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A NEW APPROACH TO STEINER SYMMETRIZATION

OF COERCIVE CONVEX FUNCTIONS

LIN YOUJIANG

Abstract. A new way of defining Steiner symmetrization of coercive convex functions is pro-
posed which does not use the Steiner symmetrization of level sets. Some fundamental properties
of the new Steiner symmetrization are proved.

1. Introduction

The purpose of this paper is to introduce a new way of defining Steiner sym-
metrization for coercive convex functions, and to explore its applications. Our new def-
inition is motivated by and can be regarded as an improvement of a functional Steiner
symmetrization of [1]. In particular, our new definition has a key property: the invari-
ance of integral, which is not true for the definition of [1]. Moreover, our definition
provides a new approach to the familiar functional Steiner symmetrization (see [5]),
but we do not use geometric Steiner symmetrization and our approach is more suitable
for certain functional problems.

Steiner symmetrization was invented by Steiner [16] to prove the isoperimetric
inequality. For over 160 years Steiner symmetrization has been a fundamental tool for
attacking problems regarding isoperimetry and related geometric inequalities [7, 11, 12,
13, 14, 16, 17]. Steiner symmetrization appears in the titles of dozens of papers (see
e.g. [3, 4, 5, 10]) and plays a key role in recent work such as [2, 13].

Steiner symmetrization is a type of rearrangement. In the 1970s, interest in re-
arrangements was renewed, as mathematicians began to look for geometric proofs of
functional inequalities. Rearrangements were generalized from smooth or convex bod-
ies to measurable sets and to functions in Sobolev spaces. Functional Steiner sym-
metrization, as a kind of important rearrangement of functions, has been studied in
[1, 5, 6, 9]. In the important paper [5], Burchard proved that Steiner symmetrization is
continuous in W 1,p(Rn+1) , 1 � p < ∞ , for every dimension n � 1, in the sense that
fk → f in W 1,p implies S fk → S f in W 1,p . In the remarkable paper [8], Cianchi, Fusco
analyzed the cases of equality in Steiner symmetrization inequalities for Dirichlet-type
integrals. In particular, minimal assumptions are determined under which functions
attaining equality are necessarily Steiner symmetric. In [9], Fortier gave a thorough
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review and exposition of results regarding approximating the symmetric decreasing re-
arrangement by polarizations and Steiner symmetrizations.

For a nonnegative measurable function f , the familiar definition of its Steiner
symmetrization (see [5, 6, 9]) is defined as following:

DEFINITION 1.1. For a nonnegative measurable function f on R
n which van-

ishes at infinity, its Steiner symmetrization is defined as

Su f (x) =
∫ ∞

0
XSuE(t)(x)dt, (1.1)

where SuE(t) is the Steiner symmetrization of the level set E(t) := {x∈ R
n : f (x) > t}

about the hyperplane u⊥ and XSuE(t) denotes the characteristic function of SuE(t) .

During the study of the analogy between convex bodies and log-concave functions,
Artstein-Klartag-Milman in [1] defined another functional Steiner transformation as
follows:

DEFINITION 1.2. For a coercive convex function f : R
n → R∪{+∞} and a hy-

perplane H = u⊥ (u ∈ Sn−1 ) in R
n , for any x = x′ + tu , where x′ ∈ H and t ∈ R , we

define the Steiner symmetrization S̃u f of f about H by

(S̃u f )(x) = inf
t1+t2=t

[1
2

f (x′ +2t1u)+
1
2

f (x′ −2t2u)
]
. (1.2)

In the paper [1] by Artstein, Klartag and Milman the definition of Steiner sym-
metrization almost plays a very minor role. It appears only in a remark to the main text
and is never used in any proof.

In this paper, we introduce a new way of defining the functional Steiner sym-
metrization for coercive convex functions.

DEFINITION 1.3. For a coercive convex function f : R
n → R∪{+∞} and a hy-

perplane H = u⊥ (u∈ Sn−1 ) in R
n , for any x = x′+ tu∈ R

n , where x′ ∈H and t ∈ R ,
we define the Steiner symmetrization Su f (or SH f ) of f about H by

(Su f )(x) = sup
λ∈[0,1]

inf
t1+t2=t

[λ f (x′ +2t1u)+ (1−λ ) f (x′ −2t2u)]. (1.3)

Our definition Su f is motivated by and can be regarded as an improvement of
S̃u f in Definition 1.2. When compared with Su f in Definition 1.1, our definition sym-
metrizes a parabola-like (one-dimension) curve once at a time instead of symmetrizing
the level set as in Su f . We will elaborate on the relation between Definition 1.3 and
Definitions 1.1, 1.2.

The rest of the paper is organized as follows. In Section 2, we give some definitions
and preliminaries. In Section 3, we explore the analogy between convex bodies and
coercive convex functions using our new definition. We shall prove the following seven
properties as listed in Table 1.

In Section 4, we will elaborate on the relation between Definition 1.3 and Defini-
tions 1.1, 1.2.
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Table 1. A contrast between convex bodies and coercive convex functions on Steiner symmetriza-
tion

Convex bodies Coercive Convex Functions
1 For a convex body K, SuK is still a convex

body and symmetric about u⊥.
For a coercive convex function f , Su f is still
a coercive convex function and symmetric
about u⊥.

2 Voln(SuK) = Voln(K).
∫
Rn exp(−Su f ) =

∫
Rn exp(− f ).

3 K can be transformed into an uncondi-
tional body using n Steiner symmetriza-
tions.

f can be transformed into an unconditional
function using n Steiner symmetrizations.

4 For any convex bodies K1 ⊂ K2, then
SuK1 ⊂ SuK2.

For any coercive convex functions f1 � f2,
then Su f1 � Su f2.

5 If K is a symmetric about z, then SuK is
symmetric about z|u⊥.

If f is even about z, then Su f is even about
z|u⊥.

6 If the sequence {Ki} converges in the
Hausdorff metric to K, then the sequence
{SuKi} will converge to SuK.

If the sequence {exp(− fi)} converges in the
Lp distance to exp(− f ), then the sequence
{exp(−Su fi)} will converge to exp(−Su f ).

7 There is a sequence of directions {ui} so
that the sequence of convex bodies Ki =
Sui . . .Su1K converges to the ball with the
same volume as K.

There is a sequence of directions {ui} so
that the sequence of log-concave functions
exp(− fi), where fi = Sui . . .Su1 f , converges
to a radial function with the same integral as
exp(− f ).

2. Definitions and preliminaries

In this section, we give some basic known definitions.

DEFINITION 2.1. Let K be a non-empty convex set in R
n and let H be a hyper-

plane in R
n with unit normal vector u . The Steiner symmetrization SHK of K about

H is defined as:

SHK =
{

x′ +
1
2
(t1 − t2)u : x′ ∈ PH(K), ti ∈ IK(x′) f or i = 1,2

}
, (2.1)

where

PH(K) = {x′ ∈ H : x′ + tu ∈ K for some t ∈ R} (2.2)

is the projection of K onto the hyperplane H and

IK(x′) = {t ∈ R : x′ + tu∈ K}. (2.3)

A function f : R
n → R∪{−∞,+∞} is called proper if {x ∈ R

n : f (x) = −∞}= /0
and {x ∈ R

n : f (x) = +∞} �= R
n .
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DEFINITION 2.2. A function f : R
n → R∪{+∞} is called convex if f is proper

and

f (αx+(1−α)y) � α f (x)+ (1−α) f (y), (2.4)

for all x , y ∈ R
n and for 0 � λ � 1.

DEFINITION 2.3. A convex function f is said to be coercive if

lim
|x|→+∞

f (x) = +∞. (2.5)

A convex function f : R
n → R∪{+∞} is called coercive if for any M > 0, there exists

r > 0, s.t. f (x) > M , as |x| > r , where | · | denotes the Euclidean norm.

3. The functional Steiner symmetrization

First, we give the definition of Steiner symmetrization for coercive convex func-
tions.

DEFINITION 3.1. Let n � 1 be an integer and let f : R
n → R∪{+∞} be a coer-

cive convex function. For u ∈ Sn−1 , let H = u⊥ ⊂ R
n be a hyperplane through origin

and orthogonal to u . For any x = x′ + tu ∈ R
n , where x′ ∈ H and t ∈ R , we define the

Steiner symmetrization Su f (or SH f ) of f about H by

(Su f )(x) = sup
λ∈[0,1]

inf
t1+t2=t

[λ f (x′ +2t1u)+ (1−λ ) f (x′ −2t2u)]. (3.1)

REMARK 3.1. 1) In the above definition, when n = 1, S0 = {−1,1} and H =
{0} , it is clear that (S1 f )(x) = (S−1 f )(x) for any x ∈ R . Let S f denote Steiner sym-
metrization of one-dimensional function, then

S f (x) = sup
λ∈[0,1]

inf
x1+x2=x

[λ f (2x1)+ (1−λ ) f (−2x2)]. (3.2)

2) Similarly, we define the Steiner symmetrization SH′ f of f about an affine hy-
perplane H ′ = u⊥ + t0u by (3.1), where x′ ∈ H ′ . Let H = u⊥ , we can easily get that

(SH′ f )(x) = (SH f )(x− t0u). (3.3)

We first study the one-dimensional case.

THEOREM 3.1. If f : R → R∪{+∞} is a coercive convex function, then S f (x)
is a coercive even convex function and for any s ∈ R ,

Vol1([ f � s]) = Vol1([S f � s]), (3.4)

where [ f � s] = {x ∈ R : f (x) � s} denotes the sublevel set of f .
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In order to prove Theorem 3.1, we need the following two lemmas. Because they
are obvious, we omit their proofs.

LEMMA 3.1. Let f : R → R be a coercive convex function, then we have
(i) If a = inf f (t) , then a ∈ (−∞,+∞) and f−1(a) = {x ∈ R : f (x) = a} is a

nonempty finite closed interval [μ ,ν] , where μ may equal to ν .
(ii) f (t) is strictly decreasing for the interval (−∞,μ ] and strictly increasing for

the interval [ν,+∞) .
(iii) If f (c) = f (d) and c < d , then μ < d and c < ν .
(iv) For c and d given in (iii), we have the right derivative f ′r(d) � 0 for f is

increasing on [μ ,+∞) , we also have f ′r(c) � 0 for f is decreasing on (−∞,ν] .

LEMMA 3.2. Let f : R → R be a coercive convex function, for two intervals
[a,a + t0] and [b,b + t0] with the same length t0 > 0 , if f (a) = f (a + t0) , then we
can get that either f (b) � f (a) or f (b+ t0) � f (a+ t0) .

Next, we prove Theorem 3.1.

Proof. We know that the effective domain of convex function f : R
n →R∪{+∞}

is the nonempty set

dom f := {x ∈ R
n : f (x) < +∞}. (3.5)

To prove Theorem 3.1, we distinguish two cases: dom f = R and dom f �= R .
Case (1) dom f = R . There are three steps.
First Step. We prove that S f is even. For any x ∈ R , by (3.2), we have

S f (−x) = sup
λ∈[0,1]

inf
x1+x2=−x

[λ f (2x1)+ (1−λ ) f (−2x2)]

= sup
λ∈[0,1]

inf
x2∈R

[λ f (−2x2−2x)+ (1−λ ) f (−2x2)]

= sup
λ∈[0,1]

inf
x2∈R

[λ f (2x2−2x)+ (1−λ ) f (2x2)]

= sup
λ ′∈[0,1]

inf
x2∈R

[λ ′ f (2x2)+ (1−λ ′) f (2x2 −2x)]

= S f (x), (3.6)

where the fourth equality is by replacing λ by λ ′ = 1−λ .
Second Step. We prove that S f (0) = inf f and for any x > 0, there exists some

x′ ∈ R such that

S f (x) = f (x′) = f (x′ −2x). (3.7)

For x = 0, by (3.2), we have

S f (0) = sup
λ∈[0,1]

inf
x1+x2=0

[λ f (2x1)+ (1−λ ) f (−2x2)]

= inf
x1∈R

f (2x1) = inf
x∈R

f (x). (3.8)
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For x > 0, since f is coercive and convex, there exists some x′ ∈ R satisfying

f (x′) = f (x′ −2x). (3.9)

Indeed, let fx(x1) := f (x1)− f (x1 − 2x) , a = inf f and f−1(a) = [μ ,ν] , by Lemma
3.1(ii), fx(x1) < 0 when x1 < μ and fx(x1) > 0 when x1 > ν . Since f (x1) and f (x1−
2x) are convex functions about x1 ∈ R and any convex function is continuous on the
interior of its effective domain, thus fx(x1) is continuous in R . Therefore, there exists
some x′ such that fx(x′) = 0.

Now we prove S f (x) = f (x′) , where x > 0 and x′ satisfies equality (3.9). Let
Gx(λ ) be a function about λ ∈ [0,1] defined as

Gx(λ ) := inf
x1∈R

[λ f (2x1)+ (1−λ ) f (2x1−2x)], (3.10)

then

S f (x) = sup
λ∈[0,1]

Gx(λ ). (3.11)

For any λ ∈ [0,1] , choose x1 = x′
2 , we have

Gx(λ ) = inf
x1∈R

[λ f (2x1)+ (1−λ ) f (2x1−2x)]

� λ f (x′)+ (1−λ ) f (x′ −2x) = f (x′). (3.12)

Thus,

S f (x) = sup
λ∈[0,1]

Gx(λ ) � f (x′). (3.13)

On the other hand, we prove that there exists some λ0 ∈ [0,1] such that Gx(λ0) =
f (x′) . Since f is a convex function defined in R and by Theorem 1.5.2 in [15], both
the right derivative f ′r and the left derivative f ′l exist and f ′l � f ′r .

CLAIM 1. There exists some λ0 ∈ [0,1] satisfying

λ0 f ′r(x
′)+ (1−λ0) f ′r(x

′ −2x) = 0. (3.14)

Proof. Since f (x′) = f (x′ − 2x) and x > 0, and by Lemma 3.1(iv), we have
f ′r(x′) � 0 and f ′r(x′ −2x) � 0, thus f ′r(x′)− f ′r(x′ −2x) � 0.

(i) If f ′r(x′)− f ′r(x′ −2x) > 0, let

λ0 =
− f ′r(x′ −2x)

f ′r(x′)− f ′r(x′ −2x)
,

then λ0 ∈ [0,1] and

λ0 f ′r(x
′)+ (1−λ0) f ′r(x

′ −2x) = 0.
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(ii) If f ′r(x′)− f ′r(x′ − 2x) = 0, then f ′r(x′) = f ′r(x′ − 2x) = 0, thus, for any λ0 ∈
[0,1] , we can get (3.14). �

Fix a λ0 as defined by (3.14), we define

Φλ0
(x1) = λ0 f (2x1)+ (1−λ0) f (2x1 −2x). (3.15)

Since f is a convex function, then Φλ0
is a convex function about x1 . By (3.14),

we have that the right derivative and the left derivative of Φλ0
at x1 = x′

2 satisfy

Φ′
λ0r

(x1)|x1= x′
2

= 2λ0 f ′r(x
′)+2(1−λ0) f ′r(x

′ −2x) = 0, (3.16)

and

Φ′
λ0l

(x1)|x1= x′
2

� Φ′
λ0r

(x1)|x1= x′
2

= 0. (3.17)

By (3.9), (3.15) and the fact that if a convex function f : R → R satisfies f ′r(x0) � 0
and f ′l (x0) � 0 then f (x0) = min{ f (x) : x ∈ R} , we have

inf
x1∈R

Φλ0
(x1) = Φλ0

(
x′

2
) = f (x′). (3.18)

By (3.10), (3.15) and (3.18), we have

S f (x) = sup
λ∈[0,1]

Gx(λ ) � Gx(λ0) = inf
x1∈R

Φλ0
(x1) = f (x′). (3.19)

By (3.7), (3.13) and (3.19), we have S f (x) = f (x′) = f (x′ −2x) .
Third Step. We prove that S f is coercive and convex, and for any s ∈ R ,

Vol1([S f � s]) = Vol1([ f � s]).

First, we prove that S f is coercive. Suppose that there exists M0 > 0 and a se-
quence {xn} satisfying |xn| > n and S f (xn) < M0 for any positive integer n , then by
(3.7), there exists x′n such that

S f (xn) = f (x′n) = f (x′n −2xn) < M0. (3.20)

Since

2max{|x′n|, |x′n−2xn|} � |x′n|+ |x′n−2xn| � 2|xn| > 2n, (3.21)

thus there is a sequence {yn} , where yn = x′n if |x′n| � |x′n −2xn| and yn = x′n −2xn if
|x′n|� |x′n−2xn| , satisfying limn→+∞ |yn|= +∞ and f (yn)< M0 , which is contradictory
with f is coercive.

Next, we prove that S f is a convex function in R . First, we prove that S f (x) is
increasing on the interval [0,+∞) . In fact, by (3.7), for any 0 < x1 < x2 , there exist x′1
and x′2 such that S f (xi) = f (x′i) = f (x′i−2xi) (i = 1,2) . By Lemma 3.1(iii), for μ and
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ν given in Lemma 3.1, we have x′i > μ (i = 1,2) and x′i−2xi < ν (i = 1,2) . If f (x′1) >
f (x′2) , then x′1 > x′2 for f is increasing on the interval [μ ,+∞) , thus x′1−2x1 > x′2−2x2

for 0 < x1 < x2 , which implies that f (x′1−2x1) � f (x′2−2x2) for f is decreasing on the
interval (−∞,ν] . The contradiction implies that f (x′1) � f (x′2) , thus S f is increasing
on the interval [0,+∞) . And because S f is even, thus to prove S f is convex in R , it
suffices to prove that S f is convex in [0,+∞) , i.e., for any 0 � x1 < x2 and 0 < α < 1

S f (αx1 +(1−α)x2) � αS f (x1)+ (1−α)S f (x2). (3.22)

By (3.7), let x′1 , x′2 and x0 � (αx1 +(1−α)x2)′ be three real numbers such that

S f (x1) = f (x′1) = f (x′1 −2x1), S f (x2) = f (x′2) = f (x′2 −2x2) (3.23)

and

S f (αx1 +(1−α)x2) = f (x0) = f (x0 −2(αx1 +(1−α)x2)). (3.24)

Since f is a convex function, we have

α f (x′1)+ (1−α) f (x′2) � f (αx′1 +(1−α)x′2) (3.25)

and

α f (x′1 −2x1)+ (1−α) f (x′2−2x2)
� f (αx′1 +(1−α)x′2−2(αx1 +(1−α)x2)). (3.26)

Since f (x0) = f (x0 −2(αx1 +(1−α)x2)) and both intervals [x0 −2(αx1 +(1−
α)x2),x0] and [αx′1 +(1−α)x′2−2(αx1 +(1−α)x2),αx′1 +(1−α)x′2] have the same
length 2(αx1 +(1−α)x2) > 0, by Lemma 3.2, thus either

f (αx′1 +(1−α)x′2) � f (x0) (3.27)

or

f (αx′1 +(1−α)x′2−2(αx1 +(1−α)x2)) � f (x0 −2(αx1 +(1−α)x2)). (3.28)

If (3.27) holds, then we use (3.25) and if (3.28) holds, then we use (3.26), thus

α f (x′1)+ (1−α) f (x′2) � f (x0). (3.29)

By (3.23), (3.24) and (3.26), S f is a convex function.
Finally, we prove that Vol1([ f � s]) = Vol1([S f � s]) for any s ∈ R . By S f (x)

is an even convex function, thus S f (0) = infS f . Since S f (0) = inf f by (3.8), thus
infS f = inf f . Let a = infS f = inf f and (S f )−1(a) = [−δ ,δ ] and f−1(a) = [μ ,ν] .

If s = a , then Vol1([ f � s]) = ν−μ and Vol1([S f � s]) = 2δ . Next, we prove ν −
μ = 2δ . By Lemma 3.1, S f is strictly decreasing on (−∞,−δ ) and strictly increasing
on (δ ,+∞) , similarly f is strictly decreasing on (−∞,μ) and strictly increasing on
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(ν,+∞) . For δ � 0, if ν − μ > 2δ , then let x0 = δ + ν−μ−2δ
2 > δ , thus S f (x0) >

S f (δ ) , which is contradictory with

S f (x0) = sup
λ∈[0,1]

inf
x1∈R

[λ f (2x1)+ (1−λ ) f (2x1−2x0)]

� sup
λ∈[0,1]

[λ f (ν)+ (1−λ ) f (ν −2x0)] = a, (3.30)

where inequality is by choosing x1 = ν
2 and last equality is by ν − 2x0 = μ . Thus,

ν −μ � 2δ . Thus if δ = 0, then μ = ν . For δ > 0, by (3.7), there exists δ ′ such that

S f (δ ) = f (δ ′) = f (δ ′ −2δ ) = a,

which implies that ν − μ � 2δ . Thus, ν − μ = 2δ .
If s > a , by Lemma 3.1 and (3.7) and S f is even, there is a unique x > 0 and a

unique x′ ∈ R such that

S f (−x) = S f (x) = s = f (x′) = f (x′ −2x),

thus we have
Vol1([ f � s]) = Vol1([S f � s]) = 2x.

If s < a , then [S f � s] = [ f � s] = /0 , thus Vol1([ f � s]) = Vol1([S f � s]) = 0.
Case (2) dom f �= R . There exist eight cases for dom f �= R : 1). [α,β ] ; 2).

(α,β ) ; 3). (α,β ] ; 4). [α,β ) ; 5). (−∞,β ] ; 6). (−∞,β ) ; 7). [α,+∞) ; 8). (α,+∞) .
Here we just prove Theorem 3.1 for dom f = (α,β ) . For other cases, we can prove
Theorem 3.1 by the same method. For dom f = (α,β ) , there exist three cases: (i). f
is decreasing on (α,β ) ; (ii). f is increasing on (α,β ) ; (iii). f is decreasing on (α,γ]
and increasing on [γ,β ) for some γ ∈ (α,β ) . Note that S f is even for all cases by the
same proof in Case (1).

(i) f is decreasing on (α,β ) .
First, we prove that there is some s0 ∈ R such that

lim
x→β ,x<β

f (x) = s0. (3.31)

Choose t > 0 small enough such that β − t > α+β
2 . Let x0 = α+β

2 , since f is
convex and decreasing in (α,β ) , we have

1
2

f (x0)+
1
2

f (β − t) � f

(
1
2
x0 +

1
2
(β − t)

)
� f

(
1
2
x0 +

1
2

β
)

. (3.32)

Thus, we have

f (β − t) � 2

[
f (

1
2
x0 +

1
2

β )− 1
2

f (x0)
]
, (3.33)

which implies that f is bounded below. For a monotone decreasing function, if it is
bounded below, then it has infimum. Thus we have equality (3.31).
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On the other hand, we have either

lim
x→α ,x>α

f (x) < +∞ or lim
x→α ,x>α

f (x) = +∞.

For the two cases, we can prove our theorem by the same method.
Step 1. Prove that S f is coercive.

When |x| � β−α
2 , by dom f = (α,β ) , we have

S f (x) = sup
λ∈[0,1]

inf
x1∈R

[λ f (2x1)+ (1−λ ) f (2x1−2x)] = +∞. (3.34)

Thus, S f is coercive.
Step 2. Prove that S f is convex. We first prove the following claim.

CLAIM 2. For 0 < |x| < β−α
2 , we have

S f (x) = f (β −2|x|). (3.35)

For |x| = 0, we have

S f (0) = lim
x→β ,x<β

f (x). (3.36)

Proof. For 0 < |x| < β−α
2 , since S f is even, we may assume that x > 0. Since f

is decreasing in (α,β ) , for λ ∈ [0,1] ,

inf
x1∈R

[λ f (2x1)+ (1−λ ) f (2x1−2x)] = λ lim
x→β , x<β

f (x)+ (1−λ ) f (β −2x).

Thus, by f (β −2x) � limx→β ,x<β f (x) , we have

S f (x) = sup
λ∈[0,1]

[
λ lim

x→β , x<β
f (x)+ (1−λ ) f (β −2x)

]
= f (β −2x).

For |x| = 0, by (3.2), we have

S f (0) = inf
x1∈R

f (2x1) = lim
x→β ,x<β

f (x). (3.37)

�

By (3.34), (3.35) and (3.36), we know that domS f = (− β−α
2 , β−α

2 ) .
Next, we prove that S f is convex on R . For any x1,x2 ∈ R and λ ∈ (0,1) ,
(i) if |x1| � β−α

2 or |x2| � β−α
2 , by (3.34), then S f (x1) = +∞ or S f (x2) = +∞ ,

thus

S f (λx1 +(1−λ )x2) � λS f (x1)+ (1−λ )S f (x2); (3.38)
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(ii) if 0 < |x1|< β−α
2 and 0 < |x2|< β−α

2 , then 0 < |λx1 +(1−λ )x2|< β−α
2 , by

(3.35) and f is convex and decreasing in (α,β ) , we have

λS f (x1)+ (1−λ )S f (x2) = λ f (β −2|x1|)+ (1−λ ) f (β −2|x2|)
� f (β −2(λ |x1|+(1−λ )|x2|))
� f (β −2(|λx1 +(1−λ )x2|))
= S f (λx1 +(1−λ )x2); (3.39)

(iii) if x1 = 0 and x2 = 0, equality (3.38) is clearly established by (3.36);

(iv) if x1 = 0 and 0 < |x2| < β−α
2 , by (3.35), (3.36) and the convexity and conti-

nuity of f in (α,β ) , then we have

S f (λx1 +(1−λ )x2) = S f ((1−λ )x2) = f (β −2(1−λ )|x2|)
= lim

t→0,t>0
f (β − t−2(1−λ )|x2|)

= lim
t→0,t>0

f (λ (β − t)+ (1−λ )(β − t−2|x2|))
� lim

t→0,t>0
[λ f (β − t)+ (1−λ ) f (β − t−2|x2|)]

= λ lim
t→0,t>0

f (β − t)+ (1−λ ) lim
t→0,t>0

f (β − t−2|x2|)
= λ lim

x→β ,x<β
f (x)+ (1−λ ) f (β −2|x2|)

= λS f (x1)+ (1−λ )S f (x2); (3.40)

(v) if 0 < |x1| < β−α
2 and x2 = 0, the proof is same as in the case (iv).

Step 3. We prove that Vol1([S f � s]) = Vol1([ f � s]) for any s ∈ R .
Since S f is an even convex function, thus S f (0) = infS f . By (3.2), we have

S f (0) = inf f , thus infS f = inf f . Let a = inf f = infS f , then f−1(a) = {x ∈ R :
f (x) = a} has three cases: /0 , [γ,β ) (where γ ∈ (α,β )) and (α,β ) .

(i) If f−1(a) = /0 , then f is strictly decreasing on (α,β ) .
If s = a , we prove (S f )−1(a) = {0} . For any δ ∈ (0, β−α

2 ) , we have α < β −
2δ < β , thus by (3.35) and f is strictly decreasing on (α,β ) , we have S f (δ ) = f (β −
2δ ) > limx→β ,x<β f (x) = a , which implies that (S f )−1(a) = {0} . Thus Vol1([S f �
s]) = Vol1([ f � s]) = 0.

If a < s < b , where b = limx→α ,x>α f (x) . Since (S f )−1(a) = {0} , S f is strictly

decreasing on (− β−α
2 ,0) and strictly increasing on (0, β−α

2 ) . If s ∈ (a,b) , by f is
strictly decreasing in (α,β ) , then there exists a unique x′ ∈ (α,β ) such that f (x′) = s ,

thus [ f � s] = [x′,β ) . By (3.35) and 0 < β−x′
2 < β−α

2 , we have S f (β−x′
2 ) = f (x′) = s ,

thus [S f � s] = [− β−x′
2 , β−x′

2 ] . Thus for s ∈ (a,b) , Vol1(S f � s) = Vol1([ f � s]) =
β − x′ .

If s � b , then b < +∞ for s ∈ R , since f (x) < b for x ∈ (α,β ) and S f (x) < b
for x ∈ (− β−α

2 , β−α
2 ) , then Vol1(S f � s) = Vol1([ f � s]) = β −α .

If s < a , since [S f � s] = [ f � s] = /0 , then Vol1([S f � s]) = Vol1([ f � s]) = 0.
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(ii) If f−1(a) = [γ,β ) , where γ ∈ (α,β ) , then f is strictly decreasing on (α,γ] .
If s = a , we prove that (S f )−1(a) = [− β−γ

2 , β−γ
2 ] . Indeed, for x∈ [− β−γ

2 , β−γ
2 ] , if

0 < |x|� β−γ
2 , then γ � β −2|x|< β , thus by (3.35) we have S f (x) = f (β −2|x|) = a ,

if |x| = 0, then by (3.36) we have S f (0) = a . Thus [− β−γ
2 , β−γ

2 ] ⊂ (S f )−1(a) . On the

other hand, if |x| > β−γ
2 and |x| < β−α

2 , then α < β − 2|x| < γ , thus by f is strictly
decreasing in (α,γ] , we have S f (x) = f (β − 2|x|) > f (γ) = a , which implies that
x /∈ (S f )−1(a) for |x| > β−γ

2 . Thus (S f )−1(a) = [− β−γ
2 , β−γ

2 ] . Thus Vol1([S f � s]) =
Vol1([ f � s]) = β − γ for s = a .

If s ∈ (a,b) , where b = limx→α ,x>α f (x) . Since (S f )−1(a) = [− β−γ
2 , β−γ

2 ] , S f

is strictly decreasing on (− β−α
2 ,− β−γ

2 ] and strictly increasing on [β−γ
2 , β−α

2 ) . If
s ∈ (a,b) , then there exists a unique x′ ∈ (α,γ) such that f (x′) = s , thus [ f � s] =
[x′,β ) . Since S f (β−x′

2 ) = f (x′) = s , thus [S f � s] = [− β−x′
2 , β−x′

2 ] . Thus for s∈ (a,b) ,
Vol1(S f � s) = Vol1([ f � s]) = β − x′ .

If s � b , then b < +∞ for s ∈ R , since f (x) < b for x ∈ (α,β ) and S f (x) < b
for x ∈ (− β−α

2 , β−α
2 ) , thus Vol1(S f � s) = Vol1([ f � s]) = β −α .

If s < a , since [S f � s] = [ f � s] = /0 , then Vol1([S f � s]) = Vol1([ f � s]) = 0.
(iii) If f−1(a) = (α,β ) , then f (x) = a for x ∈ (α,β ) , otherwise f (x) = +∞ . By

(3.2), we have S f (x) = a for x ∈ (− β−α
2 , β−α

2 ) , otherwise S f (x) = +∞ . Thus, we
have Vol1(S f � s) =Vol1([ f � s]) for any s ∈ R .

(ii) f is increasing on (α,β ) . The proof of this case is the same as f is decreasing
on (α,β ) . Furthermore, we can get the following conclusions.

i) There exists s0 such that limx→α ,x>α f (x) = s0 ;

ii) If |x| � β−α
2 , then S f (x) = +∞ ;

iii) If 0 < |x| < β−α
2 , then S f (x) = f (α +2|x|) ;

iv) If |x| = 0, then S f (0) = limx→α ,x>α f (x) .

(iii) f is decreasing on (α,γ] and increasing on [γ,β ) for some γ ∈ (α,β ) . There
exist four cases:

i) limx→α ,x>α f (x) < +∞ and limx→β ,x<β f (x) < +∞ ;

ii) limx→α ,x>α f (x) = +∞ and limx→β ,x<β f (x) < +∞ ;

iii) limx→α ,x>α f (x) < +∞ and limx→β ,x<β f (x) = +∞ ;

iv) limx→α ,x>α f (x) = +∞ and limx→β ,x<β f (x) = +∞ .

For case iv), when |x| � β−α
2 , S f (x) = +∞ , when |x| < β−α

2 , we can prove our
conclusion by the same method with Case (1) (i.e., the case of domf = R).

For cases ii) and iii), we can prove our conclusion by the same method with case
i), thus it is sufficient to prove case i).
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For case i), we may assume that limx→α ,x>α f (x) > a and limx→β ,x<β f (x) > a ,
where a = inf f , otherwise if limx→α ,x>α f (x) = a (or limx→β ,x<β f (x) = a ), then f
is increasing in (α,β ) (or f is decreasing in (α,β )), the case has been considered in
case (i) (or case (ii)).

If limx→α ,x>α f (x) = limx→β ,x<β f (x) = b > a , then when |x| < β−α
2 , by the en-

tirely same method with that in Case (1) (i.e., the case of domf = R), we have the
following conclusions.

1) S f is even and convex on (− β−α
2 , β−α

2 ) ;

2) For any |x|< β−α
2 , there exists x′ ∈ (α,β ) such that S f (x) = f (x′) = f (x′ −2x) ;

3) For any s ∈ (−∞,b) , we have Vol1([S f � s]) = Vol1([ f � s]) .

By the above 1), 2) and 3), we can easily prove that S f is convex in R and for any
s ∈ R , Vol1([S f � s]) = Vol1([ f � s]) .

If limx→α ,x>α f (x) �= limx→β ,x<β f (x) , we may assume that

lim
x→α ,x>α

f (x) = b > lim
x→β ,x<β

f (x) = c > a. (3.41)

Let γ ∈ (α,β ) satisfy f (γ) = c . If |x| < β−γ
2 , then by the proof of Case (1) (i.e., the

case of domf = R), there exists x′ ∈ (γ,β ) such that S f (x) = f (x′) = f (x′ −2x) .
Step 1. We prove that for |x| � β−γ

2 and |x| < β−α
2 ,

S f (x) = f (β −2|x|). (3.42)

Since S f is even, we may assume β−γ
2 � x < β−α

2 . For any λ ∈ [0,1] , we have

inf
x1∈R

[λ f (2x1)+ (1−λ ) f (2x1−2x)] � λ lim
t→β ,t<β

f (t)+ (1−λ ) f (β −2x)

= λc+(1−λ ) f (β −2x). (3.43)

Since β−γ
2 � x < β−α

2 , then α < β − 2x � γ . Since f is decreasing on (α,γ] , thus
f (β −2x) � f (γ) = c . Thus, by (3.43), we have

S f (x) = sup
λ∈[0,1]

inf
x1∈Rn

[λ f (2x1)+ (1−λ ) f (2x1−2x)]

� sup
λ∈[0,1]

[λc+(1−λ ) f (β −2x)] = f (β −2x). (3.44)

On the other hand, we will prove that S f (x) � f (β − 2x) . For λ = 0 or λ = 1, we
have

inf
x1∈R

[λ f (x1)+ (1−λ ) f (x1−2x)] = inf f . (3.45)

Thus

sup
λ∈[0,1]

inf
x1∈R

[λ f (x1)+ (1−λ ) f (x1−2x)]

= sup
λ∈(0,1)

inf
x1∈R

[λ f (x1)+ (1−λ ) f (x1−2x)]. (3.46)
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Since dom f = (α,β ) , thus for any λ ∈ (0,1) , we have

inf
x1∈R

[λ f (x1)+ (1−λ ) f (x1−2x)]

= inf
x1∈(α+2x,β )

[λ f (x1)+ (1−λ ) f (x1−2x)]. (3.47)

Thus

S f (x) = sup
λ∈(0,1)

inf
x1∈(α+2x,β )

[λ f (x1)+ (1−λ ) f (x1−2x)]. (3.48)

By (3.41), if f−1(a) = [μ ,ν] , then α < μ � ν < β , thus f is strictly decreasing
on (α,μ ] and strictly increasing on [ν,β ) .

CLAIM 3. For a fixed β ′ ∈ (ν,β )∩ (α + 2x,β ) , there exists δ > 0 such that
function

Gx(x1) := λ f (x1)+ (1−λ ) f (x1−2x) (3.49)

is decreasing on (α +2x,β ′] for any 0 < λ < δ .

We first use Claim 3 to prove our result, the proof of this claim will be given later.
By (3.48) and Claim 3, we have that

S f (x) = sup
λ∈(0,1)

inf
x1∈(α+2x,β )

[λ f (x1)+ (1−λ ) f (x1−2x)]

� sup
λ∈(0,δ )

inf
x1∈(α+2x,β )

[λ f (x1)+ (1−λ ) f (x1−2x)]

= sup
λ∈(0,δ )

inf
x1∈[β ′,β )

[λ f (x1)+ (1−λ ) f (x1−2x)]

� sup
λ∈(0,δ )

[λ f (β ′)+ (1−λ ) f (β −2x)]

= f (β −2x), (3.50)

where the second inequality is by x1 ∈ [β ′,β ) ⊂ (ν,β ) and β ′ − 2x � x1 − 2x < β −
2x � γ and f is strictly increasing on (ν,β ) and strictly decreasing on (α,γ] , and the
last equality is by f (β −2x) � f (β ′) .

Next, we prove Claim 3. For x1 ∈ (α +2x,β ′] , the right derivative of Gx(x1)

G′
xr(x1) = λ f ′r(x1)+ (1−λ ) f ′r(x1−2x)

� λ f ′r(β
′)+ (1−λ ) f ′r(β

′ −2x), (3.51)

where the inequality is by the right derivative of a convex function is increasing on the
interior of its effective domain. Since β ′ ∈ (ν,β )∩ (α + 2x,β ) and x ∈ [β−γ

2 , β−α
2 ) ,

then β ′ − 2x ∈ (α,γ + β ′ −β ) , thus f ′r(β ′) > 0 and f ′r(β ′ − 2x) < 0 for f is strictly
increasing on (ν,β ) and strictly decreasing on (α,γ] . Thus, by (3.51), we choose

δ =
− f ′r(β ′ −2x)

f ′r(β ′)− f ′r(β ′ −2x)
, (3.52)
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then G′
xr(x1) < 0 on (α +2x,β ′] for any λ ∈ (0,δ ) . Therefore, Gx(x1) is decreasing

on (α +2x,β ′] for any λ ∈ (0,δ ) . This completes the proof of Claim 3.
Step 2. We prove that S f is convex in R . Since S f is increasing on [0, β−α

2 ) and

S f is even on (− β−α
2 , β−α

2 ) . Thus, it suffices to prove S f is convex in [0, β−α
2 ) . For

any x1,x2 ∈ [β−γ
2 , β−α

2 ) and λ ∈ (0,1) , by (3.42) and f is convex function, we have

λS f (x1)+ (1−λ )S f (x2) = λ f (β −2x1)+ (1−λ ) f (β −2x2)
� f (β −2(λx1 +(1−λ )x2))
= S f (λx1 +(1−λ )x2), (3.53)

where the last equality is by λx1 +(1−λ )x2 ∈ [β−γ
2 , β−α

2 ) . By (3.53), S f is convex

on [β−γ
2 , β−α

2 ) . Because that S f is convex in [0, β−γ
2 ] by the proof in Case (1) (i.e.,

the case of dom f = R), it suffices to prove that the left derivative of S f at x = β−γ
2 is

less than its right derivative at x = β−γ
2 .

By (3.42), we have

S f ′r
(β − γ

2

)
= lim

t→0,t>0

S f (β−γ
2 + t)−S f (β−γ

2 )
t

= lim
t→0,t>0

f (γ −2t)− f (γ)
t

= −2 f ′l (γ). (3.54)

For any t ∈ (− β−γ
2 ,0) , we have β−γ

2 + t ∈ (0, β−γ
2 ) . Thus there exist x′, x′′ ∈ (γ,β )

such that x′′ − x′ = 2(β−γ
2 + t) and

S f
(β − γ

2
+ t

)
= f (x′) = f (x′′). (3.55)

Since

(x′ − γ)+2
(β − γ

2
+ t

)
= (x′ − γ)+ (x′′ − x′) = x′′ − γ < β − γ, (3.56)

we have x′ < γ − 2t . Let |t| be sufficiently small such that γ + 2|t| < μ , where μ
satisfies f−1(a) = [μ ,ν] , then f (x′) > f (γ −2t) for f is strictly decreasing on (γ,μ) .
Thus we have

S f ′l
(β − γ

2

)
= lim

t→0,t<0

S f (β−γ
2 + t)−S f (β−γ

2 )
t

= lim
t→0,t<0

f (x′)− f (γ)
t

� lim
t→0,t<0

f (γ −2t)− f (γ)
t

= −2 f ′r(γ). (3.57)

Since f is convex function, then f ′l (γ) � f ′r(γ) , by (3.54) and (3.57), we have S f ′l (
β−γ

2 )
� S f ′r(

β−γ
2 ) .
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Step 3. We prove that Vol1([S f � a]) = Vol([ f � s]) for any s ∈ R . When s <
f (γ) , the proof is same as in Case (1). When s � f (γ) , the proof is same as that when
f is decreasing in (α,β ) . �

REMARK 3.2. 1) By Theorem 3.1, for any x ∈ R , if x = 0, then S f (0) = inf f ; if
x �= 0, then there exist three cases:

i) S f (x) = f (x′) = f (x′ −2|x|) for some x′ ∈ R ;

ii) S f (x) = f (x0 − 2|x|) for some x0 ∈ R , where x0 satisfies that f (y) = +∞ for
y > x0 and x0 −2|x| ∈ {y ∈ R : f (y) > limz→x−0

f (z)};

iii) S f (x) = f (x0 + 2|x|) for some x0 ∈ R , where x0 satisfies that f (y) = +∞ for
y < x0 and x0 +2|x| ∈ {y ∈ R : f (y) > limz→x+

0
f (z)};

2) In Theorem 3.1, there exist three cases for domS f : i) domS f = (−δ ,δ ) ; ii)
domS f = [−δ ,δ ] ; iii) domS f = R . domS f = (−δ ,δ ) is corresponding to dom f =
(α,β ) , dom f = (α,β ] and dom f = [α,β ) , where δ = β−α

2 . domS f = [−δ ,δ ] is cor-

responding dom f = [α,β ] , where δ = β−α
2 . domS f = R is corresponding to dom f =

(−∞,β ) , dom f = (−∞,β ] , dom f = (α,+∞) , dom f = [α,+∞) and dom f = R . By
the defintion of Steiner symmetrization of non-empty convex set (Definition 2.1) and
Definition 3.1, for coercive convex function f : R

n → R∪{+∞} and its Steiner sym-
metrization Su f about hyperplane u⊥ , the effective domains of f and Su f satisfy

dom(Su f ) = Su⊥(dom f ). (3.58)

We know that dom f is convex if f is convex and the Steiner symmetrization of a non-
empty convex set is still a convex set, thus by equality (3.58), we have dom(Su f ) is a
convex set.

3) For a convex function f : R
n → R∪{+∞} , the epigraph of f is defined as

epi f := {(x,y) ∈ R
n+1 : x ∈ dom f , y � f (x)}. (3.59)

By the definition of epigraph and Theorem 3.1, for one-dimensional coercive convex
function f : R → R∪ {+∞} , we have cl(epiS f ) = Se⊥(cl(epi f )) , where e is a unit
vector along the x -axis and clA denotes the closure of a subset A ⊂ R

n . For f : R
n →

R∪ {+∞} is a coercive and convex function and u ∈ Sn−1 . For any x′ ∈ u⊥ and
t ∈ R , if f̃ (t) = f (x′ + tu) is considered as a one-dimensional function about t , then
S f̃ (t) = Su f (x′ + tu) . By Theorem 3.1, cl(epi(S f̃ )) = Se⊥(cl(epi f̃ )) . Since x′ ∈ u⊥ is
arbitrary, thus we have

cl(epi(Su f )) = Sũ⊥(cl(epi f )), (3.60)

where ũ⊥ ⊂ R
n+1 denotes the hyperplane through the origin and orthogonal to the unit

vector ũ = (u,0) ∈ R
n+1 .

Next, by Definition 3.1 and Theorem 3.1, we first prove the following five theo-
rems which are corresponding to the properties 1–5 in Table 1.
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THEOREM 3.2. If f : Rn →R∪{+∞} is a coercive convex function and u∈ Sn−1 ,
then Su f is a coercive convex function and symmetric about u⊥ .

We first establish a lemma that will be used in the proof of Theorem 3.2.

LEMMA 3.3. For f : R
n → R∪ {+∞} , not identically +∞ , let u ∈ Sn−1 and

H = u⊥ , if

i) f is symmetric with respect to hyperplane H , i.e., for any x′ ∈ H and t ∈ R ,
f (x′ + tu) = f (x′ − tu);

ii) for any x′ ∈ H and t1 , t2 ∈ R , if |t1| � |t2| , then f (x′ + t1u) � f (x′ + t2u);

iii) f is convex on half-space H+ , where

H+ = {x′ + tu : x′ ∈ u⊥, t � 0}, (3.61)

then f is a convex function defined on R
n .

Proof. For any x,y ∈ R
n , let x = x′ + tu and y = y′ + su , where x′ , y′ ∈ H .

If t � 0 and s � 0, for λ ∈ (0,1) , then by iii),

f (λx+(1−λ )y) � λ f (x)+ (1−λ ) f (y). (3.62)

If t � 0 and s < 0, by i), ii) and iii), we have

λ f (x)+ (1−λ ) f (y) = λ f (x′ + tu)+ (1−λ ) f (y′+ su)
= λ f (x′ + tu)+ (1−λ ) f (y′− su)
� f (λ (x′ + tu)+ (1−λ )(y′− su))
= f (λx′ +(1−λ )y′+(λ t− (1−λ )s)u)
� f (λx′ +(1−λ )y′+(λ t +(1−λ )s)u)
� f (λx+(1−λ )y), (3.63)

where the second inequality is by λ t− (1−λ )s = λ |t|+(1−λ )|s|� |λ t +(1−λ )s| .
In the same method, we can get inequality (3.63) for t < 0 and s � 0.
If t < 0 and s < 0, by i) and iii), we have

λ f (x)+ (1−λ ) f (y) = λ f (x′ + tu)+ (1−λ ) f (y′+ su)
= λ f (x′ − tu)+ (1−λ ) f (y′− su)
� f (λ (x′ − tu)+ (1−λ )(y′− su))
= f (λx′ +(1−λ )y′ − (λ t +(1−λ )s)u)
= f (λx′ +(1−λ )y′+(λ t +(1−λ )s)u)
= f (λx+(1−λ )y). (3.64)

�
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Next, we prove Theorem 3.2.

Proof. Step 1. We prove that Su f is proper.
For any x ∈ R

n , let x = x′ + tu , where x′ ∈ u⊥ . Since f is a coercive convex
function defined on R

n , thus one dimensional function f (x′ + tu) about t ∈ R either
is a coercive convex function or is identically +∞ . If f (x′ + tu) is a coercive convex
function, then there exists s ∈ R such that s = inf{ f (x′ + tu) : t ∈ R} . Thus, we have

S f (x) = sup
λ∈[0,1]

inf
t1+t2=t

[λ f (x′ +2t1u)+ (1−λ ) f (x′ −2t2u)] � s, (3.65)

which implies that S f (x) > −∞ . If f (x′ + tu) is identically +∞ , then Su f (x) = +∞ >
−∞ . By Definition 2.2, f is not identically +∞ , there exists x ∈ R

n such that f (x) <
+∞ . Let x = x0 + tu , where x0 ∈ u⊥ , then by Definition 3.1 we have

Su f (x0) = sup
λ∈[0,1]

inf
t1+t2=0

[λ f (x0 +2t1u)+ (1−λ ) f (x0−2t2u)]

= inf
t1∈R

f (x0 +2t1u) � f (x) < +∞, (3.66)

which implies that Su f is not identically +∞ .
Step 2. We prove that Su f is coercive.
Suppose that there exist M0 > 0 and a sequence {xn}∞

n=1 ⊂ R
n satisfying that

|xn| > n and Su f (xn) < M0 . For any positive integer n � 1, let xn = x′n + tnu and
x′n ∈ u⊥ . There exist two cases of tn �= 0 and tn = 0.

(1) If tn �= 0, then by Theorem 3.1, there exist three cases:

i) Su f (xn) = f (x′n + t ′nu) = f (x′n +(t ′n−2tn)u) for some t ′n ∈ R ;

ii) Su f (xn) = f (x′n +(t0−2tn)u) for some t0 ∈ R ;

iii) Su f (xn) = f (x′n +(t0 +2tn)u) for some t0 ∈ R .

For case i), since

|t ′n|+ |t ′n−2tn| � 2|tn|, (3.67)

thus either |t ′n|� |tn| or |t ′n−2tn|� |tn| . If |t ′n|� |tn| , let yn = x′n + t ′nu , then Su f (xn) =
f (yn) and

|yn| = |x′n|+ |t ′n| � |x′n|+ |tn| = |xn|.
If |t ′n −2tn| � |tn| , let yn = x′n +(t ′n−2tn)u , then Su f (xn) = f (yn)

|yn| = |x′n|+ |t ′n−2tn| � |x′n|+ |tn| = |xn|.
Since |xn| > n , we have |yn| > n and f (yn) = Su f (xn) < M0 .

For case ii), since

|t0|+ |t0−2tn| � 2|tn|, (3.68)

thus either |t0| � |tn| or |t0 − 2tn| � |tn| . If |t0 − 2tn| � |tn| , let yn = x′n +(t0 − 2tn)u ,
then Su f (xn) = f (yn) and |yn|� |xn| . If |t0|� |tn| , let yn = x′n +t0u if x′n +t0u∈ dom f ,
otherwise let yn = x′n + t ′0u , where t ′0 satisfies
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a) x′n + t ′0u ∈ dom f ;

b) |x′n + t ′0u| > n ;

c) f (x′n + t ′0u) < f (x′n +(t0−2tn)u) ,

where case c) can be satisfied for limt→t0 , t<t0 f (x′n + tu) � f (x′n +(t0−2tn)u) by The-
orem 3.1. Thus, we have |yn| > n and f (yn) < M0 .

For case iii), we can construct {yn} with the same method as in case (ii).
(2) If tn = 0, by Definition 3.1, we have S f (xn) = inft∈R f (x′n +tu) . Since Su f (xn)

< M0 , there exists yn = x′n + t ′u such that f (yn) < M0 . Since |yn| = |x′n|+ |t ′| � |x′n| =
|xn| , we have |yn| > n and f (yn) < M0 .

By (1) and (2), we get that a sequence {yn}∞
n=1 satisfying |yn|> n and f (yn) < M0

for given M0 > 0, which is contradictory with f is coercive. Hence, Su f is coercive.
Step 3. We prove Su f is symmetric about u⊥ .
For any x′ ∈ u⊥ and t ∈ R , if we consider Su f (x′ + tu) as a one-dimensional

function about t , then by Theorem 3.1 and Definition 3.1, we have Su f (x′ + tu) =
Su f (x′ − tu) . Thus Su f is symmetric about u⊥ .

Step 4. We prove Su f is convex.
By Definition 3.1 and Theorem 3.1, for any x′ ∈ u⊥ , one-dimensional function

Su f (x′+ tu) either is an even and coercive convex function about t ∈R or is identically
+∞ . Thus, Su f satisfies conditions i) and ii) in Lemma 3.3, thus to prove that Su f is
convex, it suffices to prove that Su f satisfies condition iii) of Lemma 3.3. For any x ,
y ∈ {x′ + tu : x′ ∈ u⊥,t � 0} and λ ∈ (0,1) , if x /∈ dom(Su f ) or y /∈ dom(Su f ) , then
Su f (x) = +∞ or Su f (y) = +∞ , thus

Su f (λx+(1−λ )y) � λSu f (x)+ (1−λ )Su f (y). (3.69)

Since dom f is convex and dom(Su f )= Su(dom f ) (see equality (3.58)), thus dom(Su f )
is convex.

If x ∈ dom(Su f ) and y ∈ dom(Su f ) , then λx + (1− λ )y ∈ dom(Su f ) . Let x =
x′ + tu and y = y′ + su , where x′ , y′ ∈ u⊥ and t � 0 and s � 0, then

λx+(1−λ )y = [λx′ +(1−λ )y′]+ [λ t +(1−λ )s]u.

Case 3.1. The case of t = 0 and s = 0. For the case we have x , y ∈ u⊥ , thus
λx+(1−λ )y∈ u⊥ . By Definition 3.1, there exist t ′ and s′ ∈ R satisfying

Su f (x) = inf
t∈R

f (x+ tu) = lim
t→t′ , f (x+tu)<+∞

f (x+ tu), (3.70)

Su f (y) = inf
s∈R

f (y+ su) = lim
s→s′, f (y+su)<+∞

f (y+ s′u) (3.71)

and

Su f (λx+(1−λ )y) = inf
w∈R

f (λx+(1−λ )y+wu). (3.72)
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By f is a convex function and the above three equalities, we have

λSu f (x)+ (1−λ )Su f (y)
= λ lim

t→t′ , f (x+tu)<+∞
f (x+ tu)+ (1−λ ) lim

s→s′, f (y+su)<+∞
f (y+ su)

= lim
t→t′ , f (x+tu)<+∞

lim
s→s′, f (y+su)<+∞

[λ f (x+ tu)+ (1−λ ) f (y+ su)]

� lim
t→t′ , f (x+tu)<+∞

lim
s→s′, f (y+su)<+∞

f (λx+(1−λ )y+(λ t+(1−λ )s)u)

� inf{ f (λx+(1−λ )y+wu) : w ∈ R}
= Su f (λx+(1−λ )y). (3.73)

Case 3.2. The case of t > 0 and s > 0. For x = x′ + tu ∈ dom(Su f ) , by Theorem
3.1, there exist three cases:

a1 ) There exists some t ′ ∈ R such that

Su f (x) = f (x′ + t ′u) = f (x′ +(t ′ −2t)u); (3.74)

a2 ) There exists some t0 ∈ R such that

Su f (x) = f (x′ +(t0−2t)u) � lim
t′0→t0,t′0<t0

f (x′ + t ′0u); (3.75)

a3 ) There exists some t0 ∈ R such that

Su f (x) = f (x′ +(t0 +2t)u) � lim
t′0→t0 ,t′0>t0

f (x′ + t ′0u). (3.76)

For y = y′ + su ∈ dom(Su f ) , by Theorem 3.1, there exist three cases:
b1 ) There exists some s′ ∈ R such that

Su f (y) = f (y′ + s′u) = f (y′ +(s′ −2s)u); (3.77)

b2 ) There exists some s0 ∈ R such that

Su f (y) = f (y′ +(s0−2s)u) � lim
s′0→s0,s

′
0<s0

f (y′ + s′0u); (3.78)

b3 ) There exists some s0 ∈ R such that

Su f (y) = f (y′ +(s0 +2s)u) � lim
s′0→s0,s′0>s0

f (y′ + s′0u). (3.79)

We may assume that

f (x′ + t0u) = lim
t′0→t0,t′0<t0

f (x′ + t ′0u) for case a2),

f (x′ + t0u) = lim
t′0→t0,t′0>t0

f (x′ + t ′0u) for case a3),

f (y′ + s0u) = lim
s′0→s0,s

′
0<s0

f (y′ + s′0u) for case b2),

f (y′ + s0u) = lim
s′0→s0,s′0>s0

f (y′ + s′0u) for case b3). (3.80)
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Let (t̃1, t̃2) be a pair of real numbers satisfying

(t̃1, t̃2) =

⎧⎪⎨⎪⎩
(t ′ −2t,t ′) for case a1)
(t0 −2t,t0) for case a2)
(t0,t0 +2t) for case a3).

(3.81)

Let (s̃1, s̃2) be a pair of real numbers satisfying

(s̃1, s̃2) =

⎧⎪⎨⎪⎩
(s′ −2s,s′) for case b1)

(s0 −2s,s0) for case b2)
(s0,s0 +2s) for case b3).

(3.82)

Since f is convex and by (3.74-3.79), for i = 1,2, we have

λSu f (x)+ (1−λ )Su f (y) � λ f (x′ + t̃iu)+ (1−λ ) f (y′+ s̃iu)
� f (λx′ +(1−λ )y′+(λ t̃i +(1−λ )s̃i)u). (3.83)

By (3.81) and (3.82), we have

[λ t̃2 +(1−λ )s̃2]− [λ t̃1 +(1−λ )s̃1]
= λ (t̃2− t̃1)+ (1−λ )(s̃2− s̃1) = 2[λ t +(1−λ )s]. (3.84)

Let

M = max
i=1,2

f (λx′ +(1−λ )y′+(λ t̃i +(1−λ )s̃i)u). (3.85)

By λx+(1−λ )y = λx′ +(1−λ )y′+(λ t +(1−λ )s)u and Definition 3.1, we have

Su f (λx+(1−λ )y) = sup
λ∈[0,1]

inf
ω∈R

[
λ f (x′ +(1−λ )y′+ ωu)

+(1−λ ) f (x′ +(1−λ )y′+(ω −2(λ t +(1−λ )s)u)
]

� sup
λ∈[0,1]

inf
ω∈R

[
λ f (x′ +(1−λ )y′+(λ t̃2 +(1−λ )s̃2)u)

+(1−λ ) f (x′ +(1−λ )y′+(λ t̃1 +(1−λ )s̃1)u)
]

� M � λSu f (x)+ (1−λ )Su f (y), (3.86)

where the first inequality is by choosing ω = λ t̃2 + (1− λ )s̃2 and (3.84), the second
inequality is by (3.85) and the last inequality is by (3.83).

Case 3.3. The case of t = 0 and s > 0 (or t > 0 and s = 0). In this case, there
exists t0 such that

Su f (x) = lim
t→t0 , f (x+tu)<+∞

f (x+ tu). (3.87)

We may assume that

f (x+ t0u) = lim
t→t0 , f (x+tu)<+∞

f (x+ tu). (3.88)

In the proof of Case 3.2, let t̃1 = t̃2 = t0 , we can get the required inequality by the
process of proof of Case 3.2. �
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THEOREM 3.3. Let f : R
n → R∪{+∞} be a coercive convex function and u ∈

Sn−1 , then ∫
Rn

e−(Su f )(x)dx =
∫

Rn
e− f (x)dx. (3.89)

Proof. By (3.60), for any t ∈ R , we have

cl[Su f < t] = Su⊥(cl[ f < t]). (3.90)

Since Steiner symmetrization of convex sets preserves volume, we have

Vol([Su f < t]) = Vol([ f < t]). (3.91)

By (3.91) and Fubini’s theorem, we have∫
Rn

e−(Su f )(x)dx =
∫

Rn

[∫ +∞

(Su f )(x)
e−t dt

]
dx

=
∫

R

Vol([Su f < t])e−t dt

=
∫

R

Vol([ f < t])e−tdt =
∫

Rn
e− f (x)dx. (3.92)

�
We say that a function f : R

n 
→ R∪{+∞} is unconditional if

f (x1, · · · ,xn) = f (|x1|, · · · , |xn|) for every (x1, · · · ,xn) ∈ R
n. (3.93)

THEOREM 3.4. Any coercive convex function f : R
n → R∪{+∞} can be trans-

formed into an unconditional function f using n Steiner symmetrizations.

We first prove the following lemma. In the lemma, 〈u1,u2〉 denotes the inner
product of unit vectors u1 and u2 .

LEMMA 3.4. Let u1,u2 ∈ Sn−1 and 〈u1,u2〉 = 0 . If f : R
n → R∪ {+∞} is a

coercive convex function and f is symmetric about u⊥1 , then Su2 f is symmetric about
both u⊥1 and u⊥2 .

Proof. By Theorem 3.2, Su2 f is symmetric about u⊥2 . Next, we prove that Su2 f is
symmetric about u⊥1 . Since 〈u1,u2〉 = 0, then u1 ∈ u⊥2 and u2 ∈ u⊥1 . For any x′ ∈ u⊥1 ,
let x′ = x′′ + tx′u2 , where x′′ = x′|u⊥2 . Then x′′ = x′ − tx′u2 ∈ u⊥1 , thus x′′ + tu2 ∈ u⊥1 .
Because that x′′ ∈ u⊥2 and u1 ∈ u⊥2 , thus x′′ + tu1 ∈ u⊥2 . Thus, for any x′ ∈ u⊥1 and
t ∈ R , we have

(Su2 f )(x′ + tu1) = (Su2 f )(x′′ + tu1 + tx′u2)
= sup

λ∈[0,1]
inf

t1+t2=tx′
[λ f (x′′ + tu1 +2t1u2)+ (1−λ ) f (x′′+ tu1−2t2u2)]

= sup
λ∈[0,1]

inf
t1+t2=tx′

[λ f (x′′ − tu1 +2t1u2)+ (1−λ ) f (x′′ − tu1−2t2u2)]

= (Su2 f )(x′′ − tu1 + tx′u2) = (Su2 f )(x′ − tu1), (3.94)
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where the second equality is by f is symmetric about u⊥1 and x′′ + tu2 ∈ u⊥1 . This
completes the proof. �

Now we prove Theorem 3.4.

Proof. Let {u1, . . . ,un} be an orthonormal basis of R
n . By Theorem 3.2 and

Lemma 3.4, Sun · · ·Su1 f is symmetric about u⊥i , i = 1, · · · ,n , which implies that f can
be transformed into an unconditional function

f = Sun · · ·Su1 f (3.95)

using n Steiner symmetrizations. �

THEOREM 3.5. Let f1 : R
n → R∪{+∞} and f2 : R

n → R∪{+∞} be coercive
convex functions and u ∈ Sn−1 . If f1 � f2 (which implies that f1(x) � f2(x) for any
x ∈ R

n ), then Su f1 � Su f2 .

Proof. By Definition 3.1, for x ∈ R
n , let x = x′ + tu , where x′ ∈ u⊥ , we have

Su f1(x) = sup
λ∈[0,1]

inf
t1+t2=t

[λ f1(x′ +2t1u)+ (1−λ ) f1(x′ −2t2u)]

� sup
λ∈[0,1]

inf
t1+t2=t

[λ f2(x′ +2t1u)+ (1−λ ) f2(x′ −2t2u)]

= Su f2(x), (3.96)

where the inequality is by f1(x) � f2(x) for any x ∈ R
n . �

We say a function f is even about point z ∈ R
n if f (z + x) = f (z− x) for any

x ∈ R
n . Let z|H denote the projection of z onto hyperplane H .

THEOREM 3.6. Let f : R
n → R∪{+∞} be a coercive convex function and u ∈

Sn−1 , if f is even about z, then Su f is even about z|u⊥ .

Proof. For any x ∈ R
n , let x = x′ + tu , where x′ = x|u⊥ . Let z = z′ − t0u , where

z′ = z|u⊥ . By Definition 3.1, we have

(Su f )(z′ + x)
= (Su f )(z′ + x′ + tu)
= (Su f )(z′ + x′ − tu)
= sup

λ∈[0,1]
inf

t1+t2=−t
[λ f (z′ + x′ +2t1u)+ (1−λ ) f (z′+ x′ −2t2u)]

= sup
λ∈[0,1]

inf
t2∈R

[λ f (z+ t0u+ x′ −2t2u−2tu)+ (1−λ) f (z+ t0u+ x′ −2t2u)]

= sup
λ∈[0,1]

inf
t2∈R

[λ f (z+ x′ −2t2u−2tu)+ (1−λ ) f (z+ x′−2t2u)]

= sup
λ ′∈[0,1]

inf
t2∈R

[λ ′ f (z+ x′ −2t2u)+ (1−λ ′) f (z+ x′ −2t2u−2tu)], (3.97)
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where the second equality is by Su f is symmetric about u⊥ and the fifth equality is by
replacing t0−2t2 by −2t2 .

On the other hand, since f is even about z , we have

(Su f )(z′ − x)
= (Su f )(z′ − x′ − tu)
= sup

λ∈[0,1]
inf

t1+t2=−t
[λ f (z′ − x′ +2t1u)+ (1−λ ) f (z′ − x′ −2t2u)]

= sup
λ∈[0,1]

inf
t1∈R

[λ f (z+ t0u− x′+2t1u)+ (1−λ ) f (z+ t0u− x′+2t1u+2tu)]

= sup
λ∈[0,1]

inf
t1∈R

[λ f (z− x′ +2t1u)+ (1−λ ) f (z− x′+2t1u+2tu)]

= sup
λ∈[0,1]

inf
t1∈R

[λ f (z+ x′ −2t1u)+ (1−λ ) f (z+ x′−2t1u−2tu)], (3.98)

where the last equality is by f is even about z . By (3.97) and (3.98), we have (Su f )(z′+
x) = (Su f )(z′ − x) for any x ∈ R

n . �

4. The relation between new definition and former definitions

4.1. The relation between Definition 3.1 and Definition 1.2

First, look at some basic concepts. A function f : R
n → [0,∞) is called log-

concave if f = e−φ , where φ is a convex function defined on R
n . Given two functions

f ,g : R
n → [0,∞) , their Asplund product is defined by

( f � g)(x) = sup
x1+x2=x

f (x1)g(x2). (4.1)

For λ ∈ R , we define the λ -homothety of a function f : R
n → [0,∞) , denoted by λ · f ,

as

(λ · f )(x) = f λ
( x

λ

)
. (4.2)

By the above concepts, Defintion 1.2 can be transformed into the following form.

DEFINITION 4.1. For a log-concave function F = e− f , where f : R
n → R ∪

{+∞} is a convex function, and a hyperplane H = u⊥ in R
n , for any x ∈ R

n , if
x = x′ + tu and x′ ∈ u⊥ , we define its Steiner symmetrization about u⊥ by(

S̃uF
)

(x′ + tu) = exp
{
− inf

t1+t2=t

[1
2

f (x′ +2t1u)+
1
2

f (x′ −2t2u)
]}

. (4.3)

If we define Steiner symmetrization for coercive convex function f using the
above definition, we have(

S̃u f
)

(x′ + tu) = inf
t1+t2=t

[1
2

f (x′ +2t1u)+
1
2

f (x′ −2t2u)
]
. (4.4)
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Thus, Su f given in Definition 3.1 is in general larger than S̃u f . Look at the following
example.

EXAMPLE 1. For one-dimensional coercive convex function

f (x) =

{
x3 if x � 0,

x2 if x � 0.
(4.5)

Compare S f and S̃ f , where

S f (x) = sup
λ∈[0,1]

inf
x1+x2=x

[λ f (2x1)+ (1−λ ) f (−2x2)]

and

S̃ f (x) = inf
x1+x2=x

[1
2

f (2x1)+
1
2

f (−2x2)
]
.

By calculation, we can get that

S̃ f (x) =

⎧⎪⎪⎨⎪⎪⎩
(−12x−1)

√
1+12x+18x+1
27

+2x2 if x � 0,

(12x−1)
√

1−12x−18x+1
27

+2x2 if x � 0.

(4.6)

and

S f (x) = g−1(|x|), (4.7)

where g−1 is the inverse function of

g(x) =
1
2
( 3
√

x+
√

x), x ∈ [0,∞). (4.8)
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Figure 1: f , S f and S̃ f .

By Matlab, we can draw their figures (see Figure 1). From the figure, we can find
that the level sets of S f and f have the same size and S f > S̃ f .
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REMARK 4.1. (i) For one-dimensional coercive convex function f : R → R∪
{+∞} , if f is symmetric about an axes x = x0 , i.e., f (x0 − x) = f (x0 + x) for any
x ∈ R , then S f = S̃ f .

(ii) For n -dimensional coercive convex function f : R
n → R∪ {+∞} and u ∈

Sn−1 , if for any x′ ∈ u⊥ , one-dimensional function f (x′+ tu) about t ∈R is symmetric
about an axes t = t0 , then Su f = S̃u f .

4.2. The relation between Definition 3.1 and Definition 1.1

In this section, we show that the two definitions is same for log-concave function
(Theorem 4.1) and properties 6 and 7 in Table 1 are established (Theorem 4.2 and
Theorem 4.3). First, look at some basic concepts.

DEFINITION 4.2. For function f : E →R∪{−∞,+∞} , where E ⊂R
n is a Lebes-

gue measurable set, if for any t ∈ R ,

{x ∈ E : f (x) > t} (4.9)

is Lebesgue measurable, then f is said to be Lebesgue measurable.

We say that a non-negative measurable function f vanishes at infinity if

m([ f > t]) < +∞ (4.10)

for all t > 0, where m([ f > t]) denotes Lebesgue measure of level set {x∈ R
n : f (x) >

t} .
For a convex function f : R

n → R∪{+∞} , the subgraph of f is defined as

sub f := {(x,y) ∈ R
n+1 : x ∈ dom f , y � f (x)}. (4.11)

For a convex function f : R
n → R∪{+∞} , the effective domain of f is defined as

dom f := {x ∈ R
n : f (x) �= +∞}. (4.12)

LEMMA 4.1. Let f : R
n → R∪{+∞} be a coercive convex function, if dom f =

R
n , then log-concave function F = e− f is a nonnegative measurable function on R

n

vanishes at infinity.

Proof. It is clear that F is nonnegative and F > 0. For any t ∈ R , if t � 0, then

{x ∈ R
n : F(x) > t} = R

n (4.13)

is measurable. If t > 0, since that convex function is continuous in the interior of its
effective domain, f is continuous on R

n , thus

{x ∈ R
n : F(x) > t} = {x ∈ R

n : f (x) < − ln t} (4.14)
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is an open set. Because that any open set is measurable, thus F is measurable. Since f
is coercive, set {x ∈ R

n : f (x) < − lnt} is bounded for any t > 0, by (4.14) we have

m({x ∈ R
n : F(x) > t}) < +∞ (4.15)

for any t > 0, thus F is vanishes at infinity. �

LEMMA 4.2. Let F = e− f be a log-concave function, where f : R
n → R is a

coercive convex function, then

[SuF > t] = Su⊥([F > t]) (4.16)

where SuF is given in Definition 1.1 and Su([F > t]) is given in Definition 2.1.

Proof. By Definition 1.1, if SuF(x) > t , then x ∈ Su([F > t]) . On the other hand,
if x ∈ Su([F > t]) , since Su([F > t]) is an open set and F is continuous, then there
exists t ′ > t such that x ∈ Su([F > t ′]) , by (1.1), we have SuF(x) > t . �

THEOREM 4.1. Let f : R
n →R be a coercive convex function and u∈ Sn−1 , then

e(−Su f ) = Su(e− f ), (4.17)

where Su f and Su(e− f ) are given in (1.3) and (1.1), respectively.

Proof. For t > 0, we have

[e(−Su f ) > t] = [Su f < − lnt] = Su([ f < − lnt]) = Su([e− f > t]), (4.18)

where the second equality uses equality (3.60).
By Lemma 4.2, we have

[Su(e− f ) > t] = Su([e− f > t]). (4.19)

By (4.18) and (4.19), we have

[e(−Su f ) > t] = [Su(e− f ) > t]. (4.20)

Using the “layer-cake representation” and (4.20), we have

e(−Su f ) =
∫ ∞

0
X[e(−Su f )>t](x)dt =

∫ ∞

0
X[Su(e− f )>t](x)dt = Su(e− f ). (4.21)

�
Next, we will give two theorems, which are corresponding to Proposition 3 and

Theorem 2 in [9], respectively. They show the continuity and convergence of Steiner
symmetrization in Lp space, which are corresponding to the properties 6-7 in Table 1.

We first give the concept of rearrangements of sets and functions. Our presenta-
tion follows that of [9]. Let M denote the sigma-algebra consisting of all Lebesgue
measurable subsets of R

n and m denote the corresponding Lebesgue measure.
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DEFINITION 4.3. A rearrangement T is a map T : M → M that is both mono-
tone (A ⊂ B implies T (A) ⊂ T (B)) and measure preserving (m(T (A)) = m(A) for all
A ∈ M ). For a nonnegative measurable function f , if it vanishes at infinity, then we
define its rearrangement T f by using the “layer cake principle”

T f (x) =
∫ ∞

0
XT ([ f>t])(x)dt. (4.22)

By the definition, we can get functional rearrangement using rearrangement of
sets.

For any A ∈ M , there exists a unique open ball centered at the origin A∗ with the
same measure as A . A∗ is called the Schwarz symmetrization of A . For a nonnegative
measurable function f , if it vanishes at infinity then its rearrangement with respect to
the Schwarz rearrangement, denoted by f ∗(x) , is called the symmetrization decreasing
rearrangement.

PROPOSITION 1. For a coercive convex function f : R
n → R , we have

(e− f )∗(x) = e−g(|x|), (4.23)

where g(t) is an increasing convex function defined on [0,+∞) .

Proof. For a coercive convex function f : R
n → R , by Lemma 4.1, log-concave

function F = e− f is a nonnegative measurable function on R
n vanishes at infinity. By

(4.22), we have

F∗(x) =
∫ ∞

0
X[F>t]∗(x)dt =

∫ ∞

0
X[ f<− lnt]∗(x)dt

= sup{t : x ∈ [ f < − lnt]∗}. (4.24)

If |x| = 0, then

F∗(0) = sup{t : [ f < − ln t]∗ �= /0} = sup{t : inf f < − ln t}
= sup{t : t < e− inf f }
= e− inf f . (4.25)

If |x| �= 0, let κn denote the volume of Euclidean unit ball, by (4.24) we have

F∗(x) = sup

{
t : |x| <

(
Vol([ f < − ln t])

κn

)1/n
}

. (4.26)

Since Vol([ f < − ln t]) is decreasing about t ∈ (0,+∞) , thus by (4.26) F∗(x) equals t
satisfying

|x| =
(

Vol([ f < − lnt])
κn

)1/n

. (4.27)
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Let s = − ln t , then t = e−s , then F∗(x) equals e−s , where s satisfies

|x| =
(

Vol([ f < s])
κn

)1/n

. (4.28)

Define one-dimensional function h(s) about s ∈ [inf f ,+∞) as

h(s) =
(

Vol([ f < s])
κn

)1/n

. (4.29)

Since f : R
n → R is convex function, thus epi f is closed convex set. By Brunn’s

Theorem, h(s) is a concave function. It is clear that h(s) is increasing on [inf f ,+∞) ,
thus its inverse function g is an increasing convex function defined on [0,+∞) . Thus,
for any x ∈ R

n , by (4.25) and (4.27), we have F∗(x) = e−s = e−g(|x|) . �
If u ∈ Sn−1 and A ∈ M then, by Fubini’s theorem, the set

Ax′ = {t ∈ R : x′ + tu ∈ A} (4.30)

is measurable in R for almost every x′ ∈ u⊥ . If we let A∗
x′ equal the empty set whenever

Ax′ is non-measurable then we denote by

Su(A) =
⋃

x′∈u⊥
{x′ +uA∗

x′} (4.31)

the Steiner symmetrization of A with respect to u . The rearrangement of f with respect
to the Steiner symmetrization, denote by Su f , is called the Steiner symmetrization.

For a non-empty convex set K ⊂ R
n , its Steiner symmetrization in Definition 2.1

is not same with that defined by (4.31) in the boundary, but Su f is same for the two
definitions of the Steiner symmetrization of convex sets.

Let Lp(Rn) (1 � p < ∞) denote the Lp space; i.e., the set of all measurable func-
tions defined on R

n satisfying

‖ f‖p =
(∫

Rn
| f (x)|pdx

)1/p

< ∞. (4.32)

The Lp distance of two function f , g ∈ Lp(R) is defined as

‖ f −g‖p =
(∫

Rn
| f (x)−g(x)|pdx

)1/p

. (4.33)

THEOREM 4.2. ([9, Proposition 3]) If 1 � p < ∞ and T is any rearrangement,
then

‖T ( f )−T (g)‖p � ‖ f −g‖p (4.34)

for any ( f ,g) ∈ Lp(Rn)×Lp(Rn) .
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Let Su1,···,ui denote SuiSui−1 · · ·Su1 f .

THEOREM 4.3. ([9, Theorem 2]) Let {un}∞
n=1 ⊂ Sn−1 be a dense subset of Sn−1

with respect to the Euclidean metric. If f ∈ Lp(Rn) and

fn+1 =

{
Su1( f ), n = 0,

Su1,...,un+1( fn), n � 1
(4.35)

then fn converges to f ∗ in the Lp distance.

Acknowledgement. I am indebted to the referees for their careful reading and very
valuable comments for improvements.

RE F ER EN C ES

[1] S. ARTSTEIN, B. KLARTAG, V. D. MILMAN, On the Santaló point of a function and a functional
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[15] R. SCHNEIDER, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., 44, Cam-

bridge University Press, Cambridge, 1993.
[16] J. STEINER, Einfacher Beweis der isoperimetrische Hauptsätze, J. Reine Angew. Math. 18, (1838),

281–296.
[17] G. TALENTI, The standard isoperimetric theorem, in: P. Gruber and J. M. Wills, (eds.), Handbook of

Convex Geometry, North-Holland, Amsterdam, 1993, pp. 73–124.

(Received March 31, 2017) Lin Youjiang
School of Mathematics and Statistics

Chongqing Technology and Business University
Chongqing 400067, PR China

e-mail: lxyoujiang@126.com

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


