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GENERALIZED STIELTJES CONSTANTS AND INTEGRALS INVOLVING

THE LOG–LOG FUNCTION: KUMMER’S THEOREM IN ACTION

OMRAN KOUBA

Abstract. In this note, we recall Kummer’s Fourier series expansion of the 1-periodic function
that coincides with the logarithm of the Gamma function on the unit interval (0,1) , and we use
it to find closed forms for some numerical series related to the generalized Stieltjes constants,
and some integrals involving the function x �→ ln ln(1/x) .

1. Introduction and notation

The aim of this paper is to present an alternative proof of the reflection principle
of the first order generalized Stieltjes constants, and to give an alternative approach to
the evaluation of some integrals involving the function x �→ ln ln(1/x) . The basic tool
for this investigation is a result of Kummer recalled below (Theorem 1).

The first order generalized Stieltjes constant γ1(a) is defined for a ∈ (0,1) by

γ1(a) = lim
n→∞

(
n

∑
k=0

ln(a+ k)
a+ k

− 1
2

ln2(n+a)

)
.

From this, it is easy to show that

γ(a)− γ(1−a) = lim
n→∞

(
n

∑
k=−n

ln |a+ k|
a+ k

)
def= ∑′

n∈Z

ln |a+n|
a+n

,

where the primed sum denotes the “principal value” as shown above. For integers p
and q with 0 < p < q the difference γ(p/q)− γ(1− p/q) can be expressed as follows

γ(p/q)− γ(1− p/q)=−π ln(2πqeγ)cot

(
pπ
q

)
+2π

q−1

∑
j=1

sin

(
2π jp

q

)
lnΓ

(
j
q

)
.

The formula is attributed to Almkvist and Meurman who obtained it by calculating the
derivative of the functional equation for the Hurwitz zeta function ζ (s,v) with respect
to s at rational v , see [2]. However, it was recently discovered that an equivalent form
of this formulawas already obtained by Carl Malmsten in 1846 (see [5]). An elementary
proof of this formula will be presented in Proposition 2.

In a recent series of articles ([3], [9], [10], [11], [14]), the authors proved some
formulas from the Table of integrals, Series, and Products, of Gradshteyn and Ryzhik
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[7]. Further, the monographs [12, 13] are devoted to providing proofs for the formulas
in [7]. In fact, we are particularly interested in integrals involving the function x �→
ln ln(1/x) . Indeed, entries 4.325 of [7] contain the following evaluations:∫ 1

0

ln(ln(1/x))
1+ x2 =

π
2

ln

√
2πΓ(3/4)
Γ(1/4)∫ 1

0

ln(ln(1/x))
1+ x+ x2 =

π√
3

ln
3
√

2πΓ(2/3)
Γ(1/3)∫ 1

0

ln(ln(1/x))
1+2xcost + x2 =

π
2sin t

ln
(2π)t/π Γ

( 1
2 + t

2π
)

Γ
(

1
2 − t

2π
)

These integrals can be traced back to [6]. The first of them was the object of a
detailed investigation in [14], where the author says that his approach can be adapted
to prove also the second one. A general approach that yields the first two integrals,
and much more evaluations, can also be found in [2]. This line of investigation was
completed by adapting the methods of [14] to obtain general results that include all the
above mentioned integrals in [11].

Our aim is to present an alternative approach to the evaluation of these integrals.
Our starting point will be Kummer’s Fourier expansion of LogΓ , (Theorem 1), where
Γ is the well-known Eulerian gamma function. This result is attributed to Kummer in
(1847), a more accessible reference is [4, Section 1.7]:

THEOREM 1. (Kummer, [8]) For 0 < x < 1 ,

ln
Γ(x)√

2π
=− ln(2sin(πx))

2
+(γ + ln(2π))

(
1
2
− x

)
+

1
π

∞

∑
k=1

lnk
k

sin(2πkx),

where γ is the Euler-Mascheroni constant.

2. The reflection formula for the first order generalized Stieltjes constants

As we explained in the introduction, this formula relates the first order generalized
Stieltjes constant γ1(a) to its reflected value γ1(1− a) for rational a . The presented
proof is different from that of Almkvist and Meurman, and has the advantage of being
elementary in the sense that it does not make use of the functional equation of the
Hurwitz zeta function.

PROPOSITION 2. For positive integers p and q with p < q, we have

∑′

n∈Z

ln
∣∣∣n+ p

q

∣∣∣
n+ p

q

=−π ln(2πqeγ)cot

(
pπ
q

)
+2π

q−1

∑
j=1

sin

(
2π jp

q

)
lnΓ

(
j
q

)
.

where the primed sum denotes the “principal value”, defined as follows:

∑′

n∈Z

an = lim
n→∞

(
n

∑
k=−n

ak

)
.
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Proof. The statement of Theorem 1 is written as

∞

∑
k=1

lnk
k

sin(2πkx) =−π
2

lnπ +
π
2

lnsin(πx)+ π ln(2πeγ)
(

x− 1
2

)
+ π lnΓ(x). (1)

Now, consider a positive integer q with q � 2. For j ∈ {1,2, . . . ,q−1} we have

∞

∑
k=1

lnk
k

sin

(
2πk j

q

)
=−π

2
lnπ +

π
2

lnsin

(
π j
q

)

+ π ln(2πeγ)
(

j
q
− 1

2

)
+ π lnΓ

(
j
q

)
. (2)

Multiply both sides of (2) by sin
(

2π jp
q

)
, where p is some integer from {1, . . . ,q−1} ,

and add the resulting equalities for j = 1, . . . ,q−1, to obtain

∞

∑
k=1

lnk
k

Ap,q(k) =−π lnπ
2

Bp,q +
π
2
Cp,q

+ π ln(2πeγ)Dp,q + π
q−1

∑
j=1

sin

(
2π jp

q

)
lnΓ

(
j
q

)
, (3)

where

Ap,q(k) =
q−1

∑
j=1

sin

(
2π jp

q

)
sin

(
2π jk

q

)

Bp,q =
q−1

∑
j=1

sin

(
2π jp

q

)

Cp,q =
q−1

∑
j=1

sin

(
2π jp

q

)
lnsin

(
π j
q

)

Dp,q =
q−1

∑
j=1

(
j
q
− 1

2

)
sin

(
2π jp

q

)
.

These sums are now simplified. Let ωq = exp
(

2π i
q

)
, and use ∑q−1

j=0 ωn j
q = qχq(n)

where χq(n) = 1 if n≡ 0 mod q and χq(n) = 0 otherwise. The imaginary part of the
identity gives

Bp,q = 0. (4)

Also,

Ap,q(k) =
1
2

q−1

∑
j=1

(
cos

(
2π j(p− k)

q

)
− cos

(
2π j(p+ k)

q

))

=
1
2

ℜ

(
q−1

∑
j=0

ω(p−k) j−
q−1

∑
j=0

ω(p+k) j

)
=

q
2
(χq(p− k)− χq(p+ k)).
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That is

Ap,q(k) =

{
q
2 if k ≡ p mod q,

− q
2 if k ≡−p mod q.

(5)

On the other hand, the change of summation index j← q− j in the formula for Cp,q

shows that

Cp,q =
q−1

∑
j=1

sin

(
2π p− 2π jp

q

)
lnsin

(
π− π j

q

)
=−Cp,q.

Thus,
Cp,q = 0. (6)

Finally, use (4) to obtain

Dp,q =
1
q

q−1

∑
j=1

j sin

(
2π jp

q

)
.

Now for, 0 < θ < π , we have

1+2
q−1

∑
j=1

cos(2 jθ ) =
q−1

∑
j=1−q

e2i jθ =
e2iqθ − e2i(1−q)θ

e2iθ −1

=
sin((2q−1)θ )

sinθ
= sin(2qθ )cotθ − cos(2qθ ).

Taking the derivative with respect to θ and substituting θ = π p/q we get

Dp,q =−1
2

cot

(
pπ
q

)
. (7)

Replacing (4),(5),(6) and (7) in (3) we obtain

∞

∑
k=0

(
ln(qk+ p)
k+ p/q

− ln(qk+q− p)
k+1− p/q

)
=−π ln(2πeγ)cot

(
pπ
q

)

+2π
q−1

∑
j=1

sin

(
2π jp

q

)
lnΓ

(
j
q

)
. (8)

The final step is to use the well-known cotangent partial fraction expansion:

∞

∑
k=0

(
1

k+ p/q
− 1

k+1− p/q

)
= lim

N→∞

N

∑
k=−N

1
k+ p/q

=
q
p
−

N

∑
k=1

2p/q
k2− (p/q)2

=
q
p

+
∞

∑
k=1

2p/q
(p/q)2− k2 = π cot

(
pπ
q

)
. (9)

Thus, subtracting (lnq) times (9) from (8) we obtain the desired conclusion. �
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EXAMPLES. Taking p = 1 and q ∈ {3,4} we obtain

∑′

n∈Z

ln
∣∣n+ 1

3

∣∣
n+ 1

3

=
π

2
√

3
ln

(
3Γ12( 1

3 )
28 π8e2γ

)
.

∑′

n∈Z

ln
∣∣n+ 1

4

∣∣
n+ 1

4

= π ln

(
Γ4( 1

4 )
24π3eγ

)
.

3. The evaluation of some integrals involving the log-log function

In this section we use Theorem 1, to evaluate some difficult integrals.

PROPOSITION 3. For 0 < x < 1 , we have:

∫ 1

0

ln ln(1/u)
u2−2(cos2πx)u+1

du =
π

2sin(2πx)

(
(1−2x) ln(2π)+ ln

(
Γ(1− x)

Γ(x)

))
.

And, taking the limit as x tend to 1/2 , we obtain

∫ 1

0

ln ln(1/u)
(u+1)2 du = ln

√
2π +

Γ′(1/2)
2Γ(1/2)

= ln

√
π
2
− γ

2
.

Proof. Indeed, subtracting the correspondingKummer’s Formulas, for lnΓ(x) and
lnΓ(1− x) we see that, for 0 < x < 1 we have

ln

(
Γ(x)

Γ(1− x)

)
= (γ + ln(2π))(1−2x)+

2
π

∞

∑
k=1

lnk
k

sin(2πkx), (10)

or equivalently,

ln

(
(2π)xΓ(x)

(2π)1−xΓ(1− x)

)
= γ (1−2x)+

2
π

∞

∑
k=1

lnk
k

sin(2πkx). (11)

Now, using the fact that for ℜs > 0 and k � 1 we have Γ(s)
ks =

∫ ∞
0 ts−1e−kt dt , we

conclude that for s > 0, and 0 < x < 1, we have

∞

∑
k=1

e2π ikx

ks =
1

Γ(s)

∞

∑
k=1

(∫ ∞

0
ts−1e−kt e2π ikxdt

)

=
1

Γ(s)

∫ ∞

0

e−t+2π ix

1− e−t+2π ix ts−1 dt.

Restricting our attention to the imaginary parts we get

∞

∑
k=1

sin(2πkx)
ks =

sin(2πx)
Γ(s)

∫ ∞

0

ts−1

et + e−t−2cos(2πx)
dt. (12)
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Now, taking the derivative with respect to s at s = 1 we obtain, for 0 < x < 1, the
following:

∞

∑
k=1

lnk
k

sin(2πkx) =
Γ′(1)
Γ2(1)

∫ ∞

0

sin(2πx)
et + e−t−2cos(2πx)

dt

− sin(2πx)
Γ(1)

∫ ∞

0

ln t
et + e−t−2cos(2πx)

dt. (13)

Taking into account the facts Γ′(1) =−γ , Γ(1) = 1, and∫ ∞

0

sin(2πx)
et + e−t−2cos(2πx)

dt = π
(

1
2
− x

)
, for 0 < x < 1

we conclude that
∞

∑
k=1

lnk
k

sin(2πkx) =− γπ
2

(1−2x)− sin(2πx)
∫ ∞

0

ln t
et + e−t−2cos(2πx)

dt. (14)

The change of variables t = ln(1/u) yields:

2
π

∞

∑
k=1

lnk
k

sin(2πkx)+ γ(1−2x) =−2sin(2πx)
π

∫ 1

0

lnln(1/u)
u2−2(cos2πx)u+1

du. (15)

Finally, combining (11) and (15) we obtain the desired result. Concerning the limit as

x tend to 1/2, we use the well-known fact that Γ′(1/2)
Γ(1/2) = ψ(1/2) =−γ−2ln2, (see [1,

6.3.3]). �
EXAMPLES. Taking x = 1/3, x = 1/4 and x = 1/6 we obtain

∫ 1

0

lnln(1/u)
u2 +u+1

du =
−π
6
√

3
ln

(
33

44π8 Γ12
(

1
3

))
(16)

∫ 1

0

ln ln(1/u)
u2 +1

du =
−π
4

ln

(
1

4π3 Γ4
(

1
4

))
(17)

∫ 1

0

lnln(1/u)
u2−u+1

du =
−π
3
√

3
ln

(
1

(2π)5 Γ6
(

1
6

))
=
−π
3
√

3
ln

(
33

27π8 Γ12
(

1
3

))
. (18)

where we used freely the duplication, and the reflection formulas for the gamma func-

tion [1, 6.1.17 and 6.1.18]. In particular, we used Γ( 1
6 ) =

√
3/π
3√2

Γ2( 1
3 ) that follows

readily from these formulas.
The second degree polynomial in the integrand’s denominator in Proposition 3 has

negative discriminant. In the next proposition the corresponding denominator has real
roots outside the interval [0,1] . This case seems to be new to the best knowledge of the
author.

PROPOSITION 4. Let AΓ : R−→R be the function defined by

AΓ(y) =− ln(2π)
2

y+
sinh(πy)

π

∫ 1

0

ln ln(1/u)
u2 +2cosh(πy)u+1

du.
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Then, for y ∈R we have

Γ
(

1+ iy
2

)
=
√

π
cosh(πy/2)

eiAΓ(y).

Proof. Let us rephrase Proposition 3, by taking x = t+1
2 in order to give more

symmetric aspect to the formula there:

∀t ∈ (−1,1),
∫ 1

0

lnln(1/u)
u2 +2cos(πt)u+1

du =
π

2sin(πt)

(
ln(2π)t + ln

(
Γ( 1+t

2 )
Γ( 1−t

2 )

))
,

or equivalently, for −1 < t < 1, we have

exp

(
− ln(2π)t +

2sin(πt)
π

∫ 1

0

ln ln(1/u)
u2 +2cos(πt)u+1

du

)
=

Γ( 1+t
2 )

Γ( 1−t
2 )

.

Using analytic continuation we deduce that, for −1 < ℜz < 1 we have also

exp

(
− ln(2π)z+

2sin(πz)
π

∫ 1

0

ln ln(1/u)
u2 +2cos(πz)u+1

du

)
=

Γ( 1+z
2 )

Γ( 1−z
2 )

.

In particular, setting z = iy with y ∈ R , we obtain

e2iAΓ(y) =
Γ( 1+iy

2 )

Γ( 1−iy
2 )

.

But, by Euler’s reflection formula [1, 6.1.17] we know that∣∣∣∣Γ
(

1+ iy
2

)∣∣∣∣
2

= Γ
(

1+ iy
2

)
Γ
(

1+ iy
2

)
= Γ

(
1+ iy

2

)
Γ
(

1− iy
2

)
=

π
cosh(πy/2)

,

therefore, the square of the continuous function:

y �→
√

cosh(πy/2)
π

Γ
(

1+ iy
2

)
e−iAΓ(y)

is equal to 1 for every y ∈ R , hence, it must be constant and consequently identical to
1 which is its value for y = 0. �

COROLLARY 1. Let the principal determination of the argument of a nonzero
complex number z be denoted by Arg , and let α be defined by the formula

α = inf

{
y > 0 : Γ

(
1+ iy

2

)
=−

√
π

cosh(πy/2)

}
.

Then, for every y ∈ (−α,α) we have∫ 1

0

ln ln(1/u)
u2 +2cosh(πy)u+1

du = ln
√

2π · πy
sinh(πy)

+
π

sinh(πy)
ArgΓ

(
1+ iy

2

)
.

Moreover, using Mathematica [15] we readily obtain α ≈ 10.106689535698 .
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Proof. The definition of α implies that

∀y ∈ (−α,α), Γ
(

1+ iy
2

)
∈ C\ ((−∞,0]×{0}).

Thus, the function y �→ Arg(Γ( 1+iy
2 ))−AΓ(y) is continuous on (−α,α) , takes its val-

ues in 2πZ , and is equal to 0 for y = 0. Therefore, AΓ(y) = Arg(Γ( 1+iy
2 )) , for every

y ∈ (−α,α) , which is the desired conclusion. �
EXAMPLES.

∫ 1

0

ln ln(1/u)
u2 +4u+1

du =
ln(2π)√

3
ln

(
1+
√

3√
2

)
+

π√
3

ArgΓ

(
1
2

+
i
π

ln

(
1+
√

3√
2

))
.

∫ 1

0

ln ln(1/u)
u2 +3u+1

du =
2ln(2π)√

5
ln(φ)+

2π√
5

ArgΓ
(

1
2

+
i
π

ln(φ)
)

.

where φ =
1+
√

5
2

is the golden ratio.

More generally, for 2 < k < 2cosh(απ)≈ 6.156×1013 , the following holds

∫ 1

0

ln ln(1/u)
u2 + ku+1

du =
2ln(2π)√

k2−4
ln(φk)+

2π√
k2−4

ArgΓ
(

1
2

+
i
π

ln(φk)
)

with φk =
√

k+2+
√

k−2
2

.

It is worth mentioning that Mathematica [15] gives the results of examples (16),
(17) and (18), but it fails to give the results of the previous examples. However, numer-
ical quadrature confirms the results.

In our final proposition we consider the evaluation of another log-log integral.
This integral was given in [2] as a corollary of a more difficult evaluation. Our approach
is straightforward and simpler.

PROPOSITION 5. ([2]) For any complex number z with ℜz > 0 , we have

F(z) def=
∫ 1

0

tz−1 ln(ln(1/t))
1+ tz

dt =− ln2
2z

Log(2z2)

where Log is the principal branch of the logarithm.

Proof. We start by evaluating F(1) . Note that

F(1) =
∫ 1

0

ln(ln(1/t))
1+ t

dt =
∫ ∞

0

e−x

1+ e−x ln(x)dx.

So, ∣∣∣∣∣F(1)−
n

∑
k=1

(−1)k−1
∫ ∞

0
e−kx ln(x)dx

∣∣∣∣∣�
∫ ∞

0

|lnx|
1+ ex e−nx dx.



KUMMER’S THEOREM IN ACTION 87

Because x �→ |lnx|
1+ex is integrable on (0,+∞) , we conclude using Lebesgue’s dominated

convergence theorem that

lim
n→∞

∫ ∞

0

|lnx|
1+ ex e−nx dx = 0

Thus,

F(1) =
∞

∑
k=1

(−1)k−1
∫ ∞

0
e−kx ln(x)dx.

A simple change of variables shows that∫ ∞

0
e−kx ln(x)dx =

1
k

∫ ∞

0
e−u(lnu− lnk)du =− γ

k
− lnk

k

since
∫ ∞
0 ln(u)e−u du = Γ′(1) =−γ . It follows that

F(1) =−γ
∞

∑
k=1

(−1)k−1

k
+

∞

∑
k=1

(−1)k lnk
k

=−γ ln2+
∞

∑
k=1

(−1)k lnk
k

. (20)

Now, note that

ln2(k+1)− ln2 k = ln2 k

((
1+

1
lnk

ln

(
1+

1
k

))2

−1

)

= ln2 k

(
2

k lnk
+O

(
1

k2 lnk

))

=
2lnk

k
+O

(
lnk
k2

)
.

This proves that the series ∑
(
ln2(k+1)− ln2 k−2 lnk

k

)
is convergent. Consequently, if

we define Gn = ∑n
k=1

lnk
k then there is a real number � such that Gn = 1

2 ln2 n+�+o(1) .
But

2n

∑
k=1

(−1)k ln(k)
k

=
n

∑
k=1

ln(2k)
k
−

2n

∑
k=1

lnk
k

= (ln2)Hn +Gn−G2n

= (ln2)(lnn+ γ)+
1
2

(
ln2(n)− ln2(2n)

)
+o(1)

=−1
2

ln2 2+ γ ln2+o(1),

where we used Hn = ∑n
k=1 1/k = lnn+ γ +o(1) , (see [1, 4.1.32]).

Now, let n tend to +∞ to obtain

∞

∑
k=1

(−1)k ln(k)
k

=−1
2

ln2 2+ γ ln2.

Combining this with (20) we conclude that F(1) =− 1
2 ln2 2.
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Next, for z ∈ (0,+∞) the change of variables tz = u shows that

F(z) =
1
z

∫ 1

0

lnln(1/u)− lnz)
1+u

du =
F(1)

z
− ln(z) ln(2)

z
=− ln(2z2) ln(2)

2z
,

and the desired conclusion follows by analytic continuation. �
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