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ORLICZ–QUASI–CAUCHY DOUBLE SEQUENCE

SPACES FOR RH –REGULAR MATRIX

KULDIP RAJ, AYHAN ESI AND SEEMA JAMWAL

Abstract. In this research paper we pioneer, a new double sequence space called Orlicz-Quasi-
Cauchy double sequence space, (M,A,Δ)OQC . We investigate continuity type properties of Or-
licz double function defined on a double subset A×A of R2 into R and study some vital results
related to uniform continuity. In the last we also make an attempt to prove some topological
properties of (M,A,Δ)OQC .

1. Introduction

An Orlicz function M is a function, which is continuous, non-decreasing and con-
vex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as x → ∞ .

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to define the fol-
lowing sequence space. Let w be the space of all real or complex sequences x = (xk) ,
then

�M =
{

x ∈ w :
∞

∑
k=1

M
( |xk|

ρ

)
< ∞, for some ρ > 0

}

which is called as an Orlicz sequence space. The space �M is a Banach space with the
norm

||x|| = inf
{

ρ > 0 :
∞

∑
k=1

M
( |xk|

ρ

)
� 1

}
.

It is shown in [13] that every Orlicz sequence space �M contains a subspace isomorphic
to �p(p � 1) . The Δ2 -condition is equivalent to M(Lx) � kLM(x) for all values of
x � 0 and for L > 1.

The study of single Quasi-Cauchy sequences have been discussed in ([9], [10],
[17]). In ([9], [10]) Çakallı and Çakallı and Hazarika have introduced and studied
the statistical Quasi-Cauchy sequences and Ideal Quasi-Cauchy sequences respectively.
Also in [17], Hazarika studied φ -statistical Quasi-Cauchy sequences in details.

The notion of difference sequence spaces was introduced by Kızmaz [12],who
studied the difference sequence spaces l∞(Δ) , c(Δ) and c0(Δ) . For Z a given sequence
space, we have

Z(Δ) = {x = (xk) ∈ w : (Δxk) ∈ Z}
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for Z = c,c0 and l∞ where Δx = (Δxk) = (xk − xk+1). The difference sequence spaces
was also discussed in (Altınok et. al. [3], Isik [18], Tripathy et al. [34]). Similarly, we
can define difference operators on double sequence spaces as:

Δxk,l = (xk,l − xk,l+1)− (xk+1,l − xk+1,l+1)
= xk,l − xk,l+1− xk+1,l + xk+1,l+1

In 1900, Pringsheim [24] introduced the concept of convergence of real double se-
quences. Four year later, Hardy [15] introduced the notion of regular convergence for
double sequences.

The initial work on double sequences is found in Bromwich [5]. Later on Móricz
[19], Móricz and Rhoades [20], Tripathy ([32], [33]), Başarır and Sonalcan [4] and
many others. Quite recently, Zeltser [35] in her Ph.D thesis has essentially studied
both the theory of topological double sequence spaces and the theory of summability
of double sequences. Mursaleen and Edely [23] have recently introduced the statistical
convergence and Cauchy convergence for double sequences and given the relation be-
tween statistical convergent and strongly Cesàro summable double sequences. Nextly,
Mursaleen [21] and Mursaleen and Edely [22] have defined the almost strong regu-
larity of matrices for double sequences and applied these matrices to establish a core
theorem and introduced the M -core for double sequences and determined those four
dimensional matrices transforming every bounded double sequences x = (x jk) into one
whose core is a subset of the M -core of x . Recently Quasi Cauchy double sequence
spaces was studied by Patterson and Cakalli [28]. A considerable number of papers
which appeared in recent years study double sequences from various point of view (see
[1], [2], [6], [7], [8], [11], [16], [26], [27], [29], [30]).

DEFINITION 1. A double sequence x = {xk,l} is Cauchy provided that, given an
ε > 0 there exists an N ∈ N such that |xk,l − xs,t | < ε whenever k, l,s,t > N.

DEFINITION 2. By the convergence of a double sequence we mean the conver-
gence in the Pringsheim sense i.e. a double sequence x = (xk,l) has Pringsheim limit
L (denoted by P− limx = L ) provided that given ε > 0 there exists n ∈ N such that
|xk,l −L| < ε whenever k, l > n . We shall write more briefly as P-convergent.

If limx = ∞, (equivalently, for every ε > 0 there are n1,n2 ∈N ) such that |xm,n|>
M whenever m > n1,n > n2, then x = {xm,n} is said to be definitely divergent. A
double sequence x = {xm,n} is bounded if there is an M > 0 such that |xm,n| < M for
all m,n ∈ N. Notice that a P-convergent double sequence need not be bounded.

DEFINITION 3. [25] A double sequence y is a double subsequence of x provided
that there exist increasing index sequences {n j} and {k j} such that if {x j} = {xn j,k j},
then y is formed by

x1 x2 x5 x10

x4 x3 x6 −
x9 x8 x7 −
− − − −
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DEFINITION 4. Let A = (amnkl) denote a four dimensional summability method
that maps the complex double sequences x into the double sequence Ax where the mnth

term to Ax is as follows:

(Ax)mn =
∞,∞

∑
k,l=1,1

amnklxk,l.

Such a transformation is said to be non-negative if amnkl is nonnegative for all n,m,k
and l .

DEFINITION 5. A 4-dimensional matrix A is said to be RH -regular if it maps
every bounded P-convergent sequence into a P-convergent sequence with the same
P-limit.

An RH -regular matrix is characterized as follows:

LEMMA 1. (Robison [31] and Hamilton [14]) A four dimensional matrix A is
RH -regular if and only if

RH1 : P− lim
mn

amnkl = 0 for each (k, l) ∈ N2;

RH2 : P− lim
mn ∑

k,l

|amnkl | = 1;

RH3 : P− lim
mn ∑

l

|amnkl | = 0 for each k ;

RH4 : P− lim
mn ∑

k

|amnkl | = 0 for each l ;

RH5 : ∑
k,l

|amnkl| is P-convergent;

RH6 : there exists finite positive integers A and B such that ∑ j,k>B amnkl < A for
each (m,n) ∈ N2 .

Let M be an Orlicz function and A = (amnkl) is a non-negative four dimensional
RH -regular matrix. A double sequence x = (xk,l) is called Orlicz-Quasi-Cauchy if for
given ε > 0 there exists an N ∈ N such that

1
nm

∞,∞

∑
k,l=0,0

amnkl
[
M|Δxk,l |

]
< ε

where Δxk,l = max
r,s=1 and/or 0

{xk,l−xk+r,l+s}, whenever k, l > N. This Orlicz-Quasi-Cauchy

double sequence space is denoted by (M,A,Δ)OQC and is defined as

(M,A,Δ)OQC =
{

x = (xk,l) :
1

nm

∞,∞

∑
k,l=0,0

amnkl
[
M|Δxk,l |

]
< ε

}

Any P-convergent double Orlicz sequence is Orlicz-Quasi-Cauchy, so any regularly
convergent double Orlicz sequence is Orlicz-Quasi-Cauchy. Any Cauchy double Or-
licz sequence is Orlicz-Quasi-Cauchy. Any subsequence of a P-convergent double
sequence is P-convergent. Any subsequence of a Cauchy double Orlicz sequence is
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Cauchy. But for Orlicz-Quasi-Cauchy double sequence, the situation is different. There
are subsequence of Orlicz-Quasi-Cauchy double sequence which are not Orlicz-Quasi-
Cauchy.

DEFINITION 6. A double Orlicz function M defined on a double subset A×A of
R2 into R is called double sequentially continuous at a point L of A×A if M(Δx) is
P-convergent to M(L), whenever Δx = (Δxk,l) is a P-convergent double Orlicz se-
quence of points in A×A with P-limit L. If M is double Orlicz sequentially contin-
uous at every point of A×A, we say M is double Orlicz sequentially continuous on
A×A.

We note that any continuous function at a point L of A×A is also double Orlicz
sequentially continuous on A×A. The converse is also true.

2. Continuity and uniformly continuity properties

In this section we made an effort to obtain interesting results related to conti-
nuity, sequentially continuity and uniform continuity of double Orlicz-Quasi-Cauchy
sequences.

THEOREM 1. If double Orlicz function M defined on a double subset A×A of R2

is double Orlicz sequentially continuous at L, then it is continuous.

Proof. Suppose M is not continuous at L. Then there is an ε0 > 0 such that for
any δ > 0 there exists an xδ so that |Δx1(δ )− L1| < δ and |Δx2(δ )− L2| < δ but
|M(Δx1(δ )−Δx2(δ ))−M (L) | � ε0. It is easy to construct a convergent double Orlicz
sequence with limit L whose transformed sequence is not convergent to M(L). Thus
M is not double Orlicz sequentially continuous at L. This contradiction completes the
proof of the theorem. �

From the above theorem we conclude that a double-Orlicz function M defined on
a double subset A×A of R2 is double Orlicz sequentially continuous at a point L if
and only if it is continuous.

THEOREM 2. If double-Orlicz function M defined on a double subset A×A of
R2 preserves double Orlicz-Quasi-Cauchy sequences from A×A, then it is continuous.

Proof. Suppose that M preserves double Orlicz-Quasi-Cauchy sequences from
A×A. Let x = (xi, j) be a double sequence define by

x1,1 x1,2 x1,3 · · ·
x2,1 x2,2 x2,3 · · ·
x3,1 x3,2 x3,3 · · ·
...

...
...

. . .
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be any P-convergent double sequence with P-limit L . Applying the double difference
operator, the above double sequence reduced to

Δx1,1L Δx1,2L Δx1,3L · · ·
L L L L L L · · ·

Δx2,1L Δx2,2L Δx3,3L · · ·
L L L L L L · · ·

Δx3,1L Δx3,2L Δx3,3L · · ·
L L L L L L · · ·
...

...
...

...
...

...
. . .

is also P-convergent with P-limit L. Since any convergent double-Orlicz sequence
space is Orlicz-Quasi-Cauchy sequence, so the transformed sequence M(Δx)= M|Δxk,l |
of the sequence Δx is Orlicz-Quasi-Cauchy. Thus it follows that

M|Δx1,1|M(L) M|Δx1,2|M(L) M|Δx1,3|M(L) · · ·
M(L) M(L) M(L) M(L) M(L) M(L) · · ·

M|Δx2,1|M(L) M|Δx2,2|M(L) M|Δx3,3|M(L) · · ·
M(L) M(L) M(L) M(L) M(L) M(L) · · ·

M|Δx3,1|M(L) M|Δx3,2|M(L) M|Δx3,3|M(L) · · ·
M(L) M(L) M(L) M(L) M(L) M(L) · · ·

...
...

...
...

...
... · · ·

Using the non-negative four dimensional RH -regular matrix on this double sequence
space, we get Orlicz-Quasi-Cauchy double sequence. From this it follows that {M|Δxi, j|}
is a P-convergent Orlicz double sequence with P-limit M(L). By combining the re-
sult of Theorem 1 we get that an Orlicz function M is Continuous. This completes the
proof. �

COROLLARY 1. Suppose that I× I is a two dimentional interval and

a1,1 b1,1 a1,2 b1,2 a1,3 b1,3 · · ·
d1,1 c1,1 d1,2 c1,2 d1,3 c1,3 · · ·
a2,1 b2,1 a2,2 b2,2 a2,3 b2,3 · · ·
d2,1 c2,1 d2,2 c2,2 d2,3 c2,3 · · ·
a3,1 b3,1 a3,2 b3,2 a3,3 b3,3 · · ·
d3,1 c3,1 d3,2 c3,2 d3,3 c3,3 · · ·
...

...
...

...
...

...
. . .

is a double sequence of ordered pairs in I× I with

lim
i
|ai, j −bi, j| = lim

i
|ai, j − ci, j| = lim

i
|ai, j −di, j| = 0

then there exists a double Orlicz quasi Cauchy sequence {M|Δxi, j|} with the property
that for any order pair of integers (i, j) : i, j > 1, then there exists an ordered pair
( i , j); i , j > 1 such that

(ai, j,bi, j) = (Δx i , j ,Δx i , j+1)
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(ai, j,ci, j) = (Δx i , j ,Δx i+1, j+1)

(ai, j,di, j) = (Δx i , j ,Δx i+1, j).

Proof. See [28]. �

THEOREM 3. Suppose that I × I is a two dimensional interval. Then a two di-
mensional Orlicz real-valued function is uniformly continuous on I× I if and only if it
is defined on I× I and preserves double Orlicz-Quasi-Cauchy sequences from I× I .

Proof. Clearly, the two dimensional uniformly continuous function preserves dou-
ble Orlicz-Quasi-Cauchy sequence.

Conversely, Suppose that M defined on I× I is not uniformaly continuous. Then
there exists an ε > 0 such that for any δ > 0 there exist (a,b) , (a, b) ∈ I × I, with√

(a− a)2 +(b− b)2 < δ but |M(a,b)−M(a,b)| � ε, |M(a,b)−M(a, b)| � ε, and

|M(a,b)−M(a, b)|� ε, respectively. Then by the corollary here exists a double Orlicz-
Quasi-Cauchy sequence such that for any ordered pair (i, j) : i � 1, j � 1, then there
exists an ordered pairs integers ( i , j) with ai, j = Δx i , j and bi, j = Δxi+1, j+1. This
implies that

|M(Δx i ,Δx j)−M(Δxi+1,Δx j)| � ε,

|M(Δx i ,Δx j)−M(Δx i ,Δx j+1)| � ε,

and
|M(Δx i ,Δx j)−M(Δx i+1,Δx j+1)| � ε,

Thus, {M(Δxi,Δx j)} is not Orlicz-Quasi-Cauchy. Therefore, M does not preserves
double Orlicz Quasi Cauchy sequence. �

THEOREM 4. Suppose that M is Orlicz double function defined on bounded dou-
ble interval I× I . Then M, an Orlicz function is uniformaly continuous on I× I if and
only if the image under M of any Cauchy double sequence in I × I is Orlicz-Quasi-
Cauchy.

Proof. By using the concept of Theorem4, clearly the image of any double Cauchy
under factorable function is Orlicz-Quasi-Cauchy. Conversely, suppose the image of
every Cauchy double sequence is Orlicz-Quasi-Cauchy but the Orlicz function to be
uniformly continuous. Then there exists an ε > 0 such that for any δ > 0 there ex-
ist (x,y),(x , y) ∈ I × I, with

√
(x− x)2 +(y− y)2 < δ but |M(x,y)−M(x ,y)| � ε,

|M(x,y)−M(x, y)| � ε, and |M(x,y)−M(x , y)| � ε, respectively.
For each (m,n) : m,n � 1, for fix double sequence (Δxm,Δyn) and (Δxm,Δyn) in

I× I with
√

(Δxm −Δxm)2 +(Δyn−Δyn)2 < δ

|M(Δxm,Δyn)−M(Δxm,Δyn)| � ε,

|M(Δxm,Δyn)−M(Δxm,Δyn)| � ε,



ORLICZ-QUASI-CAUCHY DOUBLE SEQUENCE SPACES 73

and
|M(Δxm,Δyn)−M(Δxm,Δyn)| � ε,

respectively. Since I × I is bounded there exists a P-convergent subsequence by a
simple extension of Bolzano-Weierstrass theorem, say {Δxk,l}. The following double
sequence

Δx1,1 Δy1,2 Δx1,3 Δy1,4 Δx1,5 Δy1,6 · · ·
Δy2,1 Δx2,2 Δy2,3 Δx2,4 Δy2,5 Δx2,6 · · ·
Δx3,1 Δy3,2 Δx3,3 Δy3,4 Δx3,5 Δy3,6 · · ·
Δy4,1 Δx4,2 Δy4,3 Δx4,4 Δy4,5 Δx4,6 · · ·
Δx5,1 Δy5,2 Δx5,3 Δy5,4 Δx5,5 Δy5,6 · · ·

...
...

...
...

...
...

. . .

is P-convergent. However the following image of Cauchy sequence

M(Δx1,Δx1) M(Δy1,Δy2) M(Δx1,Δx3) M(Δy1,Δy4) M(Δx1,Δx5) M(Δy1,Δy6) · · ·
M(Δy2,Δy1) M(Δx2,Δx2) M(Δy2,Δy3) M(Δx2,Δx4) M(Δy2,Δy5) M(Δx2,Δx6) · · ·
M(Δx3,Δx1) M(Δy3,Δy2) M(Δx3,Δx3) M(Δy3,Δy4) M(Δx3,Δx5) M(Δy3,Δy6) · · ·
M(Δy4,Δy1) M(Δx4,Δx2) M(Δy4,Δy3) M(Δx4,Δx4) M(Δy4,Δy5) M(Δx4,Δx6) · · ·
M(Δx5,Δx1) M(Δy5,Δy2) M(Δx5,Δx3) M(Δy5,Δy4) M(Δx5,Δx5) M(Δy5,Δy6) · · ·

...
...

...
...

...
...

. . .

is not a Orlicz Quasi Cauchy. Thus we have a contradiction. �

3. Topological properties of Orlicz-Quasi-Cauchy double sequence space

This sections is devoted to the study of some topological properties like linearity
and completeness of (M,A,Δ)OQC .

THEOREM 5. Let A = (amnkl) be RH -regular matrix, M be an Orlicz function.
Then an Orlicz-Quasi-Cauchy double sequence space, (M,A,Δ)OQC is a linear space
over the field of complex numbers C .

Proof. Let x,y ∈ (M,A,Δ)OQC and for α,β ∈ C there exist integers Mα and Nβ
such that |α| < Mα and |β | < Nβ . Since M is an Orlicz functions, so we have

1
mn

∞,∞

∑
k,l=0,0

amnkl
[
M|αΔxk,l + β Δyk,l|

]
� Mα

1
mn

∞,∞

∑
k,l=0,0

amnkl
[
M|Δxk,l |

]

+Nβ
1

nm

∞,∞

∑
k,l=0,0

amnkl
[
M|Δyk,l|

]
.

Thus, αx+ βy ∈ (M,A,Δ)OQC for all k, l . Hence (M,A,Δ)OQC is a linear space. This
completes the proof of the theorem. �
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THEOREM 6. Let M be an Orlicz function, A = (amnkl) be a RH -regular 4 -di-

mensional matrix summability method such that sup
mn

∞,∞

∑
k,l=0,0

amnkl < ∞ , Then (M,A,Δ)OQC

is a complete topological linear space with the paranorm defined by

g(x) = sup
mn

∞,∞

∑
k,l=0,0

amnkl
[
M|Δxk,l |

]
.

Proof. Let (xq
kl) be a Cauchy sequence in (M,A,Δ)OQC . Then, we write g(xq −

xt) → 0 as q, t → ∞ for all m,n, we have

∞,∞

∑
k,l=0,0

amnkl

[
M|Δxq

k,l −Δxt
k,l|

]
→ 0. (1)

Thus for each fixed k and l as q,t → ∞ , since A = (amnkl) is nonnegative, we are
granted that

M|Δxq
k,l −Δxt

k,l| → 0

and by continuity of M , (xq
k,l) is a Cauchy sequence in C for each fixed k and l .

Since C is complete as t → ∞ , we have xq
k,l → xk,l for each (k, l) Now from

equation (1), we have for ε > 0, there exists a natural number N such that

∞,∞

∑
k,l=0,0 q,t>N

amnkl

[
M|Δxq

k,l −Δxt
k,l|

]
< ε for all m,n. (2)

Since for any fixed natural number R , from equation (2) we have

∞,∞

∑
k,l�R q,t>N

amnkl

[
M|Δxq

kl −Δxt
k,l|

]
< ε for all m,n

by letting t → ∞ in the above expression we obtain

∞,∞

∑
k,l�R q>N

amnkl

[
M|Δxq

k,l −Δxk,l|
]

< ε.

Since R is arbitrary, by letting R → ∞ we obtain

∞,∞

∑
k,l=0,0

amnkl

[
M|Δxq

k,l −Δxk,l|
)pk,l

]
< ε for all m,n.

Thus g(xq−x)→ 0 as q→ ∞ . This proves that (M,A,Δ)OQC is a complete topological
linear space. �

THEOREM 7. Let M be an Orlicz function, A = (amnkl) be a RH -regular matrix

such that sup
mn

∞,∞

∑
k,l=0,0

amnkl < ∞ and β = lim
t→∞

M(t)
t

> ∞ . Then

(A,Δ)OQC = (M,A,Δ)OQC .
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Proof. In order to prove that (A,Δ)OQC = (M,A,Δ)OQC . It is sufficient to show
that (M,A,Δ)OQC ⊆ (A,Δ)OQC . Now, let β > 0. By definition of β , we have M(t) � β t
for all t � 0. Since β > 0, we have t � 1

β M(t) for all t � 0.
Let x = (xkl) ∈ (M,A,Δ)OQC . Thus, we have

∞,∞

∑
k,l=0,0

amnkl

[
|Δxk,l |

]
� 1

β

∞,∞

∑
k,l=0,0

amnkl

[
M|Δxk,l |

]
.

This completes the proof. �
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