logM(M(r,gn−3, f ), f )+ logM(M(r,gn−3, f )

+O(1)}], using Lemma 2.2 and since f is clearly transcendental

� exp[p+q]{3(ρq(g)+2ε) logM(M(r,gn−3, f ), f )}
� exp[p+q][3(ρq(g)+2ε) log{exp[p]{(M(r,gn−3, f )}ρp( f )+ε}]
� exp[2p+q]{(ρp( f )+2ε) logM(r,gn−3, f )}
� exp[2p+q][(ρp( f )+2ε){logM(r, fn−4,g)+ logM(r,g( fn−4,g))+O(1)}]
� exp[2p+q][(ρp( f )+2ε){logM(M(r, fn−4,g),g)+ logM(M(r, fn−4,g),g)

+O(1)}] using Lemma 2.2 and since g is clearly transcendental

� exp[2p+q]{3(ρp( f )+2ε) logM(M(r, fn−4,g),g)}
� exp[2p+q][3(ρp( f )+2ε) log{exp[q]{M(r, fn−4,g)}ρq(g)+ε}]
� exp[2p+2q]{(ρq(g)+2ε) logM(r, fn−4,g)}.

Here two cases may arise.

Case (i). Suppose n is odd. Then

T (r, fn,g) � exp[2p+2q]{(ρq(g)+2ε) logM(r, fn−4,g)}
...

� exp[ n−1
2 p+ n−1

2 q]{(ρq(g)+2ε) logM(r, f1,g)}
� exp[ n−1

2 (p+q)][(ρq(g)+2ε){logM(r,z)+ logM(r, f )+O(1)}]
� exp[ n−1

2 (p+q)]{(ρq(g)+2ε)(1+o(1)) logM(r, f )} (3.2)

� exp[ n+1
2 p+ n−1

2 q]{log(rρp( f )+2ε)}. (3.3)

Therefore,
log[ n+1

2 p+ n−1
2 q] T (r, fn,g)

logr
� ρp( f )+2ε, r > r0. (3.4)

On the otherhand, since i( f ) = p, we have

limsup
r→∞

log[p+1] M(r, f )
logr

= ρp( f ).

Since ρp( f ) > 0, there exists a sequence {rm} tending to infinity such that for
given ε [0 < ε < ρp( f )] and for sufficiently large rm , we have

M(rm, f ) � exp[p](rρp( f )−ε
m ). (3.5)

We denote {rm}, a sequence, tending to infinity, not necessarily the same at each
occurence. Since μp( f ) > 0, μq(g) > 0 and by the same reasoning as K. Niino and C.



GENERALISED ITERATION OF ENTIRE FUNCTIONS... 51

C. Yang [11], for sufficiently large rm , we have

T (rm, fn,g) � T (rm, f (gn−1, f ))−T (rm,gn−1, f )+O(1)
= (1+o(1))T(rm, f (gn−1, f )), using Lemma 2.3

� 1
3
(1+o(1)) logM

(1
8
M

( rm

4
,gn−1, f

)
+o(1), f

)

� 1
3
(1+o(1)) logM

(1
9
M

( rm

4
,gn−1, f

)
, f

)

� exp[p]
[
log

{
M

( rm

4
,gn−1, f

)}μp( f )−2ε]

� exp[p]
{

(μp( f )−2ε)T
(rm

4
,gn−1, f

)}

� exp[p]
[
(μp( f )−2ε)

{
T

(rm

4
,g( fn−2,g)

)
−T

(rm

4
, fn−2,g

)
+O(1)

}]

= exp[p]
{

(μp( f )−2ε)(1+o(1))T
(rm

4
,g( fn−2,g)

)}
, using Lemma 2.3

� exp[p]
{1

3
(μp( f )−2ε)(1+o(1)) logM

(1
9
M

( rm

42 , fn−2,g

)
,g

)}

� exp[p]
[
exp[q]

{
log

{
M

( rm

42 , fn−2,g

)}μq(g)−2ε}]

= exp[p+q]
{
(μq(g)−2ε) logM

( rm

42 , fn−2,g

)}
(3.6)

...

� exp[ n−1
2 (p+q)]

{
(μq(g)−2ε) logM

( rm

4n−1 , f1,g

)}

� exp[ n−1
2 (p+q)]

{
(μq(g)−2ε)(1+o(1)) logM

( rm

4n−1 , f
)}

(3.7)

= exp[ n+1
2 p+ n−1

2 q]{log(rm)ρp( f )−2ε}, using (3.5). (3.8)

Therefore,

log[ n+1
2 p+ n−1

2 q] T (rm, fn,g)
logrm

� ρp( f )−2ε, for r = rm → ∞. (3.9)

From (3.4) and (3.9), we get

limsup
r→∞

log[ n+1
2 p+ n−1

2 q] T (r, fn,g)
logr

= ρp( f ).

Therefore, i( fn,g) = n+1
2 p+ n−1

2 q and

ρ n+1
2 p+ n−1

2 q( fn,g) = ρp( f ). (3.10)
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Case (ii). Suppose n is even. Then

T (r, fn,g) � exp[2p+2q]{(ρq(g)+2ε) logM(r, fn−4,g)}
...

� exp[ n
2 p+ n−2

2 q]{(ρp( f )+2ε) logM(r,g1. f )}
� exp[ n

2 p+ n−2
2 q][(ρp( f )+2ε){logM(r,z)+ logM(r,g)+O(1)}]

� exp[ n
2 p+ n−2

2 q]{(ρp( f )+2ε)(1+o(1)) logM(r,g)} (3.11)

� exp[ n
2 (p+q)]{log(rρq(g)+2ε)}. (3.12)

Therefore,

log[ n
2 (p+q)] T (r, fn,g)

logr
� ρq(g)+2ε, r > r0. (3.13)

By similar argument as in case (i) and from (3.6), we have

T (rm, fn,g) � exp[p+q]
{
(μq(g)−2ε) logM

( rm

42 , fn−2,g

)}

...

� exp[ n
2 p+ n−2

2 q]
{
(μp( f )−2ε) logM

( rm

4n−1 ,g1, f

)}

� exp[ n
2 p+ n−2

2 q]
{
(μp( f )−2ε)(1+o(1)) logM

( rm

4n−1 ,g
)}

(3.14)

� exp[ n
2 p+ n−2

2 q]
[
(μp( f )−2ε)(1+o(1)) log

{
exp[q]

( rm

4n−1

)ρq(g)−ε}]

= exp[ n
2 (p+q)]{log(rm

ρq(g)−2ε)}. (3.15)

Therefore,

log[ n
2 (p+q)] T (rm, fn,g)

logrm
� ρq(g)−2ε, for r = rm → ∞. (3.16)

From (3.13) and (3.16), we get

limsup
r→∞

log[ n
2 (p+q)]T (r, fn,g)

logr
= ρq(g).

Therefore,

i( fn,g) =
n
2
(p+q)

and

ρ n
2 (p+q)( fn,g) = ρq(g). �
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COROLLARY 3.1. Let f (z) and g(z) be entire functions of finite iterated order
and positive iterated lower order with p � i( f ) � l and i(g) = q.

(i) If n is odd, then

n+1
2

p+
n−1

2
q � i( fn,g) � n+1

2
l +

n−1
2

q

and
ρ n+1

2 p+ n−1
2 q( fn,g) � ρp( f ), ρ n+1

2 l+ n−1
2 q( fn,g) � ρp( f );

and
(ii) if n is even, then

n
2
(p+q) � i( fn,g) � n

2
(l +q)

and
ρ n

2 (p+q)( fn,g) � ρq(g),ρ n
2 (l+q)( fn,g) � ρq(g).

Proof. Case (i). Suppose n is odd.
Let i( f ) = m. Then m = min{ j : ρ j( f ) < ∞}.
So, ρm+k( f ) < ∞, for k = 0,1,2, . . . and ρm−k( f ) = ∞, for k = 1,2, . . . .
Now, since i( f ) = m and i(g) = q, from case (i) of Theorem 3.1, we have

i( fn,g) =
n+1

2
m+

n−1
2

q. (3.17)

Now p � m � l gives

n+1
2

p+
n−1

2
q � n+1

2
m+

n−1
2

q � n+1
2

l +
n−1

2
q

i.e.,
n+1

2
p+

n−1
2

q � i( fn,g) � n+1
2

l +
n−1

2
q. (3.18)

Now from (3.17), (3.18) and (3.10), we get

ρ n+1
2 p+ n−1

2 q( fn,g) � ρ n+1
2 m+ n−1

2 q( fn,g) = ρp( f ),

ρ n+1
2 l+ n−1

2 q( fn,g) � ρ n+1
2 m+ n−1

2 q( fn,g) = ρp( f ).

Case (ii). Suppose n is even.
Then the proof is omitted since it is as in case (i). �

COROLLARY 3.2. Let f (z) and g(z) be entire functions of finite iterated order
and positive iterated lower order.

(i) If n is odd and i( fn,g) = n+1
2 p+ n−1

2 q then

i( f ) = p and ρ n+1
2 p+ n−1

2 q( fn,g) = ρp( f );
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and
(ii) if n is even and i( fn,g) = n

2 (p+q) then

i(g) = q and ρ n
2 (p+q)( fn,g) = ρq(g).

Proof. Case (i). Suppose n is odd.
Since i( fn,g) = n+1

2 p+ n−1
2 q, we have

ρ n+1
2 p+ n−1

2 q−1( fn,g) = ∞ and ρ n+1
2 p+ n−1

2 q( fn,g) < ∞.

Since ρ n+1
2 p+ n−1

2 q−1( fn,g) = ∞, then for any arbitrary large λ

log[ n+1
2 p+ n−1

2 q−1] T (r, fn,g)
logr

> λ ,

for large values of r .
But from (3.2),for large r , we have

T (r, fn,g) � exp[ n−1
2 (p+q)]{(ρq(g)+2ε)(1+o(1)) logM(r, f )}.

Therefore, for all large r

log[ n+1
2 p+ n−1

2 q−1] T (r, fn,g) � log[p] M(r, f )+O(1)

i.e., log[p] M(r, f )+O(1)
logr � log[ n+1

2 p+ n−1
2 q−1] T(r, fn,g)
logr > λ .

So,
ρp−1( f ) = ∞. (3.19)

Again ρ n+1
2 p+ n−1

2 q( fn,g) < ∞. Let ρ n+1
2 p+ n−1

2 q( fn,g) = l < ∞.

Then for given ε (> 0) there exists a sequence {rm} tending to infinity such that
for large rm, we get

log[ n+1
2 p+ n−1

2 q] T (rm, fn,g)
logrm

� l + ε.

Again from (3.7), we have

T (rm, fn,g) � exp[ n−1
2 (p+q)]

{
(μq(g)−2ε)(1+o(1)) logM

( rm

4n−1 , f
)}

.

Therefore,

log[ n+1
2 p+ n−1

2 q] T (rm, fn,g) � log[p+1] M
( rm

4n−1 , f
)

+O(1)

i.e.,
log[p+1] M( rm

4n−1 , f )+O(1)
logrm

� log[ n+1
2 p+ n−1

2 q] T (rm, fn,g)
logrm

� l + ε
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i.e.,
log[p+1] M(rm, f )

logrm
� l + ε, for r = rm → ∞

i.e.,
ρp( f ) < ∞. (3.20)

From (3.19) and (3.20), we get i( f ) = p.
Again from (3.10), ρ n+1

2 p+ n−1
2 q( fn,g) = ρp( f ).

Case (ii). Suppose n is even.
Then the proof is omitted since it is as in case (i). �

COROLLARY 3.3. Let f (z) and g(z) be entire functions of finite iterated order
and positive iterated lower order with i( fn,g) = p (n � 2)and 1

2 < α � 1 then ρp( f ) =
0.

Proof. Since i( fn,g) = p, so ρp( fn,g) = β (say) < ∞. Then for any given ε (> 0)
and for sufficiently large r , we have

M(r, fn,g) � exp[p](rβ+ε). (3.21)

Clearly f and g are transcendental. So we have for all sufficiently large r and
arbitrary large m

M(rm, f ) � (2α −1)M
(1

8
M

( r
2
,gn−1, f

)
, f

)

= αM
(1

8
M

( r
2
,gn−1, f

)
, f

)
− (1−α)M

(1
8
M

( r
2
,gn−1, f

)
, f

)

� αM
(1

8
M

( r
2
,gn−1, f

)
, f

)
− (1−α)M(r,gn−1, f )

� αM(r, f (gn−1, f ))− (1−α)M(r,gn−1, f ), using Lemma 2.2

� M(r, fn,g)

� exp[p](rβ+ε), by (3.21).

Therefore, M(r, f ) � exp[p]{r β
m +ε ′ }, where ε ′ = ε

m .

So, ρp( f ) � β
m and since m is arbitrarily large, we get ρp( f ) = 0. �

4. Growth of generalised iterated entire functions

THEOREM 4.1. Let f (z), g(z) be entire functions of finite iterated order and
positive iterated lower order with i( f ) = p, i(g) = q and ρq(g) < μp( f ) .

(i) If n is odd, then

lim
r→∞

log[ n−1
2 (p+q)+1]T (r, fn,g)

T (r, f )
= 0
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and

lim
r→∞

log[ n−1
2 (p+q)+2]M(r, fn,g)

logM(r, f )
= 0

and
(ii) if n is even, then

lim
r→∞

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

= 0

and

lim
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= 0.

Proof. For sufficiently large r, we have

exp[p−1](rμp( f )−ε) � T (r, f ) � logM(r, f ) � exp[p−1](rρp( f )+ε). (4.1)

Case (i). Suppose n is odd. Then for sufficiently large r and for given ε [0 < ε <
μp( f )] by (3.3) and (4.1), we have

log[ n−1
2 (p+q)+1] T (r, fn,g)

T (r, f )
� exp[p−2](rρp( f )+2ε)

exp[p−1](rμp( f )−ε)
.

Therefore, limr→∞
log[ n−1

2 (p+q)+1] T (r, fn,g)
T (r, f ) = 0.

For sufficiently large r,

M(r, fn,g) � M(r,gn−1, f )+M(r, f (gn−1, f ))+O(1)
� M(M(r,gn−1, f ), f )+M(M(r,gn−1, f ), f )+O(1),

using Lemma 2.2and since f is clearly transcendental

� (2+o(1))M(M(r,gn−1, f ), f )

� (2+o(1))exp[p]{M(r,gn−1, f )}ρp( f )+ε

� exp[exp[p]{(ρp( f )+2ε) logM(r,gn−1, f )}]
...

� exp[exp[ n+1
2 p+ n−1

2 q)]{log(rρp( f )+2ε)}], using (3.1) and (3.3)

� exp[ n+1
2 p+ n−1

2 q](rρp( f )+2ε). (4.2)

By (4.1), (4.2) and sufficiently large r and for any given ε [0 < ε < μp( f )], we
have

log[ n−1
2 (p+q)+2]M(r, fn,g)

logM(r, f )
� exp[p−2]{rρp( f )+2ε}

exp[p−1]{rμp( f )−ε} .

Therefore, limr→∞
log[ n−1

2 (p+q)+2] M(r, fn,g)
logM(r, f ) = 0.
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Case (ii). Suppose n is even. Then for sufficiently large r and for any given ε
[0 < 3ε < μp( f )−ρq(g)], by (3.12) and (4.1), we have

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

� exp[p−1]{rρq(g)+2ε}
exp[p−1]{rμp( f )−ε} .

Therefore, limr→∞
log[( n

2−1)p+ n
2 q] T (r, fn,g)

T (r, f ) = 0.

By similar reasoning as in case (i), we get

lim
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= 0. �

NOTE 4.1. When n is odd, the restriction ρq(g) < μp( f ) may be relaxed.

THEOREM 4.2. Let f (z), g(z) be entire functions of finite iterated order and pos-
itive iterated lower order with i( f ) = p, i(g) = q and ρq(g) < ρp( f ).

(i) If n is odd, then

liminf
r→∞

log[ n−1
2 (p+q)+1]T (r, fn,g)

T (r, f )
= 0

and

liminf
r→∞

log[ n−1
2 (p+q)+2]M(r, fn,g)

logM(r, f )
= 0

and
(ii) if n is even, then

liminf
r→∞

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

= 0,

and

liminf
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= 0.

Proof. There exists a sequence {rm} → ∞ such that for given ε (> 0) and for
sufficiently large rm, we have

T (rm, f ) � exp[p−1](rρp( f )−ε
m ). (4.3)

Let n be even. Then using (4.3) instead of (4.1) we proceed as in Theorem 4.1 to
get results. �



58 D. BANERJEE AND B. MANDAL

THEOREM 4.3. Let f (z), g(z) be entire functions of finite iterated order and
positive iterated lower order with i( f ) = p, i(g) = q and μq(g) < μp( f ) .

(i) If n is odd, then

liminf
r→∞

log[ n−1
2 (p+q)+1]T (r, fn,g)

T (r, f )
= 0

and

liminf
r→∞

log[ n−1
2 (p+q)+2]M(r, fn,g)

logM(r, f )
= 0

and
(ii) if n even, then

liminf
r→∞

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

= 0

and

liminf
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= 0.

Proof. Case (i). Suppose n is odd.
Given ε [0 < ε < μp( f )] and for sufficiently large r, from (4.1) and (3.3), we get

log[ n−1
2 (p+q)+1] T (r, fn,g)

T (r, f )
� exp[p−2](rρp( f )+2ε)

exp[p−1](rμp( f )−ε)
.

Therefore, liminfr→∞
log[ n−1

2 (p+q)+1] T (r, fn,g)
T (r, f ) = 0.

Case (ii). Suppose n is even. Thenthere exists a sequence {rm}→ ∞ such that for
sufficiently large rm and for given ε (> 0), we have from (3.11)

T (rm, fn,g) � exp[ n
2 p+( n

2−1)q]{(ρp( f )+2ε)(1+o(1)) logM(r,g)}
� exp[ n

2 (p+q)]{log(rm)μq(g)+2ε}. (4.4)

From (4.1) and (4.4), for chosen ε [0 < 3ε < μp( f )− μq(g)]and for sufficiently
large rm , we get

log[( n
2−1)p+ n

2 q] T (rm, fn,g)
T (rm, f )

� exp[p−1](rm)μq(g)+2ε

exp[p−1](rm)μp( f )−ε .

Therefore, liminfr→∞
log[( n

2−1)p+ n
2 q] T (r, fn,g)

T (r, f ) = 0. �
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THEOREM 4.4. Let f (z), g(z) be entire functions having positive iterated lower
order and finite iterated order of f (z) such that ρp( f ) < ρq(g).

(i) If n is odd, then

limsup
r→∞

log[ n−1
2 (p+q)−1] T (r, fn,g)

T (r, f )
= ∞

and

limsup
r→∞

log[ n−1
2 (p+q)]M(r, fn,g)
logM(r, f )

= ∞

and
(ii) if n is even, then

limsup
r→∞

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

= ∞

and

limsup
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= ∞.

Proof. There exists a sequence {rm}→ ∞ such that for any given ε(> 0) and for
sufficiently large rm, we have

T (rm, f ) � exp[p−1](rρp( f )+ε
m ). (4.5)

Case (i). Suppose n is odd. Then from relation (3.8) and (4.5), for chosen ε
[0 < 2ε < ρp( f )] and for sufficiently large rm, we have

log[ n−1
2 (p+q)−1]T (rm, fn,g)

T (rm, f )
� exp[p](rρp( f )−2ε

m )

exp[p−1](rρp( f )+ε
m )

.

Hence,

limsup
r→∞

log[ n−1
2 (p+q)−1]T (r, fn,g)

T (r, f )
= ∞.

Case (ii). Suppose n is even. Then from relation (3.15) and (4.5), for chosen ε
[0 < 3ε < ρq(g)−ρp( f )] and for sufficiently large rm , we have

log[( n
2−1)p+ n

2 q] T (rm, fn,g)
T (rm, f )

� exp[p−1](rρq(g)−2ε
m )

exp[p−1](rρp( f )+ε
m )

and hence the result. �

NOTE 4.2. When n is odd, the restriction ρp( f ) < ρq(g) may be relaxed.
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THEOREM 4.5. Let f (z), g(z) be entire functions having positive iterated lower
order such that μp( f ) < μq(g).

(i) If n is odd, then

limsup
r→∞

log[ n−1
2 (p+q)−1] T (r, fn,g)

T (r, f )
= ∞

and

limsup
r→∞

log[ n−1
2 (p+q)]M(r, fn,g)
logM(r, f )

= ∞

and
(ii) if n is even, then

limsup
r→∞

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

= ∞

and

limsup
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= ∞.

Proof. There exists a sequence {rm} → ∞ such that for chosen ε [0 < 2ε <
μp( f )] and for sufficiently large rm, we have

T (rm, f ) � exp[p−1](rμp( f )+ε
m ). (4.6)

Case (i). Suppose n is odd. Then from (3.7), for sufficiently large rm , we have

T (rm, fn,g) � exp[ n−1
2 (p+q)]

{
(μq(g)−2ε)(1+o(1)) logM

( rm

4n−1 , f
)}

� exp[ n+1
2 p+ n−1

2 q]{log(rm)μp( f )−2ε}. (4.7)

By (4.6) and (4.7), we have for sufficiently large rm

log[ n−1
2 (p+q)−1] T (rm, fn,g)

T (rm, f )
� exp[p](rμp( f )−2ε

m )

exp[p−1](rμp( f )+ε
m )

.

So,

limsup
r→∞

log[ n−1
2 (p+q)−1]T (r, fn,g)

T (r, f )
= ∞.

Case (ii). Suppose n is even. Then from (3.14), for sufficiently large rm and for
given ε [0 < 3ε < μq(g)− μp( f )], we have

T (rm, fn,g) � exp[ n
2 p+( n

2−1)q]
{
(μp( f )−2ε)(1+o(1)) logM

( rm

4n−1 ,g
)}

� exp[ n
2 (p+q)]{log(rm)μq(g)−2ε}. (4.8)
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From (4.6) and (4.8), we have

log[( n
2−1)p+ n

2 q] T (rm, fn,g)
T (rm, f )

� exp[p−1](rμq(g)−2ε
m )

exp[p−1](rμp( f )+ε
m )

and hence the result. �

THEOREM 4.6. Let f (z), g(z) be entire functions having positive iterated lower
order and finite iterated order of f (z) such that ρp( f ) < μq(g) .

(i) If n is odd, then

lim
r→∞

log[ n−1
2 (p+q)−1]T (r, fn,g)

T (r, f )
= ∞

and

lim
r→∞

log[ n−1
2 (p+q)] M(r, fn,g)
logM(r, f )

= ∞

and
(ii) if n is even, then

lim
r→∞

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

= ∞

and

lim
r→∞

log[( n
2−1)p+ n

2 q+1] M(r, fn,g)
logM(r, f )

= ∞.

Proof. Case (i). Suppose n is odd. Then by (4.1) and (4.7), we have for chosen
ε[0 < 2ε < μp( f )] and for sufficiently large r

log[ n−1
2 (p+q)−1]T (r, fn,g)

T (r, f )
� exp[p](rμp( f )−2ε)

exp[p−1](rρp( f )+ε)
.

So,

lim
r→∞

log[ n−1
2 (p+q)−1] T (r, fn,g)

T (r, f )
= ∞.

Case (ii). Suppose n is even. Then from (4.8) and (4.1) for sufficiently large r
and chosen ε [0 < 3ε < μq(g)−ρp( f )], we have

log[( n
2−1)p+ n

2 q] T (r, fn,g)
T (r, f )

� exp[p−1](rμq(g)−2ε)
exp[p−1](rρp( f )+ε)

and the result follows. �
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