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BOUNDARY ASYMPTOTICS OF THE RELATIVE BERGMAN

KERNEL METRIC FOR ELLIPTIC CURVES III: 1 & ∞

ROBERT XIN DONG

Abstract. Explicit asymptotic formulas of the relative Bergman kernel metric for a Legendre
family of elliptic curves near the moduli space boundary points 1 and ∞ are obtained respec-
tively. These behaviors also characterize the Poincaré hyperbolic metric and its Kähler potential
on C\{0,1} .

1. Introduction

The Bergman kernel is a canonical (1,1)-form on a complex manifold, and its
plurisubharmonic variations were initially studied by Maitani & Yamaguchi [12] and
later generalized by Berndtsson [2]. Results on Stein manifolds and complex projec-
tive algebraic manifolds (see [3], [15], [5]) indicate semi-positivity properties of rela-
tive canonical bundles, and recently turn out to have close relations with the Ohsawa-
Takegoshi L2 extension theorems (cf. [10], [7], [6], [4], [13]). For simplicity, let us
consider the one-dimensional case, namely a family of Riemann surfaces parametrized
by a complex variable λ , and the Bergman kernel on each fiber Xλ can thus be written
as Bλ = kλ (z)dz∧d z in some local coordinate z . Then, due to the variation results of
the Bergman kernel, the inequality

Lλ ,z :=
√−1∂λ ∂ λ logkλ (z) � 0

holds whenever the fiber Xλ is smooth.
Assuming that some Xλ0

is singular, then a natural question is to characterize
the asymptotic behaviors of Lλ ,z near λ0 . The so-called Legendre family of elliptic
curves Xλ := {y2 = x(x−1)(x−λ )} gives a general description of genus one compact
Riemann surfaces whose moduli space is C \ {0,1}, and it degenerates to a singular
algebraic curve with a node when λ tends to 0,1 or ∞ . In [8] the author observed
that Lλ ,z blows up and has hyperbolic growth as λ → 0, in comparison to the Poincaré
hyperbolic metric ωD∗ on D∗ , the unit disk removing the origin. However, an explicit
four-term asymptotic expansion formula as λ → 0 showed that Lλ ,z and ωD∗ are not
the same [9].

The aim of this paper is to investigate Lλ ,z for the above Legendre family of elliptic
curves near the other two moduli space boundary points 1 and ∞ respectively. Explicit
asymptotic formulas of the relative Bergman kernel metric are as follows.
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THEOREM 1. Let Bλ be the Bergman kernel of the elliptic curve Xλ , λ ∈ C \
{0,1} . In a local coordinate z, write Bλ = kλ (z)dz∧d z . Then, it follows that

(i) as λ → 1 ,
logkλ (z) ∼ log(− log |λ −1|),

(ii) and as λ → ∞ ,
logkλ (z) ∼ log(log |λ |).

Here “∼” means that the ratio of both sides tends to “1”, as λ tends to each
limit point. For example, as λ → 1, Xλ degenerates to a singular curve X1 := {y2 =
x(x−1)2} . In particular, both the right hand sides of (i) and (ii) tend to +∞ . Rather than
taking immediate second-order partial derivatives, we make more careful computations
on the curvature forms and derive the following theorem.

THEOREM 2. Under the same assumptions as in Theorem 1, it follows that

(i) as λ → 1 ,

Lλ ,z ∼
√−1

4|λ −1|2(log |λ −1|)2 dλ ∧dλ ,

(ii) and as λ → ∞ ,

Lλ ,z ∼
√−1

4|λ |2(log |λ |)2 dλ ∧dλ .

Notice that the right hand sides of (i) and (ii) tend to +∞ and 0+ , respectively.
And this is different from the potentials in Theorem 1 which have the same limit. The
proofs of the above Theorems 1 and 2 are mainly due to the elliptic modular lambda
function’s special properties (in particular its behavior under the composition with in-
verse or translation mappings), which are also used in [8]. On the other hand, same
asymptotic behaviors as in Theorems 1 and 2 also characterize the Poincaré hyperbolic
metric and its Kähler potential on C\{0,1} , since this Lλ ,z indeed has constant Gaus-
sian curvature “-4” (see [9]). Therefore, we get the following corollary.

COROLLARY 1. Let ω0,1 denote the Poincaré hyperbolic metric on λ ∈C\{0,1}
with a Kähler potential p(λ ) :=− log(Imτ(λ )) , where τ(·) is the inverse of the elliptic
modular lambda function. Then, it follows that

(i) as λ → 1 ,
p(λ ) ∼ log(− log |λ −1|),

ω0,1 ∼
√−1

4|λ −1|2(log |λ −1|)2 dλ ⊗dλ ,

(ii) and as λ → ∞ ,
p(λ ) ∼ log(log |λ |),

ω0,1 ∼
√−1

4|λ |2(log |λ |)2 dλ ⊗dλ .
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We remark that our result agrees in the limiting case λ → 1 inside D∗ with the
fact that ω0,1 � ωD∗ (see e.g. [14, 11]).

2. Preliminaries

We will first recall the definition and basic properties of the elliptic modular lambda
function. From [1, p.264], one knows that for any z∈Tτ := C/

(
Z+τZ

)
, the Weierstrass-

℘ function with respect to the lattice (1,τ) (τ ∈ C , Imτ > 0) is defined to be

℘(z) =
1
z2 + ∑

ω 	=0

(
1

(z−ω)2 −
1

ω2

)
,

where the sum ranges over all ω = n1 + n2τ except 0, and n1,n2 ∈ Z . Denote e1 :=
℘( 1

2) , e2 :=℘( τ
2) and e3 :=℘( 1+τ

2 ) . Then the elliptic modular lambda function

λ (τ) :=
e3 − e2

e1 − e2

can identify a complex torus Tτ = C/
(
Z + τZ

)
with an elliptic curve Xλ := {y2 =

x(x− 1)(x− λ )}, since λ (τ) is conformal. In the local coordinate z , the Bergman
kernel Bτ of the canonical bundle on Xτ can be simply written as 1

Im τ dz∧d z , which
means that kλ (z) = 1

Im τ . Taking derivatives, one gets that

lλ (τ),z :=
∂ 2(logkλ (τ)(z))

∂λ ∂λ
=

∂ 2(− logIm τ)

∂λ ∂λ
=

|τ ′(λ )|2
4(Imτ)2 .

Since τ := λ−1 is holomorphic then ∂τ
∂λ

= 0, and by the inverse function theorem

τ ′(b) = (λ−1)′(b) = 1
λ ′(a) for any b = λ (a) (here λ ′ being the derivative of λ with

respect to τ ). Therefore, we have

lλ (τ),z =
1

4(Imτ · |λ ′(τ)|)2 > 0. (1)

Notice that the inequality above holds due to the fact that the derivative of the elliptic
modular lambda function is nowhere vanishing in the domain of definition. Thus Lλ ,z =√−1 lλ ,z dλ ∧dλ is a true metric on the moduli space, i.e. Lλ ,z > 0, ∀λ ∈ C\ {0,1}.
Moreover, since

−4
∂ 2

∂λ ∂λ
log

( |τ ′|
Imτ

)
= − |τ ′|2

(Imτ)2 ,

it follows that Lλ ,z is the Poincaré hyperbolic metric of C\{0,1} with constant Gaus-
sian curvature “-4”.

Next, we introduce two more parameters α := − 1
τ and β := τ −1, both of which

have positive imaginary parts as long as Imτ > 0. As τ → 0 or equivalently as λ (τ)→
1, it follows that Imα → +∞ and λ (α) → 0. By the definition of α , it has

Imτ = Im

( −1

Reα +
√−1Imα

)
= Im

(√−1Imα −Reα
|α|2

)
= Imα · |τ|2. (2)
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Similarly, as τ → 1 or equivalently as λ (τ) → ∞ , it follows that β → 0. Since Imβ =
Imτ , we know that Imβ → +∞ implies λ (τ) → 0.

3. Proof of Theorem 1

In this section, combining our results in [8] and introducing two new parameters
α := − 1

τ and β := τ −1, we will prove new results. We shall use the following well-
known properties of the elliptic modular lambda function (see [1, p.279–280]):

(A) As Imα → +∞ , it holds that

λ (α) ∼ 16eπ
√−1α → 0,

which means that logλ (α) ∼ π
√−1α .

(B) λ (− 1
τ ) = 1−λ (τ) .

(C) λ (β +1) = λ (β )
λ (β )−1 = 1+ 1

λ (β )−1 ( =⇒ λ (β )−1 = 1
λ (β+1)−1 ).

Proof. [Proof of Theorem 1] Claim (i). As τ → 0 (⇐⇒ Imα → +∞), since
logkλ (τ)(z) = − logIm τ , we know by (2) that logkλ (τ)(z) ∼ − logIm α + log |α|2.
Theorem 1.3 (i) in [8] says that as Imα → +∞ , one has

− logIm α ∼− log(− log |λ (α)|),
which yields as τ → 0 that

logkλ (τ)(z) ∼− log(− log |λ (α)|)+2log |α|.
On the other hand by Property (A) we know that

π |α| ∼ | logλ (α)| = | log |λ (α)|+√−1arg(α)|
∼ | log |λ (α)|| = − log |λ (α)|,

as Imα → +∞ (⇐⇒ λ (α) → 0), which gives that log |α| ∼ log(− log |λ (α)|).
Therefore, by Property (B) for the Bergman kernel we have proved that

logkλ (τ)(z) ∼− log(− log |λ (α)|)+2log(− log |λ (α)|)
= log(− log |λ (α)|) = log(− log |λ (τ)−1|)→ +∞,

as λ (α) → 0 (⇐⇒ λ (τ) → 1).

Claim (ii). It follows from Claim (i) that as β → 0(⇐⇒ τ → 1),

− logIm β ∼ log(− log |λ (β )−1|),
which implies by Property (C) that

logkλ (τ)(z) = − logIm τ = − logIm β
∼ log(− log |λ (β )−1|) = log(log |λ (β +1)−1|)
= log(log |λ (τ)−1|) ∼ log(log |λ (τ)|) → +∞,

as λ (τ) → ∞. �
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4. Proof of Theorem 2

Proof. Claim (i). From Property (B), one knows that λ ′(α) · ∂α
∂τ =−λ ′(τ) , which

implies

|λ ′(τ)| = |λ ′(α)|
|τ|2 .

By equalities (1) and (2), as Imα → +∞ , it holds that

∂ 2(logkλ (τ)(z))

∂λ ∂λ
=

1
4(Imτ · |λ ′(τ)|)2 =

1

4(Imα · |τ|2 · |λ ′(α)|
|τ|2 )2

=
1

4(Imα · |λ ′(α)|)2 =
∂ 2(logkλ (α)(z))

∂λ ∂λ
.

Theorem 1.3 (ii) in [8] says that

∂ 2(logkλ (α)(z))

∂λ ∂λ
∼ 1

4|λ (α)|2(log |λ (α)|)2 ,

as Imα → +∞(⇐⇒ τ → 0), which yields that

∂ 2(logkλ (τ)(z))

∂λ ∂λ
∼ 1

4|λ (τ)−1|2(log |λ (τ)−1|)2 → +∞,

as λ (τ) → 1.

Claim (ii). By Property (B) we get that

λ ′(β ) · ∂β
∂τ

· (λ (τ)−1)+ (λ (β )−1) ·λ ′(τ) = 0.

This means λ ′(τ) = λ ′(β )·(λ (τ)−1)
−λ (β )+1 and therefore

|λ ′(τ)| = |λ ′(β )| · |(λ (τ)−1)|
|λ (β )−1| .

By (1) again, it follows that

∂ 2(logkλ (τ)(z))

∂λ ∂λ
=

1

4(Imτ · |λ ′(τ)|)2

=
|λ (β )−1|2

4(Imβ · |λ ′(β )| · |λ (τ)−1|)2 =
∂ 2(logkλ (β )(z))

∂λ ∂λ
· |λ (β )−1|2
|λ (τ)−1|2 .

By Claim (i), as λ (β ) → 1 it holds that

∂ 2(logkλ (β )(z))

∂λ ∂λ
∼ 1

4(|λ (β )−1| · log|λ (β )−1|)2 ,
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which means that

∂ 2(logkλ (τ)(z))

∂λ ∂λ
∼ 1

4(|λ (β )−1| · log|λ (β )−1|)2 ·
|λ (β )−1|2
|λ (τ)−1|2

=
1

4(log |λ (β )−1|)2 · |λ (τ)−1|2

=
1

4(− log |λ (τ)−1|)2 · |λ (τ)−1|2

∼ 1
4(log |λ (τ)|)2 · |λ (τ)|2 → 0+,

as λ (τ) → ∞ . The proof is thus finished. �

At last, we summarize this paper by making the following table indicating how the
relative Bergman kernel and its curvature form change as the parameter varies. Here τ
is the inverse function of the elliptic modular lambda function. As we can see, all the
three cases have different asymptotic behaviors.

As the parameter As the parameter relative Bergman kernel the curvature form

τ tends to λ tends to logkλ (z)
√−1∂λ ∂ λ logkλ (z)

∞ 0 →−∞ → +∞
0 1 → +∞ → +∞
1 ∞ → +∞ → 0+
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