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LEGENDRE–TYPE RELATIONS FOR

GENERALIZED COMPLETE ELLIPTIC INTEGRALS
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Dedicated to Professor Shigeru Sakaguchi
for the occasion of his 60th birthday

Abstract. Legendre’s relation for the complete elliptic integrals of the first and second kinds is
generalized. The proof depends on an application of the generalized trigonometric functions and
is alternative to the proof for Elliott’s identity.

1. Introduction

Let k ∈ [0,1) . The complete elliptic integrals of the first kind

K(k) =
∫ 1

0

dt√
(1− t2)(1− k2t2)

and of the second kind

E(k) =
∫ 1

0

√
1− k2t2

1− t2
dt

play important roles in classical analysis (see for instance [11]).
In this paper, we consider generalizations of K(k) and E(k) as

Kp,q,r(k) :=
∫ 1

0

dt

(1− tq)1/p(1− kqtq)1/r

and

Ep,q,r(k) :=
∫ 1

0

(1− kqtq)1/r

(1− tq)1/p
dt,

where p ∈ P
∗ := (−∞,0)∪ (1,∞] and q, r ∈ (1,∞) . In case p = q = r = 2, Kp,q,r(k)

and Ep,q,r(k) are reduced to the classical K(k) and E(k) , respectively. For p = ∞ we
regard Kp,q,r and Ep,q,r as

K∞,q,r(k) :=
∫ 1

0

dt

(1− kqtq)1/r
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and

E∞,q,r(k) :=
∫ 1

0
(1− kqtq)1/r dt.

Let s∗ be the number such that 1/s+ 1/s∗ = 1 for s . Under the convention that
1/∞ = 0 and 1/0 = ∞ , we should note that s ∈ P

∗ if and only if s∗ ∈ (0,∞) , particu-
larly, ∞∗ = 1.

There is a lot of literature about the generalized complete elliptic integrals. Kp,q,p

is introduced in [12] with a generalization of the Jacobian elliptic function with a pe-
riod of 4Kp,q,p to study a bifurcation problem of a bistable reaction-diffusion equation
involving p -Laplacian. Relationship between Kp,q,p and Ep,q,p has been observed in
[3, 16]. Regarding Kp,q,p∗ , another generalization of Jacobian elliptic function with a
period of Kp,q,p∗ is given and the basis properties for the family of these functions are
shown in [13]. Moreover, Kp,q,p∗ is also applied to a problem on Bhatia-Li’s mean and
a curious relation between Kp,q,p∗ and Ep,q,p is given in [9].

It is well known that K(k) and E(k) satisfy the famous Legendre’s relation (see,
for example, [2, 4, 6]):

E(k)K(k′)+K(k)E(k′)−K(k)K(k′) =
π
2

, (1)

where k′ =
√

1− k2 . Our purpose in the present paper is to generalize Legendre’s
relation (1) to the generalized complete elliptic integrals above.

To state the results, we will give some notations. For p ∈ P
∗ and q ∈ (1,∞) , let

πp,q := 2
∫ 1

0

dt

(1− tq)1/p
=

2
q
B

(
1
q
,

1
p∗

)
,

where B denotes the beta function. In particular, π∞,q = 2 for any q ∈ (1,∞) . We
write Kp,q := Kp,q,q∗ , Ep,q := Ep,q,q for p ∈ P

∗ and q ∈ (1,∞) ; Kp := Kp,p,p∗, Ep :=
Ep,p,p, πp := πp,p for p ∈ (1,∞) .

THEOREM 1. Let p ∈ P
∗, q, r ∈ (1,∞) and k ∈ (0,1) . Then

Ep,q,r(k)Kp,r,q∗(k′) + Kp,q,r∗(k)Ep,r,q(k′) − Kp,q,r∗(k)Kp,r,q∗(k′) =
πp,qπs,r

4
, (2)

where k′ := (1− kq)1/r and 1/s = 1/p−1/q.

COROLLARY 1. (Case q = r ) Let p ∈ P
∗, q ∈ (1,∞) and k ∈ (0,1) . Then

Ep,q(k)Kp,q(k′)+Kp,q(k)Ep,q(k′)−Kp,q(k)Kp,q(k′) =
πp,qπs,q

4
, (3)

where k′ := (1− kq)1/q and 1/s = 1/p−1/q.

COROLLARY 2. ([14], Case p = q = r ) Let p ∈ (1,∞) and k ∈ (0,1) . Then

Ep(k)Kp(k′)+Kp(k)Ep(k′)−Kp(k)Kp(k′) =
πp

2
, (4)

where k′ := (1− kp)1/p .
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REMARK 1. Using (4), the author establishes computation formulas of πp for
p = 3 in [14]; for p = 4 in [15].

In fact, (2) is equivalent to Elliott’s identity (5) below. The advantage of our re-
sult lies in the facts that it is understandable without acknowledge of hypergeometric
functions and that its proof gives an alternative proof for Elliott’s identity with straight-
forward calculations.

2. Proof of Theorem 1

The following property immediately follows from the definitions of Kp,q,r and
Ep,q,r .

PROPOSITION 1. Let p∈P
∗, q, r∈ (1,∞) . Then, Kp,q,r(k) is increasing on [0,1)

and

Kp,q,r(0) =
πp,q

2
,

lim
k→1−0

Kp,q,r(k) =

{
∞ if 1/p+1/r � 1,

πu,q/2 (1/u = 1/p+1/r) if 1/p+1/r < 1;

and Ep,q,r(k) is decreasing on [0,1] and

Ep,q,r(0) =
πp,q

2
, Ep,q,r(1) =

πv,q

2
(1/v = 1/p−1/r).

For p ∈ P
∗ and q ∈ (1,∞) , the generalized trigonometric function sinp,q x is the

inverse function of

sin−1
p,q x :=

⎧⎨
⎩
∫ x

0

dt

(1− tq)1/p
if p �= ∞,

x if p = ∞.

Clearly, sinp,q x is increasing function from [0,πp,q/2] onto [0,1] .
For p = q = 2, sinp,q θ and πp,q = 2sin−1

p,q 1 are identical to the classical sinθ
and π , respectively. Moreover, sinp,q θ and πp,q play important roles to express the
solutions (λ ,u) of inhomogeneous eigenvalue problem of p -Laplacian −(|u′|p−2u′)′ =
λ |u|q−2u, p, q ∈ (1,∞) , with a boundary condition (see [5, 10, 12] and the references
given there).

For p �= ∞ and x ∈ (0,πp,q/2) , we also define cosp,q x := (sinp,q x)′ . It is easy to
check that for x ∈ (0,πp,q/2) ,

cosp
p,q x+ sinq

p,q x = 1, (cosp,q x)′ = − q
p

sinq−1
p,q xcos2−p

p,q x.

Now, we apply the generalized trigonometric function to the generalized complete
elliptic integrals. For p∈ P

∗ and q, r ∈ (1,∞) , using sinp,q θ and πp,q , we can express
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Kp,q,r(k) and Ep,q,r(k) as follows.

Kp,q,r(k) =
∫ πp,q/2

0

dθ
(1− kq sinq

p,q θ )1/r
,

Ep,q,r(k) =
∫ πp,q/2

0
(1− kq sinq

p,q θ )1/r dθ .

Then, we see that the functions Kp,q,r∗(k) and Ep,q,r(k) satisfy a system of linear
differential equations.

PROPOSITION 2. Let p ∈ P
∗, q, r ∈ (1,∞) . Then,

dEp,q,r

dk
=

q(Ep,q,r −Kp,q,r∗)
rk

,

dKp,q,r∗

dk
=

aEp,q,r− (a− kq)Kp,q,r∗

k(1− kq)
,

where a := 1+q/r−q/p.

Proof. We consider the case p �= ∞ . Differentiating Ep,q,r(k) we have

dEp,q,r

dk
=

q
r

∫ πp,q/2

0

−kq−1 sinq
p,q θ

(1− kq sinq
p,q θ )1/r∗ dθ =

q
rk

(Ep,q,r −Kp,q,r∗).

Next, for Kp,q,r∗(k)

dKp,q,r∗

dk
=

q
r∗

∫ πp,q/2

0

kq−1 sinq
p,q θ

(1− kq sinq
p,q θ )1+1/r∗ dθ .

Here we see that

d
dθ

(
−cosp/r∗

p,q θ
(1− kq sinq

p,q θ )1/r∗

)
=

q(1− kq)sinq−1
p,q θ cos1−p/r

p,q θ
r∗(1− kq sinq

p,q θ )1+1/r∗ ,

lim
θ→πp,q/2

cosp−1
p,q θ = lim

θ→πp,q/2
(1− sinq

p,q θ )1/p∗ = 0;
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so that we use integration by parts as

dKp,q,r∗

dk
=

kq−1

1− kq

∫ πp,q/2

0

d
dθ

(
−cosp/r∗

p,q θ
(1− kq sinq

p,q θ )1/r∗

)
sinp,q θ cosp/r−1

p,q θ dθ

=
kq−1

1− kq

[
−sinp,q θ cosp−1

p,q θ
(1− kq sinq

p,q θ )1/r∗

]πp,q/2

0

+
kq−1

1− kq

∫ πp,q/2

0

cosp/r∗
p,q θ

(1− kq sinq
p,q θ )1/r∗

(
cosp/r

p,q θ − (q/r−q/p)sinq
p,q θ

cosp/r∗
p,q θ

)
dθ

=
kq−1

1− kq

∫ πp,q/2

0

cosp
p,q θ − (q/r−q/p)sinq

p,q θ
(1− kq sinq

p,q θ )1/r∗ dθ

=
kq−1

1− kq

∫ πp,q/2

0

(1+q/r−q/p)(1− kqsinq
p,q θ )− (1+q/r−q/p− kq)

kq(1− kq sinq
p,q θ )1/r∗ dθ

=
(1+q/r−q/p)Ep,q,r− (1+q/r−q/p− kq)Kp,q,r∗

k(1− kq)
.

The case p = ∞ is proved similarly. Indeed,

dE∞,q,r

dk
=

q
r

∫ 1

0

−kq−1θ q

(1− kqθ q)1/r∗ dθ =
q
rk

(E∞,q,r −K∞,q,r∗)

and

dK∞,q,r∗

dk
=

q
r∗

∫ 1

0

kq−1θ q

(1− kqθ q)1+1/r∗ dθ

=
kq−1

1− kq

∫ 1

0

d
dθ

(
−
(

1−θ q

1− kqθ q

)1/r∗
)

θ (1−θ q)1/r dθ

=
kq−1

1− kq

[ −θ (1−θ q)
(1− kqθ q)1/r∗

]1

0

+
kq−1

1− kq

∫ 1

0

(
1−θ q

1− kqθ q

)1/r∗(
(1−θ q)1/r − (q/r)θ q

(1−θ q)1/r∗

)
dθ

=
kq−1

1− kq

∫ 1

0

1−θ q− (q/r)θ q

(1− kqθ q)1/r∗ dθ

=
kq−1

1− kq

∫ 1

0

(1+q/r)(1− kqθ q)− (1+q/r− kq)
kq(1− kqθ q)1/r∗ dθ

=
(1+q/r)E∞,q,r− (1+q/r− kq)K∞,q,r∗

k(1− kq)
.

This completes the proof.
Proposition 2 now yields Theorem 1.
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Proof. [Proof of Theorem 1] Let k′ := (1 − kq)1/r, E ′
p,r,q(k) := Ep,r,q(k′) and

K′
p,r,q∗(k) := Kp,r,q∗(k′) . As dk′/dk = −(q/r)kq−1/(k′)r−1 , Proposition 2 gives

dEp,q,r

dk
=

q(Ep,q,r−Kp,q,r∗)
rk

,

dKp,q,r∗

dk
=

aEp,q,r− (a− kq)Kp,q,r∗

k(k′)r ,

dE ′
p,r,q

dk
=

kq−1(−E ′
p,r,q +K′

p,r,q∗)
(k′)r ,

dK′
p,r,q∗

dk
=

q(−bE ′
p,r,q +(b− (k′)r)K′

p,r,q∗)

rk(k′)r ,

where a := 1+q/r−q/p and b := 1+ r/q− r/p .

We denote the left-hand side of (2) by L(k) . A direct computation shows that

d
dk

L(k)

=
q(Ep,q,r−Kp,q,r∗)

rk
·K′

p,r,q∗ +Ep,q,r ·
q(−bE ′

p,r,q +(b− (k′)r)K′
p,r,q∗)

rk(k′)r

+
aEp,q,r− (a− kq)Kp,q,r∗

k(k′)r ·E ′
p,r,q +Kp,q,r∗ ·

kq−1(−E ′
p,r,q +K′

p,r,q∗)
(k′)r

− aEp,q,r− (a− kq)Kp,q,r∗

k(k′)r ·K′
p,r,q∗ −Kp,q,r∗ ·

q(−bE ′
p,r,q +(b− (k′)r)K′

p,r,q∗)
rk(k′)r

=
(

q
rk

+
q(b− (k′)r)

rk(k′)r − a
k(k′)r

)
Ep,q,rK

′
p,r,q∗

+
(
− q

rk
+

kq−1

(k′)r +
a− kq

k(k′)r −
q(b− (k′)r)

rk(k′)r

)
Kp,q,r∗K

′
p,r,q∗

+
(
− qb

rk(k′)r +
a

k(k′)r

)
Ep,q,rE

′
p,r,q

+
(
−a− kq

k(k′)r −
kq−1

(k′)r +
qb

rk(k′)r

)
Kp,q,r∗E

′
p,r,q

=
qb− ra
rk(k′)r (Ep,q,rK

′
p,r,q∗ −Kp,q,r∗K

′
p,r,q∗ −Ep,q,rE

′
p,r,q +Kp,q,r∗E

′
p,r,q).

Since qb− ra = 0, we see that dL/dk = 0. Thus L(k) is a constant C .
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We will evaluate C as follows. Since

|(Kp,q,r∗ −Ep,q,r)K′
p,r,q∗|

=
∫ πp,q/2

0

(
1

(1− kq sinq
p,q θ )1/r∗ − (1− kq sinq

p,q θ )1/r

)
dθ

×
∫ πp,r/2

0

dθ
(1− (k′)r sinr

p,r θ )1/q∗

=
∫ πp,q/2

0

kq sinq
p,q θ

(1− kq sinq
p,q θ )1/r∗ dθ ·

∫ πp,r/2

0

dθ
(cosp

p,r θ + kq sinr
p,r θ )1/q∗

� kqKp,q,r∗(k) · 1
kq−1

πp,r

2

=
πp,r

2
kKp,q,r∗(k),

we obtain limk→+0(Kp,q,r∗ −Ep,q,r)K′
p,r,q∗ = 0. Therefore, from Proposition 1

C = lim
k→+0

Kp,q,r∗E
′
p,r,q = Kp,q,r∗(0)Ep,r,q(1) =

πp,qπs,r

4
,

where 1/s = 1/p−1/q . Thus, we conclude the assertion.
Finally, we will give a remark for Theorem 1. From the series expansion and the

termwise integration, it is possible to express the generalized complete elliptic integrals
by Gaussian hypergeometric functions

Kp,q,r(k) =
πp,q

2
F

(
1
q
,
1
r
;

1
p∗

+
1
q
;kq
)

,

Ep,q,r(k) =
πp,q

2
F

(
1
q
,−1

r
;

1
p∗

+
1
q
;kq
)

.

By these expressions and letting 1/p = 1/2− b, 1/q = 1/2+ a, 1/r = 1/2− c and
kq = x in (2), we obtain Elliott’s identity (see Elliott [7]; see also [1], [2, Theorem
3.2.8] and [8, (13) p. 85]):

F

(
1/2+a,−1/2− c

a+b+1
;x

)
F

(
1/2−a,1/2+ c

b+ c+1
;1− x

)

+F

(
1/2+a,1/2− c

a+b+1
;x

)
F

(−1/2−a,1/2+ c
b+ c+1

;1− x

)

−F

(
1/2+a,1/2− c

a+b+1
;x

)
F

(
1/2−a,1/2+ c

b+ c+1
;1− x

)

=
Γ(a+b+1)Γ(b+ c+1)

Γ(a+b+ c+3/2)Γ(b+1/2)
(5)

for |a|, |c| < 1/2 and b ∈ (−1/2,∞) , where Γ denotes the gamma function. Also,
letting 1/p = 2− c−a and 1/q = 1−a in (3) of Corollary 1, we have the identity of
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[1, Corollary 3.13 (5)] for a∈ (0,1) and c∈ (1−a,∞) . A series of Vuorinen’s works on
Elliott’s identity with his coauthors starting from [1] deals with the concavity/convexity
properties of certain related functions to the left-hand side of (5).
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[8] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER AND F. G.TRICOMI, Higher transcendental func-

tions. Vol. I, Based on notes left by Harry Bateman. With a preface by Mina Rees. With a foreword by
E. C. Watson. Reprint of the 1953 original. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla.,
1981.

[9] T. KAMIYA AND S. TAKEUCHI, Complete (p,q) -elliptic integrals with application to a family of
means, preprint, arXiv:1507.01383.

[10] J. LANG AND D. E. EDMUNDS, Eigenvalues, embeddings and generalised trigonometric functions,
Lecture Notes in Mathematics, 2016. Springer, Heidelberg, 2011.

[11] F. W. J. OLVER, D. W. LOZIER, R. F. BOISVERT, AND C. W. CLARK (Editors), NIST Handbook
of Mathematical Functions, [With 1 CD-ROM (Windows, Macintosh and UNIX)], US Department
of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010; Cambridge
University Press, Cambridge, London and New York, 2010.

[12] S. TAKEUCHI, Generalized Jacobian elliptic functions and their application to bifurcation problems
associated with p-Laplacian, J. Math. Anal. Appl. 385, 1 (2012), 24–35.

[13] S. TAKEUCHI, The basis property of generalized Jacobian elliptic functions, Commun. Pure Appl.
Anal. 13, 6 (2014), 2675–2692.

[14] S. TAKEUCHI, A new form of the generalized complete elliptic integrals, Kodai Math. J. 39, 1 (2016),
202–226.

[15] S. TAKEUCHI, Complete p-elliptic integrals and a computation formula of πp for p = 4 , preprint,
arXiv:1503.02394.

[16] L. YIN AND L.-G. HUANG, Inequalities for the generalized trigonometric and hyperbolic functions
with two parameters, J. Nonlinear Sci. Appl. 8, 4 (2015), 315–323.

(Received June 24, 2016) Shingo Takeuchi, Department of Mathematical Sciences, Shibaura
Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi,

Saitama 337-8570, Japan
e-mail: shingo@shibaura-it.ac.jp

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


