SOME RESULTS ON POROUS SET RELATING TO RATIO SETS

D. K. GANGULY AND DHANANJOY HALDER

Abstract. An attempt has been made in this paper is to show that every Lebesgue measurable linear set with positive measure has a porous subset whose ratio set contains an interval. The category analogue of this result is also established.

1. Introduction

First we recall the definition of porous set [3] as bellow:

DEFINITION 1. ([3]) Let \(A \) be a non-empty subset of real line \(\mathbb{R} \) and \(x \in A \). \(A \) is said to be porous at \(x \), if there exists a constant \(c, \; 0 < c \leq 1 \) and a sequence of intervals \(\{I_n\} \), each containing \(x \), whose length tends to zero as \(n \) tends to infinity, such that each interval \(I_n \) contains an interval \(J_n \) that is disjoint from \(A \) and \(\frac{\lambda(J_n)}{\lambda(I_n)} \geq c \), where \(\lambda(A) \) denotes the Lebesgue measure of \(A \). The set \(A \) is called porous set if it is porous at each of its points.

DEFINITION 2. ([2]) A set \(A \subset \mathbb{R} \) is called \(p \)-porous for a \(p \in (0,1) \) if for every \(x \in \mathbb{R} \), \(\limsup_{y \to 0} \frac{1}{y} \) (the length of the longest interval in \((x-y,x+y)\) which is contiguous to \(A \)) \(\geq p \).

Porous set possesses the following properties:

- Every porous set is of Lebesgue measure zero.
- Every porous set is of first category.

It is to be noted that the converse may not be true. For example, the set of rational number \(\mathbb{Q} \).

DEFINITION 3. ([5]) A set \(A \) is said to have the property of Baire if it can be expressed as symmetric difference of an open set and a set of first category.

H. I. Miller [3] established that every second category set \(A \) having the property of Baire contains a porous subset \(P \) such that difference set of \(P \) written as \(D(P) = \{x-y : x,y \in P\} \) contains an interval. The measure theoretic analogue of this result was shown by Z. Buczolich [2].

In 1962, N. C. Bose Majumder [1] introduced the notion of ratio set in the following way:

Keywords and phrases: Ratio set, property of Baire, porous set, difference set.
Definition 4. The ratio set of a linear set A of non zero abscissa denoted by $R(A)$, is defined by $R(A) = \{ \frac{a}{b} : a, b \in A \}$. Also ratio of two linear sets A and B is defined as $R(A,B) = \{ \frac{a}{b} : a \in A, b \in B \setminus \{0\} \}.$

Bose Majumder [1] established that ratio set $R(A)$ of a linear set A with non zero abscissa having positive Lebesgue measure contains an interval with left hand end point 1.

In this paper we will show that every Lebesgue measurable set $A(\subset \mathbb{R})$ with positive measure contains a porous subset B whose ratio set $R(B)$ contains an interval. Also the category analogue of this result is proved.

2. Main results

Before going to establish main results we go through some lemmas.

Lemma 1. ([2]) For every closed set A of positive Lebesgue measure, $s \in \mathbb{N}$ and $t \in (0,1)$ there exists a closed set $A_r \subset A$ with the following properties: The set A_r has positive Lebesgue measure and there exists a sequence of natural numbers $n_1, n_2, \ldots, n_j, \ldots$ such that $s | n_j$ for every $j \in \mathbb{N}$ and, letting $d_j = \frac{1}{n_1 \cdots n_j}$, we have either $[kd_j,(k+1)d_j] \cap A_r = \emptyset$ or $\lambda((kd_j,(k+1)d_j) \cap A_r) > t.d_j$ for every $j \in \mathbb{N}$ and $k \in \mathbb{Z}$. Here \mathbb{N} and \mathbb{Z} are the sets of natural numbers and integers respectively.

Lemma 2. For every $p \in (0, \frac{1}{2})$ there exists a $t(p) \in (0,1)$ such that if $H_1 \subset (0,1]$, $H_2 \subset (0,1]$ and $\lambda(H_1) > t(p)$, $\lambda(H_2) > t(p)$ then $R(H_1, H_2) = R(G_1, G_2)$, where $G_1 = H_1 \setminus (\frac{1-p}{2}, \frac{1+p}{2})$ and $G_2 = H_2 \setminus (\frac{1-p}{2}, \frac{1+p}{2})$.

Proof. Consider $t(p) = 3p$ for $p \in (0, \frac{1}{3})$. Suppose H_1 and H_2 are two subsets of $(0,1]$ with $\lambda(H_1) > t(p)$ and $\lambda(H_2) > t(p)$. Clearly $R(H_1, H_2)$ is non-empty subset of $(0,\infty)$. If m is an element of $R(H_1, H_2)$ then there exist $y \in H_1$ and $x \in H_2$ such that $y = mx$. From the unit square $S = [0,1] \times [0,1]$, we obtained four squares each of length $\frac{1-p}{2}$ by deleting a horizontal strip and a vertical strip of breath $p \in (0, \frac{1}{3})$. These four squares are of the form

$S_1 = [0, \frac{1-p}{2}] \times [\frac{1+p}{2}, 1]$ which is upper left square,

$S_2 = [0, \frac{1-p}{2}] \times [0, \frac{1-p}{2}]$ which is lower left square,

$S_3 = [\frac{1+p}{2}, 1] \times [\frac{1+p}{2}, 1]$ which is upper right square,

$S_4 = [\frac{1+p}{2}, 1] \times [0, \frac{1-p}{2}]$ which is lower right square.

If we denote by l_m the graph of the line $y = mx$ then $l_m \cap (H_1 \times H_2) \neq \emptyset$. Let P_x (resp. P_y) be the projection of the line $y = mx$ on x (resp. y) axis. For $m \in (0,\infty)$, clearly

$\lambda(P_x(l_m \cap (S_1 \cup S_2))) \geq \frac{1-3p}{2}$ and $\lambda(P_y(l_m \cap (S_1 \cup S_2))) \geq \frac{1-3p}{2}$.
Since \(\lambda(H_1) > t(p) \), \(\lambda(H_2) > t(p) \) and also \(t(p) = 3p \) we have
\[
\lambda(P_x(l_m \cap (S_1 \cup S_2)) \setminus H_2) < 1 - 3p \text{ and } \lambda(P_y(l_m \cap (S_1 \cup S_2)) \setminus H_1) < 1 - 3p.
\]
Therefore \(l_m \cap (S_1 \cup S_2) \cap (H_2 \times H_1) = l_m \cap (S_1 \cup S_2) \cap (G_2 \times G_1) \neq \emptyset \). Hence for \(m \in R(H_1, H_2) \) implies \(m \in R(G_1, G_2) \). Thus \(R(H_1, H_2) = R(G_1, G_2) \). □

Theorem 1. For every set \(A(\subset \mathbb{R}) \) having nonzero abscissa with positive Lebesgue measure and \(p \in (0, \frac{1}{2}) \) there exists a \(p \)-porous set \(B \subset A \) such that \(R(B) = \{ \frac{a}{b} : a, b \in B \} \) contains an interval.

Proof. With out loss of generality we consider \(A \) to be a closed set. It is enough to prove the theorem for rational \(p \in (0, \frac{1}{2}) \). Let \(p = \frac{u}{v} \in (0, \frac{1}{2}) \), where \(u, v \in \mathbb{N} \). By Lemma 2 we choose a suitable \(t(p) \) for \(p \in (0, \frac{1}{2}) \) and then applying the Lemma 1 with \(s = 2v \) and \(t = t(p) \) we obtain a closed set \(A_r \subset A \) and the sequences \(n_1, n_2, \ldots \) (of natural numbers) and \(d_1, d_2, \ldots \) \((d_j = \frac{1}{n_1n_2\ldots n_j}, j \in \mathbb{N}) \) such that either \([kd_j, (k + 1)d_j] \cap A_r = \emptyset \) or \(\lambda((kd_j, (k + 1)d_j) \cap A_r) > td_j \) for every \(j \in \mathbb{N} \) and \(k \in \mathbb{Z} \).

Consider \(B_0 = A_r \). We put
\[
B_j = B_{j-1} \setminus \bigcup_{k \in \mathbb{Z}} \left((k + \frac{1-p}{2})d_j, (k + \frac{1+p}{2})d_j \right).
\]
Obviously \(B = \bigcap_{j=1}^{\infty} B_j \) is \(p \)-porous. Since \(B_0 \) is of positive Lebesgue measure, according to Bose Majumder’s result [1] the set \(R(B_0) \) contains an interval with 1 as left hand end point. Again since all the sets \(B_j \), \(j = 0, 1, 2, 3, \ldots \) are compact, \(R(B_j) \) are compact and hence closed. By Cantor Baire Stationary theorem [4], we have \(R(B) = R(B_0) \). It is enough to prove \(R(B_0) = R(B_1) = R(B_2) = \ldots \). We have to show that \(R(B_{j-1}) = R(B_j) \) for all \(j \in \mathbb{N} \).

We say that the set \(B_{j-1} \) possesses the property \(P_{j-1} \) if for every integer \(k \) we have either \((k.d_j, (k + 1).d_j) \cap B_{j-1} = \emptyset \) or \(\lambda((k.d_j, (k + 1).d_j) \cap B_{j-1}) > t.d_j \).

If the set \(B_{j-1} \) possesses the property \(P_{j-1} \), then by \(p = \frac{u}{v} \) and \(s = 2v \), we have \(\frac{pv}{2dj+1} \in \mathbb{N} \). So, in the definition of \(B_j \) which is obtained from \(B_{j-1} \) by deleting a subset of \(B_{j-1} \) which is a union of the intervals of the form \((k.d_{j+1}, (k + 1).d_{j+1}) \). According to Lemma 1, the set \(B_0 = A_r \) has the property \(P_0 \). Thus by induction \(B_j \) has \(P_j \) property for every \(j \in \mathbb{N} \). Let us take
\[
H_{k,j-1} = [k.d_j, (k + 1).d_j] \cap B_{j-1} \text{ and } G_{k,j-1} = H_{k,j-1} \setminus ((k + \frac{1-p}{2}).d_j, (k + \frac{1+p}{2}).d_j).
\]

Then we have
\[
R(B_{j-1}) = \bigcup_{k,m \in \mathbb{Z}} R(H_{k,j-1}, H_{m,j-1}),
\]
(since the set \(B_{j-1} \) has the property \(P_{j-1} \), the equality holds for those indices \(m, k \in \mathbb{Z} \) for which \((k.d_j, (k + 1).d_j) \cap B_{j-1} \neq \emptyset \) and \((m.d_j, (m + 1).d_j) \cap B_{j-1} \neq \emptyset \)).
Also we get
\[R(B_j) = \bigcup_{k,m \in \mathbb{Z}} R(G_{k,j-1}, G_{m,j-1}). \]

By Lemma 2, \(R(H_{k,j-1}, H_{m,j-1}) = R(G_{k,j-1}, G_{m,j-1}) \) for the indices \(k,m \in \mathbb{Z} \) and \(j \in \mathbb{N} \). Therefore \(R(B_{j-1}) = R(B_j) \) for all \(j \in \mathbb{N} \). Hence the result. □

To establish the category analogue of the Theorem 1 we need following lemmas.

Lemma 3. Let \(0 < a < b \) and \(F = \bigcup_{n=1}^{\infty} F_n \), where \(F_n \)'s are nowhere dense closed subsets of \(\mathbb{R} \). Then the ratio set \(R((a,b) \setminus F) = \left(\frac{a}{b}, \frac{b}{a} \right) = R((a,b)) \), where \((a,b) \) is an open interval.

Proof. Let \(0 < a < b \). Let \(x,y \in (a,b) \) and \(x < y \). So, \(0 < a < x < y < b \Rightarrow \frac{a}{y} < \frac{x}{y} < \frac{y}{y} \Rightarrow 0 < \frac{a}{y} < \frac{x}{y} < \frac{a}{x} < \frac{b}{x} < \frac{b}{y} \). Thus \(\frac{x}{y} \) is an interior point of \(\left(\frac{a}{y}, \frac{b}{y} \right) \). Similarly \(\frac{y}{x} \) is an interior point of \(\left(\frac{a}{x}, \frac{b}{x} \right) \). So, \(R((a,b)) = \left(\frac{a}{b}, \frac{b}{a} \right) \), where \(0 < a < b \).

Since \(F_n \)'s are nowhere dense closed subset of \(\mathbb{R} \), the complement of each \(F_n \) is everywhere dense open subset of \(\mathbb{R} \). By Baire category theorem we have, \((a,b) \setminus \bigcup_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} [(a,b) \setminus F_n] \) is dense in closed interval \([a,b] \).

Therefore \(R((a,b) \setminus F) = R((a,b)) \). □

Lemma 4. For any two open intervals \(I,J(\subset \mathbb{R}^+) \), the ratio set \(R(I,J) = \{ \frac{x}{y} : x \in I, y \in J \} \) is an open set, where \(\mathbb{R}^+ \) denotes the set of positive real numbers.

Proof. Let \(I = (x',y') \) and \(J = (x'',y'') \) be two open intervals in \(\mathbb{R}^+ \). So, \(0 < x' < y' \) and \(0 < x'' < y'' \). Let \(v \in R(I,J) \). So, \(v = \frac{p}{q} \), i.e. \(p = vq \), where \(p \in I, q \in J \). Since \(p \) is an interior point of \(I \), there exists \(\delta' > 0 \) such that \(x' < p - \delta' < p < p + \delta' < y' \Rightarrow x' < p - \delta' < vq < p + \delta' < y' \Rightarrow x' < p - \delta' < vq < p + \delta' < y' \Rightarrow x' < v - \frac{q' \delta'}{q} < v < v + \frac{q' \delta'}{q} < y' \Rightarrow \frac{x'}{q} < \frac{q'}{q} \). Since \(q \in J \). This shows that \(v \) is an interior point of \(\left(\frac{x'}{q}, \frac{q'}{q} \right) = R(I,J) \), where \(I = (x',y') \), \(0 < x' < y' \) and \(J = (x'',y'') \), \(0 < x'' < y'' \). So, \(R(I,J) \) is an open interval and hence an open set. □

Theorem 2. If \(B \subseteq \mathbb{R}^+ \) has the property of Baire and is of second category then there exists a porous set \(P \subseteq B \) such that \(R(P) = \{ \frac{p}{q} : p,q \in P \} \) contains an interval, where \(\mathbb{R}^+ \) denotes the set of positive real numbers.

Proof. Suppose \(B \) be a second category subset of positive reals having the property of Baire. So, there exist an open interval \(I = (b,c) \), \(0 < b < c \) and a sequence \(\{F_n\}_{n=1}^{\infty} \) of closed nowhere dense subsets of \(\mathbb{R}^+ \) such that \(B = (I \setminus F_1) \cup F_2 \). i.e, \(B \supseteq I \setminus F_1 \supseteq I \setminus \bigcup_{n=1}^{\infty} F_n \). Let \(A = I \setminus \bigcup_{n=1}^{\infty} F_n \).
By Lemma 3 we have \(R(A) = (\frac{b}{c}, \frac{c}{b}) \). Clearly \(I \setminus F_1 \) is an open subset of \(\mathbb{R}^+ \).

So, \(I \setminus F_1 = \bigcup_{i=1}^{\infty} I_i \), where \(\{I_i : i \in \mathbb{N}\} \) are pairwise disjoint open subintervals of \(I \).

Therefore \(R(I \setminus F_1) = (\frac{b}{c}, \frac{c}{b}) \). Again since

\[
I \setminus F_1 = \bigcup_{i=1}^{\infty} I_i, \quad R(I \setminus F_1) = R\left(\bigcup_{i=1}^{\infty} I_i \right) = \bigcup_{i,j=1}^{\infty} R(I_i, I_{j1}) = (\frac{b}{c}, \frac{c}{b}),
\]

where

\[
R(I_i, I_{j1}) = \{ \frac{x}{y} : x \in I_i, y \in I_{j1} \}.
\]

By Lemma 4, \(R(I_i, I_{j1}) \) are open sets for each \(i, j \in \mathbb{N} \). So, \(\{R(I_i, I_{j1}) : i, j \in \mathbb{N}\} \) forms an open cover for each closed subinterval of \((\frac{b}{c}, \frac{c}{b}) \). Let \(r \in (\frac{b}{c}, \frac{c}{b}) \). Then \(\{R(I_i, I_{j1}) : i, j \in \mathbb{N}\} \) is an open cover of \([\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}] \) and therefore by Heine Borel Covering Theorem, the interval \([\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}] \) is covered by finitely many of \(\{R(I_i, I_{j1}) : i, j \in \mathbb{N}\} \). So, there exists \(n_1 \in \mathbb{N} \) such that

\[
\bigcup_{i,j=1}^{n_1} R(I_i, I_{j1}) \supseteq [\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}].
\]

For each open interval \(I_i, i = 1, 2, 3, \ldots, n_1 \), there exists a natural number \(k_1 \) and a closed interval \(J_{i1} \) contained in \(I_i, i = 1, 2, 3, \ldots, n_1 \), with end points are of the form \(\frac{k}{3^{k_1}} \) (where \(k \in \mathbb{N} \)) such that

\[
R(int(\bigcup_{i=1}^{n_1} J_{i1})) \supseteq [\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}].
\]

Now each of the intervals \(J_{i1} \) is subdivided into closed sub-intervals of length \(\frac{1}{3^n} \). Remove open middle ninth of each of these intervals of length \(\frac{1}{3^n} \), obtaining intervals of length \(\frac{4}{3^{n_1+2}} \). The union of the interiors of these closed intervals (of length \(\frac{4}{3^{n_1+2}} \)) is an open set, call it \(G_2 \). By argument of Utz [6], we can verify that \(R(G_2) \supseteq [\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}] \). Since \(G_2 \) is a non-empty open subset of \(\mathbb{R}^+ \) and \(F_2 \) is nowhere dense and closed, it follows that \(R(G_2 \setminus F_2) \supseteq [\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}] \). Again \(G_2 \setminus F_2 \) is an open set as \(F_2 \) is closed. So, \(G_2 \setminus F_2 = \bigcup_{i=1}^{\infty} I_i \), where \(\{I_i\}_{i=1}^{\infty} \) are pairwise disjoint countable open intervals. Therefore

\[
R(G_2 \setminus F_2) = R\left(\bigcup_{i=1}^{\infty} I_i \right) = \bigcup_{i,j=1}^{\infty} R(I_{i2}, I_{j2}).
\]

Again by Heine Borel Covering Theorem, \([\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2}] \) is covered by finitely many of \(\{R(I_{i2}, I_{j2}) : i, j \in \mathbb{N}\} \). So, there exists a natural number \(n_2 \), such that
\[\bigcup_{i,j=1}^{n_2} R(I_{i2}, J_{j2}) \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c - r}{2} \right]. \]

Thus, there exist a sequence of closed intervals \(\{J_{i2}\}_{i=1}^{n_2} \) and a natural number \(k_2 \) with \(k_2 > k_1 + 2 \) having the following properties.

Each \(J_{i2} \) is contained in \(I_{i2} \), with end points of the form \(\frac{k}{3^{j_2}}, k \in \mathbb{N} \) and such that

\[R(\text{int}(\bigcup_{i=1}^{n_2} J_{i2})) \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c - r}{2} \right]. \]

Proceeding as before, we subdivide each of the intervals \(I_{i2} \) into closed subintervals of length \(\frac{1}{3^{j_2}} \). Remove open middle ninth of each of these intervals of length \(\frac{1}{3^{j_2}} \), obtaining intervals of length \(\frac{4}{3^{j_2+2}} \). The union of the interiors of these closed intervals (of length \(\frac{4}{3^{j_2+2}} \)) is an open set, call it \(G_3 \). Again by same argument of Utz [6], we can verify that \(R(G_3) \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c - r}{2} \right] \). Continuing this process by finite induction, obtain

\[\{n_i\}_{i=1}^{\infty}, \{k_i\}_{i=1}^{\infty}, \{\{I_{ij}\}_{i=1}^{n_j}\}_{j=1}^{\infty}, \{\{J_{ij}\}_{i=1}^{n_j}\}_{j=1}^{\infty} \text{ and } \{G_i\}_{i=1}^{\infty} \]

that satisfy the following conditions:

\[k_{i+1} > k_i + 2 \text{ for each } i. \]

For each \(j \), \(\{I_{ij}\}_{i=1}^{n_j} \) is sequence of pair wise disjoint open intervals such that

\[\bigcup [R(I_{ij}, I_{kj}) : i, k \in \{1, 2, 3, \ldots, n_j\}] \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c - r}{2} \right]. \]

For each \(j \), \(\{J_{ij}\}_{i=1}^{n_j} \) is a sequence of closed intervals satisfying the following properties:

- The end points of \(J_{ij} \) are of the form \(\frac{k}{3^{j}}, J_{ij} \subseteq I_{ij} \) and

\[R(\text{int}(\bigcup_{i=1}^{n_j} J_{ij})) \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c - r}{2} \right]. \]

Additionally, the formation of each \(G_j \) is as follows:

- Each of the closed intervals \(J_{i,j-1} \) is divided into closed sub-intervals of length \(\frac{1}{3^{j-1}} \). Remove the open middle ninth of each of these intervals of length \(\frac{1}{3^{j-1}} \), obtaining closed intervals of length \(\frac{4}{3^{j-1+2}} \). The union of the interiors of these intervals of length \(\frac{4}{3^{j-1+2}} \) is defined as \(G_j \). Clearly \(G_j \) is open for each \(j \) and \(R(G_j) \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c - r}{2} \right] \).

Finally we have

\[B \supseteq \bigcup_{i=1}^{n_1} I_{i1} \supseteq \bigcup_{i=1}^{n_1} J_{i1} \supseteq G_2 \supseteq \bigcup_{i=1}^{n_2} I_{i2} \supseteq \bigcup_{i=1}^{n_2} J_{i2} \supseteq \bigcup_{i=1}^{n_2} G_3 \supseteq \bigcup_{i=1}^{n_2} J_{i3} \supseteq \ldots \]
Let $P = \bigcap_{j=1}^{\infty} \left(\bigcup_{i=1}^{n_j} J_{ij} \right)$. Clearly P is a compact subset of B. Also, since $P \subset \bigcup_{i=1}^{n_j} J_{ij}$ for each $j \geq 2$, P is porous. Finally, if $s \in \left[\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2} \right]$, for each j, there exist $x_j, y_j \in \bigcup_{i=1}^{n_j} J_{ij}$ such that $x_j = sy_j$. By Bolzano-Weierstrass theorem, there exists a sequence $\{j_k\}$ of natural numbers such that $\lim_{k \to \infty} x_{j_k} = x$ and $\lim_{k \to \infty} y_{j_k} = y$. Clearly $x = sy$.

Furthermore by definition of P, $x, y \in P$ and therefore $R(P) \supseteq \left[\frac{b}{c} + \frac{r}{2}, \frac{c}{b} - \frac{r}{2} \right]$. This completes the proof. □

QUESTION. It is unknown whether the Theorem 2 is valid without the property of Baire.

REFERENCES

(Received November 19, 2016)

D. K. Ganguly, Former Professor
Department of Pure Mathematics
University of Calcutta
35 Ballygunge circular road
Kolkata 700019, India
e-mail: gangulydk@yahoo.co.in

Dhananjoy Halder
Bhairab Ganguly College
M. M. Feeder Road, Belgharia
Kolkata 700056, India
e-mail: halder.sunshine@gmail.com

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com