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ON STATISTICAL CONVERGENCE WITH RESPECT TO MEASURE

ÖMER KIŞI AND ERHAN GÜLER

Abstract. Several notions of convergence for subsets of metric spaces appear in the literature. In
this paper, for real valued measurable functions defined on a measurable space (X , M , μ ), we
obtain a statistical version of Lebesque’s bounded convergence theorem (when μ (X) < ∞ ) and
examine the validity of the classical theorems of Measure Theory for statistical convergences.

1. Introduction and background

Let us start with fundamental definitions from the literature. The natural density
of a set K of positive integers is defined by

δ (K) := lim
n→∞

1
n
|{k � n : k ∈ K}|,

where |k � n : k ∈ K| denotes the number of elements of K not exceeding n.
Statistical convergence of sequences of points was introduced by [6]. Schoenberg

[17] established some basic properties of statistical convergence and also studied the
concept as a summability method. Later, this concept has been generalized in many
directions. More details on this matter and on applications of this concept can be found
in [1].

A sequence x = (xk) is said to be statistically convergent to the number ξ if for
every ε > 0,

lim
n→∞

1
n
|{k � n : |xk − ξ |� ε}| = 0.

In this case we write st− limxk = ξ . Statistical convergence is a natural generalization
of ordinary convergence. If limxk = ξ , then st − limxk = ξ . The converse does not
hold in general.

Regarding statistical convergence of numerical sequences we have the following
well-known proposition.

PROPOSITION 1. [15] Let (xn) be a sequence in R , and ξ ∈ R . Then

(xn)
st→ ξ ⇔ ∃K = {k1 < k2 < .. . < kn < .. .} ⊆ N :

d (K) = 1 and
(
xnk

) → ξ

(By
(
xnk

) → ξ we denote the usual convergence).
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The corresponding notion of convergence for functions of a real variable was
developed in the early 1990’s and has recently been independently investigated by
Moricz. C. Papachristodoulos [14] introduced the concept on statistical convergence
of sequences of measurable functions and studied some properties of this convergence.

DEFINITION 1. [11] Let fn , f be measurable functions (n = 1,2, . . . ) on X . We
say that the sequence ( fn)n∈N

converges statistically in measure or asymptotic statisti-
cally to f , if and only if

(∀ε > 0) , μ ({x ∈ X : | fn(x)− f (x)| � ε}) st→ 0, n → ∞.

We write
fn

st−μ→ f , n → ∞.

THEOREM 1. [7] (F. Riesz) Let ( fn) be a sequence of functions which converges
in measure to the function f . Then there exists a subsequence

fn1(x), fn2(x), fn3(x),. . . where (n1 < n2 < n3 < .. .)

which converges to the function f (x) almost everywhere.

In [9] the concept of F -convergence, generated by some filter was introduced.
The concept of a monotone close and a right filter were also defined. Based on these
concepts an analogues of classical theorems of real analysis as Lebesgue, Egorov, Riesz
and Fatou, with respect to F -convergence were established.

We will obtain a statistical version of Lebesque’s bounded convergence theorem
(when μ (X) < ∞) in the following section.

2. Statistical version of Lebesque’s convergence theorem

The Lebesque’s bounded convergence theorem, a classical result of measure the-
ory, has been generalized by many authors in various directions. We are going to present
a statistical version of this theorem. Assume that (X , M , μ ) is a measure space. We
consider real valued measurable functions defined on X almost everywhere.

THEOREM 2. Assume (X , M , μ ) is a finite measure space, μ (X) < ∞ and let
a sequence f1(x) , f2 (x) , f3(x) ,. . . of bounded measurable functions converge statisti-
cally in measure to the bounded measurable function F(x);

fn(x)
st−μ→ F(x), n → ∞

be defined on X . If there exists a constant M such that for almost all x ,

d { n : | fn(x)| � M} = 0,

then
st− lim

n→∞

∫
X

fn(x)dx =
∫
X

F(x)dx. (1.1)
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Proof. First of all, we note that for almost all x ∈ X

|F(x)| � M. (1.2)

According to the statistical version of Riesz theorem [8] , if K = {ni : ni � ni+1, i ∈ N} ,
with d (K) = 1, then

d (m : | fnm(x)−F(x)| < ε) = 1,

and
d {m : | fnm(x)| � M} = 1

for each ε > 0 and for each x ∈ X .
Since, for each m ∈ N ,

|F(x)| � |F(x)− fnm(x)|+ | fnm(x)| < ε +M,

we have |F(x)| < M + ε.
Hence, we get

|F(x)| � M,

which leads to (1.2).
Now let σ > 0 be a positive number. Set

An (σ) = {x ∈ X : | fn(x)−F(x)| � σ} , Bn (σ) = {x ∈ X : | fn(x)−F (x)| < σ} .

Then ⎧⎨
⎩n � k :

∣∣∣∣∣∣
∫
X

fn(x)dx−
∫
X

F(x)dx

∣∣∣∣∣∣ � σ

⎫⎬
⎭

⊂
⎧⎨
⎩n � k :

∫
X

| fn(x)dx−F(x)|dx � σ

⎫⎬
⎭

=

⎧⎪⎨
⎪⎩n � k :

∫

An(σ)

| fn(x)dx−F(x)|dx � σ
2

⎫⎪⎬
⎪⎭

∪

⎧⎪⎨
⎪⎩n � k :

∫

Bn(σ)

| fn(x)dx−F(x)|dx � σ
2

⎫⎪⎬
⎪⎭ .

It is obvious that for almost all x ∈ X ,

{n � k : | fn(x)−F(x)| � 2M} ⊂ {n � k : | fn (x)| � M} ,

for almost all x of the set An (σ) .
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Since
d (n : | fn(x)−F(x)| � 2M) � d (n : | fn(x)| � M)

and also
d (n : | fn(x)| � M) = 0

then, we have
d (n : | fn(x)−F(x)| � 2M) = 0.

The first law of the mean implies that∫

An(σ)

| fn(x)dx−F(x)|dx � 2M.m(An (σ)) (1.3)

Also it is easy to verify⎧⎪⎨
⎪⎩n � k :

∫

An(σ)

| fn(x)dx−F(x)|dx � σ
2

⎫⎪⎬
⎪⎭ ⊂

{
n � k : mAn (σ) � σ

4M

}

for almost all x ∈ X and σ > 0. Since

d

⎧⎪⎨
⎪⎩n :

∫

An(σ)

| fn(x)dx−F(x)|dx � σ
2

⎫⎪⎬
⎪⎭ � d

{
n : m(An (σ)) � σ

4M

}

and
d

{
n : m(An (σ)) � σ

4M

}
= 0,

then, we have

d

⎧⎪⎨
⎪⎩n :

∫

An(σ)

| fn(x)dx−F(x)|dx � σ
2

⎫⎪⎬
⎪⎭ = 0.

On the other hand, again by the first law of the mean∫

Bn(σ)

| fn(x)dx−F(x)|dx � σ .m(Bn (σ)) � σ .m(X) (1.4)

Again it is easy to verify⎧⎪⎨
⎪⎩n � k :

∫

Bn(σ)

| fn(x)dx−F(x)|dx � σ .m(X)

⎫⎪⎬
⎪⎭ ⊂ {n � k : m(Bn (σ)) � m(X)}

for almost all x ∈ X and σ > 0. Since

d

⎧⎪⎨
⎪⎩n :

∫

Bn(σ)

| fn(x)dx−F(x)|dx � σ .m(X)

⎫⎪⎬
⎪⎭ � d {n : m(Bn (σ)) � m(X)} = 0,
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then, we have

d

⎧⎪⎨
⎪⎩n :

∫

Bn(σ)

| fn(x)dx−F(x)|dx � σ .m(X)

⎫⎪⎬
⎪⎭ = 0.

Combining the inequality (1.4) with (1.3), we find that

d

⎧⎨
⎩n :

∣∣∣∣∣∣
∫
X

fn(x)dx−
∫
X

F(x)dx

∣∣∣∣∣∣ � 2M.m(An (σ))+ σ .m(X)

⎫⎬
⎭ = 0. (1.5)

Now take an arbitrary ε > 0, and select a σ > 0 so small that

σ .m(X) <
ε
2
.

Having fixed this σ , the definition of statistical convergence in measury ensures that
we will have

st− lim
n→∞

m(An (σ)) = 0

as n → ∞ as therefore
d

{
n : m(An (σ)) � ε

4M

}
= 0

for n > N. For such n, inequality (1.4) assumes the form

d

⎧⎨
⎩n :

∣∣∣∣∣∣
∫
X

fn(x)dx−
∫
X

F(x)dx

∣∣∣∣∣∣ � ε

⎫⎬
⎭ = 0,

this proves the theorem. �
For in measure theory,two measurable functions f , g are considered equal or

equivalent, if, f (x) = g(x) μ − a.e and each equivalence class consists an element of
the space L0 (X) of measurable real valued functions. Moreover the space L0 (X) is
equipped with the following metric of convergence in measure

ρ ( f ,g) = inf{a+ μ [| f −g|> a] : a > 0}
and we have the following well known facts:

( fn)
μ→ f ⇔ ρ ( fn, f ) → 0

( fn)
st−μ→ f ⇔ ρ ( fn, f ) st→ 0

⇔∃K = {k1 < k2 < .. . < kn < .. .} , d (K) = 1 : ρ ( fkn , f ) → 0

∃{an} ⊂ (0,∞) , an → ∞ : and μ [| fkn − f | > an] → 0.

Therefore, another proof of theorem 2 can be given as follows:
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Proof. From the hypothesis of the theorem 2, the fact that the intersection of two
subsets of N of density 1 and from above condition, we get

∃K = {k1 < k2 < .. . < kn < .. .} , d (K) = 1, ∃{an} ⊂ (0,∞) , an → 0 :

| fkn | � M μ −a.e and μ [| fkn − f | > an] → 0.

Since f (x) is the pointwise limit μ −a.e of some subsequence of ( fkn) we take | fkn |�
M μ − a.e . Hence, | fkn − f | � M μ − a.e . Finally the theorem follows from the
inequalites,

∣∣∣∣∣∣
∫
X

( fkn − f )dμ

∣∣∣∣∣∣ �
∫
X

|( fkn − f )|dμ

=
∫

| fkn− f |>an

|( fkn − f )|dμ +
∫

| fkn− f |�an

|( fkn − f )|dμ

� 2Mμ [| fkn − f | > an]+anμ(x)

The final right hand side above tends to zero. �
If a sequence ( fn) is statistical convergent in measure, then ( fn)

2 is not statistical
convergent in measure usually.

EXAMPLE 1. Let fn(x) =
√

x4 +
x
n

, n ∈ N , 0 < x < ∞ and f (x) = x2 , then

(i) The sequence of the functions fn(x) statistical converges in measury to the
function f (x) on interval (0,∞) .

(ii) The sequence of the functions f 2
n (x) does not statistical converges in measury

to the function f 2 (x) on interval (0,∞) .

(i) We can get the inequality | fn (x)− f (x)| � 1
nx

. For n ∈ N ,

Bn = {x ∈ (0,∞) : | fn (x)− f (x)| � ε} ⊂
{

x ∈ (0,∞) :
1
nx

� ε
}

=
(

0,
1
nε

)
.

Hence,

μ
{

x ∈ (0,∞) :
1
nx

� ε
}

st→ 0, n → ∞.

Therefore st − limn→∞ μ {x ∈ (0,∞) : | fn(x)− f (x)| > ε} = 0. The sequence of the

functions fn (x) statistical converges in measury to the function f (x) .
(

fn
st−μ→ f

)
.

(ii) For n ∈ N ,

f 2
n (x) = x4 +

x
n

and f 2
n (x)− f 2(x) =

x
n
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and we get
Bn =

{
x ∈ (0,∞) :

∣∣ f 2
n (x)− f 2(x)

∣∣ > ε
}

=
{

x ∈ (0,∞) :
x
n

> ε
}

= (nε , ∞) .

Hence, st− limn→∞ μ
{
x ∈ (0,∞) :

∣∣ f 2
n (x)− f 2(x)

∣∣ > ε
} 
= 0 The sequence of the func-

tions f 2
n (x) does not statistical converges in measury to the function f 2(x) ( f 2

n (x)
st−μ
�

f 2
n (x)).

THEOREM 3. If a sequence of functions fn(x) converge statistically in measure
to the functions f (x) and g(x) , then these limit functions are equivalent.

Proof. Suppose fn
st−μ→ f and fn

st−μ→ g . Then for every ε > 0, we have

⎧⎨
⎩

st− limn→∞ μ {x : | fn (x)− f (x)| > ε} = 0

st − limn→∞ μ {x : | fn (x)−g(x)| > ε} = 0.
(3.1)

To show that f (x) and g(x) are equivalent a.e on X , let us assume the contrary, that is
μ {x : f (x) 
= g(x)} > 0. Then since f (x) 
= g(x) if and only if | f (x)−g(x)| > 0, we
have

μ {x : | f (x)−g(x)| > 0} > 0.

Now since

{x ∈ X : | f (x)−g(x)| > 0} ⊂
∞⋃

n=1

{
x ∈ X : | f (x)−g(x)| � 1

n

}
(3.2)

we have

μ ({x ∈ X : | f (x)−g(x)| > 0}) �
∞

∑
n=1

μ
({

x ∈ X : | f (x)−g(x)| � 1
n

})
. (3.3)

By (3.2) , the left side of (3.3) is positive. Then not all of terms on the right side are
equal to 0. Thus there exists some n0 ∈ N such that

μ
({

x ∈ X : | f (x)−g(x)| � 1
n0

})
> 0. (3.4)

For every n ∈ N we have

μ
({

x ∈ X : | f (x)−g(x)| � 1
n0

})
� μ

({
x ∈ X : | f (x)− fn(x)| � 1

2n0

})

+μ
({

x ∈ X : | fn(x)−g(x)| � 1
2n0

})
.
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Letting n → ∞ on the right side of the last inequality, we have

μ
({

x ∈ X : | f (x)−g(x)| � 1
n0

})
= 0

by (3.1) . This contradicts (3.4) . �

THEOREM 4. Let a sequence of functions fn(x) converge statistically in measure
to the function f (x) on X , let Φ be real function that satisfies Lipschitz condition on
R . Under these conditions the sequence (Φo fn)∞

n=1 is defined on X and the sequence
of the functions (Φo fn)

∞
n=1 converge statistically in measure to the functions Φo f .

Proof. Let ε > 0 and the sequence of the functions fn(x) converge statistically in
measure to the function f (x) , then

μ ({x ∈ X : | fn(x)− f (x)| > ε}) st→ 0, n → ∞

and also let Φ : R → R satisfies Lipschitz condition. Hence there is L > 0 such that

|Φ(x)−Φ(y)| � L |x− y|

for each x ,y ∈ R. Define sets En to be,

En = {x ∈ X : |(Φo fn)(x)− (Φo f ) (x)| > ε}

Since

En = {x ∈ X : |(Φo fn) (x)− (Φo f ) (x)| > ε} ⊂
{

x ∈ X : | fn(x)− f (x)| > ε
L

}

and also, the sequence of the functions fn(x) converge statistically in measure to the
function f (x) , then it holds that

μ
({

x ∈ X : | fn(x)− f (x)| > ε
L

})
st→ 0, n → ∞

By monotonicity of the measure, μ {x ∈ X : |(Φo fn) (x)− (Φo f ) (x)| > ε} st→ 0. Hence
the sequence of the functions (Φo fn)

∞
n=1 converge statistically in measure to the func-

tions Φo f . �
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