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VARIATIONS ON A HYPERGEOMETRIC THEME

MICHAEL MILGRAM

Abstract. The question was asked: Is it possible to express the function

h(a) ≡ 4F3(a,a,a,a;2a,a+1,a+1;1) (1.1)

in closed form [1]? After considerable analysis, the answer appears to be “no”, but during the
attempt to answer this question, a number of interesting (and unexpected) related results were
obtained, either as specialized transformations, or as closed-form expressions for several related
functions. The purpose of this paper is to record and review both the methods attempted and
the related identities obtained, the former for their educational merit, the latter because they do
not appear to exist in the literature. Specifically, new 4F3(1) , 5F6(1) and generalized Euler
sums (those containing digamma functions) are presented along with a detailed discussion of the
methods used to obtain them.

1. Introduction and motivation

Always keeping the question posed by (1.1) in mind, this paper is an exposition,
or review, of well-established techniques which are not always employed in the modern
literature. Thus, relationships that have been derived by long, perhaps convoluted devel-
opments, often found in the literature, turn out to be special cases of well-established,
but rarely-used identities. For example Miller and Paris [2, Eq. (1.7)] obtain a represen-
tation of 3F2(a,b,n;c,m;1) in terms of two finite sums (see (B.1)) that is easily shown
to be a special case of a known 3-part transformation among various 3F2(1) (see (B.2)).

The approach explored here revolves about the use of two, three and four-part
transformations between and among general hypergeometric functions of argument
unity. In the first two appendices, the most general transformations among p+1Fp(1)
(p � 3) functions that appear to have potential to be profitably applied to (1.1) are
developed. A third Appendix revisits the long-ago-established, but rarely invoked, no-
tation for 3-part transformations among 3F2(1) . A final Appendix collects a number
of useful results that are either scattered throughout the literature, or required as lem-
mas for the derivations contained throughout the text. In the main text, (Sections 2, 3
and 4) each general transformation identified in an appendix is applied to the problem
(1.1), in a corresponding subsection. Thus it is recommended that each appendix be
consulted along with its corresponding section to obtain a clear picture – that is, read
(at least) the (first two) appendices first! In general each such application yields a new
representation for h(a) , or, in a few cases, a functional relationship between h(a) and
h(1− a) . An observant reader will note that many of the results are symmetric under
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the exchange a → 1−a ; I have attempted to present each representation is such a way
that this symmetry is clear.

Having failed to solve (1.1) in the first few sections, a reduced problem is consid-
ered in Section 5. When that in turn fails to produce an answer, a novel technique of
dubious mathematical rigour is attempted in Section 6 with partial success. In the final
Sections 7 and 8, the various representations that were derived as described above are
compared to one another, which has the unexpected effect of yielding some new rep-
resentations, including what may be several new 4F3(1) and sums involving digamma
functions. The discovery of one such, (i.e. (7.1)) in turn inspired a detailed study of
related forms, which in their own turn, resulted in more new identities and closed forms
for a variety of 4F3(1) , 5F6(1) and related sums.

Throughout, all variables are assumed to be complex (C) except in special in-
stances as noted, with the overall exception that the symbols k , m and n , are positive
integers (k,m,n∈N). Ψ(a),Ψ′(a) and Ψ(n)(a) are respectively the digamma function,
its first and nth derivative, n > 1. As usual, γ represents the Euler constant. In many
cases, the use of a limit procedure is indicated by the symbol “→”, whereas symbolic
replacement (redefinition) is indicated by the use of “:=”. Although the notation used
throughout is the typographically convenient pFq({a};{b};1) rather than the less con-

venient pFq(
{a}
{b}|1) , textual references “top” and “bottom” are applied to the parameters.

The meaning should be clear. It is tacitly required that the combination of parameters
appearing in any of the hypergeometric identities is such that the parametric excess (real
part of (sum of bottom minus sum of top) parameters) is positive. Finally, it is noted
that the methods outlined here, although applied to a simple hypergeometric function of
one parameter (variable), should have application to similar problems involving more
parameters.

2. Method 1: Consult both the literature and computer algorithms

Reference literature on the subject of 4F3(1) is very limited. Although sums
closely related to (1.1) appear in the standard reference works [3, Eqs. 7.6.2(13) and
7.10.2(6)], [4, Chapter 2] and [5, Eq. (10.39.4) with a = b ] the exact sum sought does
not appear. Similarly, computer codes (e.g. Maple, Mathematica) incorporate telescop-
ing methods (e.g. [6]) which can be used to attempt to simplify any desired hypergeo-
metric function; this approach did not yield a closed form for (1.1). In retrospect, this
is unsurprising, since all of the representations in this case involve digamma functions
whose underlying structure is not strictly hypergeometric in nature – a requirement of
the telescoping algorithms.

3. Method 2: Consider a 4F3(1) transformation

It is well known that the much utilized Watson/Whipple/Dixon identities for a
3F2(1) can be obtained from one another using any of the ten independent 2-part
Thomae relations [7], so knowledge of one will yield another. Perhaps the query func-
tion (1.1) can be related to other (known) 4F3(1) by a simple transformation?
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Explicit two-part transformations between 4F3(1) à la Thomae are inapplicable
(there are perhaps 160 when the 4F3(1) is Saalschützian with integral parameters [8]).
However, Miller [9] has obtained two potentially relevant 4-part transformations appli-
cable to 4F3(1) with arbitrary parameters – see Appendix (A.1) and (A.2). Further, in
Appendix A, a new 4-part transformation of the same form is obtained from the analytic
continuation of Meijer’s G-function with respect to its argument z → 1/z when z = 1.
See (A.4).

Other (inapplicable) possibilities include:

• an explicit result for a special Saalschützian 4F3(1) when a top parameter is a
negative integer (see (D.5) and [10]) – note that two equations in [10] are mis-
printed: in the right-hand side of Eq.(1.10) the denominator parameter a has the
wrong sign, and in Eq. (2.2) replace c by f ;

• the generalized Minton-Karlsson reduction [11], [12], [13] when a top parameter
exceeds a bottom parameter by a positive integer, and;

• [14, Eq. (20)] where Gottschalk and Maslen propose a reduction formula for a
general pFq that outwardly appears to apply to (1.1) except that it is valid only for
q > p ; for the case p = q+1 the arbitrary parameter b they introduce (potentially
identified as 2a in (1.1)) appears as a top – not bottom – parameter (see Appendix
A.2).

With this background, it is instructive to carefully investigate the first of Miller’s
transformations (A.1) as reproduced in Appendix A. The following detailed sequence,
using computer algebra, should be studied as a template for all similar calculations
herein. It is equivalent to older, very complicated general results claimed in the litera-
ture (for example, see [15] and references therein; however Eq. (2.1) in that article does
not satisfy numerical tests). In (A.1), let e = 2a , f = a+1 and g = a+1 to obtain

4F3(a,b,c,d; 2a,1+a,1+a; 1)
= Γ(1−d)Γ(2a+1)Γ(1+a)

×
(

4F3(b,b−a,b−a,1+b−2a; 1+b−d,1+b−a,1+b− c; 1)
2Γ(1+a−b)Γ(c)Γ(2a−b)(a−b)Γ(1+b−d)

Γ(c−b)

+ 4F3(c,c−a,c−a,1+ c−2a; 1+ c−d,1+ c−a,1+ c−b; 1)
2Γ(a− c+1)(a− c)Γ(2a− c)Γ(1+ c−d)Γ(b)

Γ(b− c)

+
Γ(b−a)Γ(c−a)

2Γ(c)Γ(1+a−d)Γ(b)

)
(3.1)

With b = d one finds

4F3(a,c,d,d; 2a,1+a,1+a; 1)

=
Γ(1+a)Γ(2a+1)Γ(1−d)

Γ(c)Γ(d)

×
(

sin(π (c−a))sin(π (2a− c))
2π sin(π (d− c))

∞

∑
k=0

Γ(1+ c−2a+ k)Γ(c−a+ k)Γ(c+ k)

(a− c− k)Γ(1+ c−d+ k)2 Γ(k+1)
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+
sin(π (a−d))sin(π (−d +2a))

2π sin(π (d− c))

∞

∑
k=0

Γ(1+d−2a+ k)Γ(d−a+ k)Γ(k+d)

(a−d− k)Γ(k+1)2 Γ(k+1− c+d)

+
Γ(d−a)Γ(c−a)

2Γ(1+a−d)

)
(3.2)

and further, after taking the limit c → d

2π2Γ(d)
Γ(1+a)Γ(1−d)Γ(2a+1)4F3(a,d,d,d; 2a,1+a,1+a; 1)

= −π sin(3π a−2π d)
∞

∑
k=0

S (k)

+

(
2

∞

∑
k=0

S (k)
a−d− k

+
∞

∑
k=0

S (k)Ψ(1+d−2a+ k)+
∞

∑
k=0

S (k)Ψ(1+d−a+ k)

+
∞

∑
k=0

Ψ(k+d)S (k)−3
∞

∑
k=0

Ψ(k+1)S (k)

)
sin(π (−d +2a))sin(π (a−d))

+
π4

sin2 (π (a−d))Γ(1+a−d)3
(3.3)

where

S (k) =
Γ(k+d)Γ(d−a+ k)Γ(1+d−2a+ k)

Γ(k+1)3 (a−d− k) .
(3.4)

Finally, taking the limit d → a eventually gives the following apparently new represen-
tation after much cancellation and simplification of terms

h(a)
a2 = aπ (1−a)

Γ(2a) 5F4(1,1,1,1+a,2−a; 2,2,2,2; 1)

Γ(a)2 sin(π a)
+2

π (γ+Ψ(a))2 Γ(2a)

Γ(a)2 sin(π a)
.

(3.5)

For the case a= 1 see Section 5; it is also convenient to quote the simple contiguity
relation

4F3(1,1,a+1,1−a; 2,2,2; 1) = a 5F4(1,1,1,1+a,1−a; 2,2,2,2; 1)
− (a−1) 5F4(1,1,1,1+a,2−a; 2,2,2,2; 1) . (3.6)

With reference to Appendix A, and in a similar fashion, the same series of sub-
stitutions and limits applied to Miller’s second transformation (A.2) surprisingly yields
the same result. However, when this sequence of substitutions and limits is similarly
applied to the transformation (A.4), a different representation in the form of a functional
equation emerges:

h(a)
a2 =

h(1−a)
(1−a)2

Γ(2a)Γ(1−a)2

Γ(2−2a)Γ(a)2 −4π2 Γ(2a)cos(π a)

sin2(π a)Γ(a)2

(
γ + Ψ(a)+

π
2

cot(π a)
)

(3.7)
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4. Evolution from a 3F2(1)

4.1. The principle

The method employed here is based on the observation that, written as a sum, the
hypergeometric function

3F2 (a,a,b ;2a,b+1;1) = b
Γ(2a)
Γ(a)2

∞

∑
k=0

Γ(a+ k)2

Γ(k+1)Γ(2a+ k)(b+ k)
(4.1)

yields the following rule after being acted upon by the consecutive operations
∂

∂ b
fol-

lowed by b = a

h(a) = 3F2 (a,a,a;2a,a+1;1)−a2

2
4F3 (a+1,a+1,a+1,a+1;a+2,a+2,2a+1;1)

(a+1)2 .

(4.2)

In the following I represent this sequence of actions by the operator

L(b) ≡ b → a
∂

∂ b
. (4.3)

Note that the 4F3(1) on the right-hand side of (4.2) is almost related to h(a) by
the operation a → a+ 1 – see (8.3). This result is particularly interesting because the
3F2(1) that appears in (4.2) is a limiting case contiguous to Watson’s theorem [16] and
therefore can be evaluated in closed form:

3F2 (a,a,a;2a,a+1;1) = a
22a (−Ψ′ (a/2+1/2)+ Ψ′ (a/2))Γ(a+1/2)

4
√

π Γ(a)
. (4.4)

In the following sections and sub-sections, various representations for 3F2(a,a,b;
2a,b+1;1) based on different 3-part transformations of a generic function 3F2(a,b,c;
e, f ;1) are subjected to the action of the operator L(b) , to determine if any useful rep-
resentations for the function h(a) can be found. The various transformations are devel-
oped in Appendix B; as well, a primer on the general subject of 3-part transformations
of 3F2(1) will be found in Appendix C.

4.2. Based on (B.2)

For the particular case h(a) in (B.2), based on a result of Miller and Paris, set

f = c + 1, b = a , e = 2a then operate on both sides with
∂

∂ c
followed by the limit

c → a and after all the various limits and substitutions are completed, obtain

h(a)
a2 =

π Γ(2a)

sin(π a)Γ(a)3
∞

∑
k=0

Γ(k+1)Ψ(1−a+ k)

Γ(1−a+ k)(1−a+ k)2

+
Ψ(1−a)π Γ(2a)3F2 (1,1,1−a;2−a,2−a; 1)

Γ(2−a)(−1+a)Γ(a)3 sin(π a)
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− sin(2π a)(2γ + Ψ(1−a)+ Ψ(a))Γ(1−a)π Γ(2a)
Γ(a)sin2 (π a)

. (4.5)

The series appearing in (4.5) is convergent by Gauss’ test if ℜ(a) < 1. Addi-
tionally, the 3F2(1) appearing is easily identified because it is contiguous to Whipple’s
theorem [17, Entry 13], thus

3F2(1,1,1−a; 2−a,2−a; 1)

= 1/2

(
Ψ′ (1/2−a/2)+ Ψ′ (a/2)− π2

sin2 (π a/2)

)
(−1+a)2 , (4.6)

yielding the following after substitution and simplification

h(a)
a2 =

π Γ(2a)

sin(π a)Γ(a)3
∞

∑
k=0

Γ(k+1)Ψ(1−a+ k)

Γ(1−a+ k)(1−a+ k)2
(4.7)

+
Γ(2a)

Γ(a)2

(
−4γ π2 cos(π a)

sin2 (π a)
−Ψ(1−a)Ψ′ (a/2)

+2Ψ(1−a)Ψ′ (a)−2π2 cos(π a)Ψ(a)
sin2 (π a)

)
a < 1

4.3. Based on (B.5)

After applying the set of transformations discussed above to the generalization
(B.5) of the result of Shpot and Srivastava [18], (3.5) re-emerges.

4.4. Based on (B.7)

Similarly, after applying the set of substitutions and operations c = a , e = 2a ,
f = b+1 using the transformation rule (B.7) as a basis, one finds

3F2(a,a,b; 2a,b+1; 1) =
π sin(2π a)Γ(b+1)Γ(1+b−2a)Γ(2a)

sin2 (π a)Γ(b+1−a)2 Γ(a)2
(4.8)

+
bπ2Γ(2a)3F2(1−a,1−a,b+1−2a; 2−2a,b+2−2a; 1)

sin2 (π a)Γ(a)4 Γ(2−2a)(b+1−2a)

and, after operating with L(b) , the final result reduces to (3.7).

4.5. Based on (B.8)

Again, and following the same procedure as above, use the transformation rule
(B.8) as a basis to eventually obtain

h(a)
a2 =

4π2Γ(2a)2 cos2 (π a)3F2(1−a,1−a,1−a; 2−a,2−2a; 1)

Γ(a)4 (2a−1)(a−1)sin2 (π a)
(4.9)

−π a
Γ(1−a)2 (a−1)4F3(1,1,2−a,1+a; 2,2,2; 1)

Γ(1−2a)sin(π a)
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+
1

Γ(a)2

(
Γ(2a)Γ(1−a)2 h(1−a)

Γ(2−2a)(a−1)2
+

π4 cos(π a)
Γ(1−2a)sin4 (π a)

)
.

The 3F2(1) appearing in the first term of (4.9) can be identified from (4.4) with
a→ 1−a , and when this is done and substituted into (4.9) one (ultimately) finds another
different but equivalent version of the functional equation (3.7):

Γ(a)h(a)sin(π a)
a2Γ(a+1/2)

(4.10)

= −42a−1Γ(a+1/2)cos(π a)h(1−a)

(a−1)2 (a−1/2)Γ(a)
+22a√π cos(π a)

(
Ψ′ (a/2)−2Ψ′ (a)

)
−π3/2a(a−1)22a

4F3(1,1,2−a,a+1; 2,2,2; 1)cot(π a)−π5/222a cot2 (π a) .

4.6. Based on (B.9)

In Appendix B, a curious reduction of a 3F2(a,b,c;e, f ;1) was developed – specif-
ically, an arbitrary parameter d appeared on the right-hand side, when a template
3F2(a,b,c;e, f ;1) was expressed in the form of a 3-part transform. After applying to
(B.9) the operations discussed above, the following curious representation emerges

3F2(a,a,b; 2a,b+1; 1) (4.11)

= −22a−1b
√

π Γ(a+1/2) 3F2(a,a−b,1−a; 1,1+a−b; 1)
(a−b)Γ(a) sin(π a)

+b
Γ(2a)sin(π (a−d)) 4F3(a,a−b,a−b,1−a; 1,1+a−b,1+a−b; 1)

(a−b)2 Γ(a)2 sin(π d)

−bS2(a,b)
Γ(2a)sin(π (a−d))sin(π a)

π Γ(a)2 sin(π d)
−Γ(2a)Γ(b+1)Γ(a−b)2 sin(π (b−d))

Γ(a)2 Γ(2a−b) sin(π d)

where

S2(a,b) ≡
∞

∑
k=0

Γ(k+1−a)Γ(a+ k)(Ψ(k+1−a)+ Ψ(a+ k)−2Ψ(k+1))

(a−b+ k)Γ(k+1)2
. (4.12)

For the case d = 0 see (8.11).
Again, operate with L(b) , to find a very long and complicated representation. Af-

ter considerable simplification and application of independently obtained results (7.1)
and (8.13) (see below) as well as (3.5) and (4.4) above, the resulting representation is

h(a)
a2 =

4aΓ(a+1/2)
6
√

πΓ(a)
S1(a) (4.13)

+
4aΓ(a+1/2)
3Γ(a)sin(π a)

(
−π5/2

6
+(γ + Ψ(a))cot(π a)π3/2 +4 (γ + Ψ(a))2√π

)
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where the absolutely convergent series S1(a) is defined by (also see (8.7))

S1(a) ≡
∞

∑
k=1

Γ(k+1−a)Γ(a+ k)(Ψ(k+1−a)+ Ψ(a+ k)−2Ψ(k))

k3 Γ(k)2 . (4.14)

Notice that dependence on the parameter d has vanished during the simplification
process. Alternatively, from (B.9) operate with the following sequence: f = b + 1,
e = 2a followed by the limit c → a , then L(b) , and finally d = a , to obtain

h(a) =3F2(a,a,a; 2a,a+1; 1) (4.15)

+
π Γ(2a+1)

sin(π a) Γ(a)2

(
−1

2
a(a−1)4F3(1,1,a+1,2−a; 2,2,2; 1)

−1
2

a2 (a−1)5F4(1,1,1,a+1,2−a; 2,2,2,2; 1)+ (Ψ(a)+ γ)2 a+ Ψ(a)+ γ
)

.

When (4.4) and (7.1) are applied, (4.15) reduces to (3.5).

4.7. Based on (B.10)

As discussed in the Appendix, the result (B.10) also admits an arbitrary parameter
d on the right-hand side. After operating on (B.10) with the following left-ordered
sequence d = a , b = a , f → b+1, e = 2a we find the interim result

3F2(a,a,b; 2a,1+b; 1)
b

(4.16)

= aπ (a−1)
Γ(2a) 4F3(1,2−a,1+a,1+a−b; 2,2,a−b+2; 1)

Γ(a)2 sin(π a)(1+a−b)

+
22a−1√πΓ(a+1/2)Γ(b)Γ(a−b)

Γ(a)sin(π a)Γ(1+b−a)Γ(2a−b)
− 22a−1√πΓ(a+1/2)

Γ(a)sin(π a)(a−b)
,

which can be simplified using (B.11) to give

3F2(a,a,b; 2a,b+1; 1) (4.17)

= −π bΓ(2a)3F2(a,1−a,a−b; 1,1+a−b; 1)

Γ(a)2 sin(π a)(a−b)

+
π2 Γ(2a)Γ(b+1)

Γ(a)2 sin(π a)sin(π (a−b))Γ(b+1−a)2 Γ(2a−b)
.

Compare with (4.11) above and (4.18) below. In contrast, it is also possible to op-
erate on (B.10) (after renaming the parameters) with the slightly different left-ordered
operator sequence ∂

∂d , d = a , b = a , f → b+1, e = 2a to obtain a different represen-
tation

Γ(a)2
3F2(a,a,b; 2a,1+b; 1)

Γ(2a)b
(4.18)

= −π 3F2(a,1−a,a−b; 1,1+a−b; 1)
sin(π a)(a−b)
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+
sin(π (a−b))4F3(a,1−a,a−b,a−b; 1,1+a−b,1+a−b;1)

sin(π b)(a−b)2

− sin(π (a−b))sin(πa)
π sin(π b)

S2(a,b)

where S2(a,b) is defined in (4.12). To complete the calculation, operate on each of
the above with L(b) . In the case of (4.16), the result simplifies to (3.5); in the case of
(4.18) the following representation is found:

h(a)
a2 =− Γ(2a)

Γ(a)2 S1(a)−2π (a−1)
Γ(2a+1)5F4(1,1,1,2−a,a+1; 2,2,2,2; 1)

sin(π a)Γ(a)2

(4.19)

+
2π2 Γ(2a)

Γ(a)2 sin(π a)

(
π/6− (γ + Ψ(a))cos(π a)

sin (π a)

)

It is worth noting that

∞

∑
k=1

Γ(a+ k)Γ(k+1−a)Ψ(k+1)

k3 Γ(k)2 −
∞

∑
k=1

Γ(a+ k)Γ(k+1−a)Ψ(k)

k3 Γ(k)2 (4.20)

= −a(a−1)π 5F4(1,1,1,1+a,2−a; 2,2,2,2; 1)
sin(π a)

and that neither of the 3F2 that appear in (4.8) or (4.17) can be found in the database
[17].

4.8. Consider a two-part relation

Any 3F2(1) can be related to a maximum of nine other 3F2(1) by means of the
two-part Thomae relations (see Appendix C). In the case of the particular 3F2(1) under
consideration, we have four different possibilities

3F2(a,a,b; 2a,b+1; 1) = 3F2(1,1,2a−b; 1+a,1+a; 1)Γ(b+1)Γ(2a)

Γ(b)(Γ(1+a))2 (4.21)

= 3F2(1,b−a+1,a; 1+a,b+1; 1)Γ(2a)
Γ(a)Γ(1+a)

(4.22)

= 3F2(2a−b,a,a; 1+a,2a; 1)Γ(b+1)
Γ(b−a+1)Γ(1+a)

(4.23)

= 3F2(b−a+1,b−a+1,b; b+1,b+1; 1)Γ(2a)
Γ(2a−b)Γ(b+1),

(4.24)

none of which appear in the database [17], as expected; as well, each fails a test of
the telescoping method [6]. However, each of these could be evaluated as a limiting
case of one of the eight three-part transforms discussed in previous sections, giving 32
possibilities. I have performed this calculation using (4.21) and (B.2) as a basis, and
found nothing useful beyond a long expression containing many intractable sums. A
study of the remaining 31 possibilities is left as an exercise for the ambitious reader.
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5. Reduce the problem

When all else fails, it is sometimes helpful to consider a reduced problem – in this
case consider the case a → n . With reference to (3.5), the reduction to the Integers
from the Reals will clearly require a limiting calculation because of the presence of the
denominator factor sin(πa) , so let a = n+ε , and consider the limit ε → 0. The leading
term of this limit on the right-hand side is of order ε−1 , and when the (numerator)
coefficient of this term is set to zero (for more detail, see the remark at the beginning of
Section 7.1.2 below) we find

5 F4 (1,1,1,1+n,2−n; 2,2,2,2; 1) = 2
(γ + Ψ(n))2

n(n−1)
n > 1 . (5.1)

For the general case of (5.1), see (8.2) below. For the case n = 1 we have the well
known definition

4F3(1,1,1,1;2,2,2;1) = ζ (3) . (5.2)

The next-to-leading term (ε0 ) produces the identity

h(n) =
Γ(2n+1)2

5F4(1,1,n,n,2n; 1+n,1+n,1+n,1+n; 1)
4Γ(1+n)4 +

(−1)n 2nΓ(2n+1)
Γ(n)2

(5.3)

×
(

(γ+Ψ(n))Ψ′ (n)+
1
4

n−2

∑
k=0

(−1)k Γ(n+k+1)(Ψ(n−1−k)−Ψ(n+k+1))

Γ(k+1)2 Γ(n−1−k)(k+1)4

)
.

Alternatively, from [17, Entry 29] and using the approach based upon the applica-
tion of L(b) to a 3F2(1) , after taking the appropriate limit, we obtain

3F2(n,n,b; 2n,b+1; 1) (5.4)

=
Γ(2n)

Γ(2n−b)

(
(π cot(π b)−2Ψ(n)+2Ψ(−n+b+1))Γ(n−b)2

Γ(−b)Γ(n)2

+b(−1)n

(
n−1

∑
k=0

Γ(n+k−b)(−1)k Ψ(n−k)

Γ(k+1)2 Γ(n−k)
−

n−1

∑
k=0

Γ(n+k−b)(−1)k Ψ(n+k−b)

Γ(k+1)2 Γ(n−k)

))
.

The second sum can be evaluated from (D.15) to eventually yield

3F2(n,n,b; 2n,b+1; 1) (5.5)

=
Γ(2n)

Γ(2n−b)

(
b(−1)n

n−1

∑
k=0

Γ(n+k−b)(−1)k Ψ(n−k)

Γ(k+1)2 Γ(n−k)
+

(−2Ψ(n)+Ψ(b))Γ(n−b)2

Γ(−b)Γ(n)2

)
.

After operating on (5.5) with L(b) (see (4.3)) and setting b = n , we ultimately obtain
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(also see (8.16)) a second representation

h(n)
n2 = Γ(2n)(−1)n

(
1

Γ(n)

n−1

∑
k=1

(−1)k Ψ(n− k)(Ψ(k)−Ψ(n))
k2Γ(n− k)Γ(k)

(5.6)

+
Ψ(n)π2/12−3/2Ψ(n)3−3Ψ(n)2 γ+3/2

(−γ2+Ψ′ (n)
)

Ψ(n)+2Ψ′ (n)γ+Ψ(2) (n)/2

Γ(n)2

)
.

For the sake of completeness, in the case that n →−n+ ε , from (3.5) we find the
first three terms of the expansion in ε :

h(−n+ ε) (5.7)

≈ n(−1)n Γ(n+1)2

2Γ(2n)ε2 − Γ(n+1)2 (−1)n (2nγ −2nΨ(2n)+4nΨ(n+1)+1)
2Γ(2n)ε

+
(−1)n Γ(n+1)2

Γ(2n)

(
γ−Ψ(2n)+2Ψ(n+1)+n

(
2γ (Ψ(n+1)−Ψ(2n))+Ψ(2n)2

−4Ψ(n+1)Ψ(2n)+3Ψ(n+1)2 −π2/12 +3/2Ψ′ (n+1)−Ψ′ (2n)
))

+ . . .

6. The method of “Hail Mary”

Since none of the various methods attempted have thus far yielded a closed form
for (1.1), there is one “last-ditch” method available, which relies more on experience
and luck than mathematical rigour. It is included here for both its educational value
and because, in this case, it does produce a different representation from what has been
obtained so far. Analysts who do not have to solve practical problems might wish to
stop reading this section at this point.

Near the end of Section 7.1.2 will be found a discussion outlining how it is some-
times beneficial to change an expression that involves only integer variables into equiva-
lent expressions involving real variables by the simple expedient of changing n = a and
checking the result numerically, provided that the modified expression makes sense af-
ter the change. Sometimes this procedure works, and possible reasons are given; many
times it does not – the presence of terms involving sin(πa) in a comparison of (5.1)
and (8.2) exemplifies why. In this section a similar change will be performed, despite
the fact that the modified expression does not make sense after the change.

Consider the representation (5.6) and replace n = a . The term (−1)n is reasonably
transformed into exp(iπa) , and all other terms are well-defined functions of a complex
variable, but what are we to make of the summation with a non-integer limit? In both
the derivation of (B.2) and in a later section (see the latter part of Section 7.1.2) this
action was employed and justified – simply extend any sums to infinity, relying on
the presence of denominator gamma functions (Γ(n− k) in this case) to effectively
terminate the sum. That action does not bode well here, because of the presence of
the digamma function in the numerator of (5.6); that is Ψ(n− k)/Γ(n− k) is finite for
k > n . Thus new terms are added if the sum were to be extended to infinity by fiat.
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In this regard, Müller and Schleicher have studied that question and provide a well-
reasoned prescription [19, Eq. (4)] for any indexed function f (k) , imposing simple
conditions on the asymptotics, as follows:

y

∑
k=x

f (k) =
∞

∑
k=1

( f (k+ x−1)− f (k+ y)) . (6.1)

After replacing n := a and applying (6.1) to the sum in (5.6) we obtain a fairly long and
complicated complex expression, whose imaginary part must vanish if we temporarily
restrict a ∈ R (e.g. see Appendix A.2). This procedure yields the following identity

∞

∑
k=1

(−1)k Ψ(a− k)(Ψ(k)−Ψ(a))
k2Γ(k)Γ(a− k)

(6.2)

=
1

Γ(a)

(
3/2Ψ(a)3 +3γ Ψ(a)2 +

(−3/2Ψ′ (a)+3/2γ2−1/12π2)Ψ(a)

−2γ Ψ′ (a)−1/2Ψ(2) (a)
)

which, mirabile dictu, is numerically satisfied for ℜ(a) > 1, where the sum converges.
To further check (6.2), see (8.8) where it is explored in the reverse limit a → n , yield-
ing a representation for what may be a new generalized Euler sum, verifiable in some
special cases. Furthermore, with reference to (D.24), (6.2) can also be rewritten in the
form of a possibly new sum

∞

∑
k=1

(−1)k Ψ(a− k)Ψ(k)
k2Γ(k)Γ(a− k)

=
Ψ(a)3

2Γ(a)
+

2γ Ψ(a)2

Γ(a)
−
(
π2−18γ2 +6Ψ′ (a)

)
Ψ(a)

12Γ(a)
(6.3)

− 4γ Ψ′ (a)+ Ψ(2) (a)
2Γ(a)

.

As noted elsewhere, the right-hand side of (6.3) represents the left-hand side for
arbitrary values of a by the principle of analytic continuation. However, even though
the sum converges for a > 1, it will not truncate to a finite sum when a = n because
of the numerator factor Ψ(n− k) , and thus cannot be used as a bootstrap to further
evaluate (5.6).

Finally, with the help of (D.17) and (D.22) followed by the conversion of the
remaining sum into hypergeometric form, the real part of (5.6) becomes

h(a)
a2 = −Γ(a+1/2)4a

4F3(1,1,a,a; 1+a,1+a,1+a; 1)√
πΓ(1+a)a2

(6.4)

−
(

Ψ(2) (a/2)−Ψ(2) (a/2+1/2)
)

Γ(a+1/2)4a

8
√

πΓ(a)

a representation that outwardly differs from the other representations obtained up to
this point. However, once established, however shakily, (6.4) can be shown analytically
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to be equivalent to the other representations; it is numerically verifiable and therefore
appears to be true, despite its unusual lineage. In the limiting case a = 1, (6.4) consis-
tently reduces to (5.2), i.e. h(1) = ζ (3) .

7. (Unforeseen) consequences

7.1. Proof of some new 4F3(1) and 5F6(1)

An unexpected result materializes when (3.7) is compared to (4.10). From that
comparison, a closed form of the following (non-terminating, Saalschützian) 4F3(1) is
found. It appears to be new:

4 F3 (1,1,2−a,a+1; 2,2,2; 1) = 2
Ψ(a)+ γ
a(a−1)

+
sin(π a)(Ψ′ (a/2)−Ψ′ (a/2+1/2))

2aπ (a−1)
.

(7.1)
Inspired by this observation, if the following series of operations, ordered from the left,

e = 2, f = 2, g = 2, a → b, b → 1 (7.2)

are applied to (A.1) the following transformation (an apparent generalization of (7.1))
results

4F3(1,1,c,d; 2,2,2; 1) = − sin(π c)Γ(c)4F3(1,c,c,c; 2,c+1,2+ c−d; 1)Γ(1−d)
cΓ(2+ c−d)π

(7.3)

− Ψ(−1+ c)
(−1+ c)(−1+d)

− Ψ(2−d)
(−1+ c)(−1+d)

− sin (π c)Γ(c)Γ(1−d)

Γ(1+ c−d)(−1+ c)3 π
−2

γ
(−1+ c)(−1+d)

.

The 4F3(1) appearing on the right-hand side of this equation can be reduced using
(B.11), and when this is done, (7.3) becomes

4F3(1,1,c,d; 2,2,2; 1) =− sin(π c)Γ(c)Γ(1−d) 3F2(c−1,c−1,c−1; c,1+c−d; 1)
Γ(1+c−d) (−1+c)3 π

(7.4)

− 2γ + Ψ(c−1)+ Ψ(2−d)
(c−1)(d−1)

.

For many choices of the parameter d , the 3F2(1) on the right-hand side is known
as a special case of, or contiguous to, Watson’s theorem [17, Entry 1]; in the following
sub-sections, this will be explored. The case d → 1 reduces the left-hand side of (7.3)
to the known result (7.22) below. The case c = d yields a result equivalent to a→ c = 1
in (3.2).

REMARK. Attempting to apply (B.11) to the left-hand side of (7.3) or (7.4) simply
leads to a trivial identity.
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7.1.1. Special case d = c+1−a

Because the left-hand side of (7.4) is symmetrical under the exchange c ↔ d and
the right-hand side is not, equating the two right-hand sides after the interchange gives
rise to the transformation

3F2 (c,c,c;c+1,1+a;1) =
π2cΓ(1+a)3F2 (c−a,c−a,c−a;c+1−a,1−a;1)

(c−a)3 Γ(−c+a)2 sin2 (π c)Γ(c)2 Γ(1−a)
(7.5)

− π sin(π a)Γ(c−a)cΓ(1+a)
sin2 (π c)Γ(c)

being almost certainly a special case of the three-part transformations discussed in Ap-
pendix C. Of interest are the two-part (Thomae) equivalents of the 3F2 that appears on
the right hand-side of (7.5) giving

3F2(c,c,c; c+1,1+a; 1)

=
cΓ(2−2c+a)Γ(1+a)3F2(1,1− c,2−2c+a; 2− c,2− c; 1)

(1− c)2 Γ(1− c+a)2

− c sin(π a)Γ(1− c)Γ(c−a)Γ(1+a)
sin(π c)

(7.6)

= −π cΓ(c−a)Γ(1− c)aΓ(2−2c+a)3F2(1− c,1− c,c−a; 2− c,1−a; 1)
(c−1) sin(π a)(Γ(1−a))2 (Γ(1− c+a))2

− π cΓ(c−a)Γ(1− c)a
Γ(1−a)sin(π c)

(7.7)

=
cΓ(1+a)Γ(2−2c+a)3F2(1,1,c−a; 2−c,c+1−a; 1)

(c−a)Γ(1−c+a)2 (1−c)
−π caΓ(c−a)Γ(1−c)

Γ(1−a)sin(π c)
(7.8)

=
casin2 (π (c−a))Γ(1−c)Γ(c−a)3 Γ(2−2c+a)3F2(1−c,1−c,c−a;2−c,1−a;1)

π (1−c) sin(πa)Γ(1−a)2

− π caΓ(c−a)Γ(1− c)
Γ(1−a)sin(π c)

. (7.9)

None of the above are contained in the database [17] in their general form. Note
that the validity of (7.6) is limited to 2c−1 < a < c+2, along with c < 3 and that of
(7.9) requires c < 1 and a > 2c−2, thereby defining an overlap region that establishes
the analytic continuation of either side with reference to the other. However, in both
cases (7.7) and (7.9) the right-hand sides have parametric excess equal to unity, in which
case, the terminating instance of either is Saalschützian and therefore summable. Thus
it is tempting to investigate both of these transformations corresponding to the special
cases c = 1+n or a = c+n . However, this fails, because the Saalschütz formula does
not apply in a limiting sense, and in both cases the application of Saalschütz’ formula
leads to representations in which limits must be further employed. So, rather than using
a valid, but inappropriate (Saalschützian) equality, consider:
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• (7.7) in the limit a → c+n . After considerable calculation, the result is

3F2(c,c,c; c+1,1+ c+n; 1)
Γ(1+ c+n)

(7.10)

=
(Ψ(n+1)−Ψ(2− c+n))cπ

Γ(n+1)Γ(c) sin(π c)

− cΓ(2− c+n)2 4F3(1,1,2− c+n,2− c+n; 2− c,n+2,3− c+n; 1)

(−2+ c−n)Γ(n+2)Γ(2− c)Γ(n+1)2

− c(−1)n Γ(2− c+n)
(Γ(n+1))2

n

∑
k=0

(−1)k Γ(1− c+ k)(Ψ(n− k+1)−Ψ(c+n− k))
(c− k−1)Γ(1− c−n+ k)Γ(n− k+1)Γ(k+1)

.

In comparison, the specific form of the left-hand side of (7.7) when a = c+n is
easily established ([17, Entry 27], that is

3F2(c,c,c; c+1,1+ c+n; 1) (7.11)

= −cΓ(1− c)Ψ(c)Γ(1+ c+n)
Γ(n+1)

− cΓ(2− c+n)Γ(1+ c+n)
Γ(n+1)

n

∑
k=0

(−1)k Ψ(k+1)
(c− k−1)Γ(n− k+1)Γ(k+1)

and so, by comparing the right-hand sides of (7.10) and (7.11) and redefining the
variable c , we find a possibly new transformation

4F3(1,1,c,c; c−n,2+n,c+1; 1)
cΓ(2+n)Γ(c−n)Γ(1+n)

(7.12)

=
(−Ψ(−c+n+2)−Ψ(1+n)+ Ψ(c))Γ(−1+ c−n)

Γ(c)2

− 1
Γ(c)

n

∑
k=0

(−1)k Ψ(k+1)
(n− k+1− c)Γ(n− k+1)Γ(k+1)

− (−1)n

Γ(c)Γ(1+n)

n

∑
k=0

(Ψ(2− c+ k+n)−Ψ(k+1)) (−1)k Γ(2− c+ k+n)
Γ(2− c+ k) (1− c+ k)Γ(k+1)Γ(n− k+1)

• (7.7) with c = n+1+ ε in the limit ε → 0. As discussed elsewhere (see remark
at the start of Section 7.1.2), a leading (divergent) term of order ε−1 arises, and
when the numerator coefficient of that term is set to zero, we find (after redefining
a := a+n−1,n := n+1) the closed form identity

4F3(1,1,a,−n; 2,2,a−n−1;1) (7.13)

=
(γ + Ψ(2+n)+ Ψ(a−1)−Ψ(a−2−n)) (2+n−a)

(1+n)(1−a)
.

Since the left-hand side of (7.13) is terminating and Saalschültzian, it is summable
and in that sense (7.13) is possibly not new, but represents a limiting case that
could possibly have been obtained by other means.
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The left-hand side of (7.7) can also be reduced using [17, Entry 26] to eventually
obtain

Γ(1+n)Γ(a)3F2(1+n,1+n,1+n; 2+n,1+a+n; 1)
Γ(1+a+n)(1+n)

(7.14)

= Γ(1+n)Γ(a−n)
n−1

∑
k=0

(−1)k (Ψ(a− k)+ Ψ(n− k)−Ψ(k+1))
(n− k)Γ(a− k)Γ(k+1)

− (−1)n

2
((Ψ(a−n)−Ψ(a))(3Ψ(a−n)−2γ −2Ψ(1+n)−Ψ(a))

−3Ψ′ (a−n) + Ψ′ (a)
)
.

Now compare the limiting case (7.11) using c → n+1 and (7.14) with a = n+1,
and after some simplification, obtain what may possibly be a new sum:

n−1

∑
k=0

(−1)k Ψ(k+1)
(k+1)2 Γ(n−k)Γ(k+1)

=
π2−18γ2−24γ Ψ(1+n)−6Ψ(1+n)2−6Ψ′ (1+n)

12Γ(1+n)
,

(7.15)
after which (7.11) simplifies to

Γ(1+n)2 3F2(1+n,1+n,1+n; 2+n,2+2n; 1)
Γ(2+2n)(1+n)

(7.16)

= −Γ(1+n)
n−1

∑
k=0

(−1)k Ψ(k+1)

(n−k)2 Γ(n−k)Γ(k+1)
−
(

γΨ(1+n)+Ψ(1+n)2−Ψ′ (1+n)
)

(−1)n .

Notice the symmetry of the components of the sums in (7.14) under reversal when
a = n+1.

7.1.2. Special case d = n

Case: n > 1

REMARK. The following focusses on another occurrence in this paper of a seren-
dipitous condition that, when it arises and when it is recognized, sometimes leads to
the discovery of new identities. Therefore, it is presented in more detail than would
otherwise be warranted.

Consider the limit d → n applied to (7.4). This is easiest done by setting d =
n+ ε and evaluating the limit ε → 0 to the series representation of the right-hand side.
When this calculation is performed, it is found that the leading term is of order 1/ε .
Since the left-hand side is obviously finite with respect to ε in this limit, provided that
n < 	4− c
 , the only possibility is that the numerator of this divergent term must be
identically zero. Indeed, after the numerator expression is carefully calculated, equated
to zero, simplified and reordered, the following, tentatively new, identity arises

4F3(1,c,c,c; 2,c+1,2+ c−n; 1) (7.17)

= −cΓ(2+ c−n)
c−1

(
(−1)n Γ(1− c)Γ(n−1)+

1

(c−1)2 Γ(c−n+1)

)
.
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When (B.11) is applied, (7.17) reduces to the following identity

3 F2 (c,c,c; c+1,2+ c−n; 1) = c(−1)n Γ(1− c)Γ(n−1)Γ(2+ c−n) , (7.18)

which corresponds to a special limiting case of entry 35 of [17], corresponding to a
limiting case of [3, Eq. (7.4.4.15)]. Thus, interpreted as a limiting case, (7.18) is not
new. Alternatively, since a top parameter exceeds a bottom one by a positive integer if
n> 2, either of the above are computable from the Minton-Karlsson algorithm [11],[12]
and Appendix D. Working backwards from (7.18) suggests that (7.17) is also “not new”
in the same sense, but to the best of my knowledge, it does not appear explicitly in the
literature. New or not, this sequence of calculations demonstrates how unexpected
identities can sometimes arise.

Reverting to a discussion of the leading term of order ε0 in the case d = n+ ε ,
we find the (possibly new) object of the exercise

4F3(1,1,c,n; 2,2,2; 1) = − sin(π c) (−1)n

Γ(c)π Γ(n)

∞

∑
k=0

Γ(c+ k−1)2 Ψ(1+ c−n+ k)
(c+ k−1)Γ(k+1)Γ(1+ c−n+ k)

(7.19)

− 2Ψ(n)+ Ψ(c)+2γ
(c−1)(n−1)

+
2c+n−3

(n−1)2 (c−1)2
.

Both sides of (7.19) are convergent if c+n < 4.

Case: n = 1
In the case that n = 1, it is clear that a limiting (d → 1) operation will be required,

and when this is performed as in the previous subsection, a leading term of order ε−1

arises. Setting the numerator to zero yields

3 F2 (c,c,c; c+1,c+1; 1) = −π c2 (Ψ(c)+ γ)
sin(π c)

, (7.20)

a known result corresponding to [17, Entry 27]. Considering the term of order ε0 , and
applying (7.20) leads to

4F3(1,1,1,c; 2,2,2; 1) =
sin(π c)
π Γ(c)

∞

∑
k=0

Γ(c+ k−1)Ψ(c+ k)

(c+ k−1)2 Γ(k+1)
(7.21)

+
γ (Ψ(c−1)+ γ)

c−1
+

π2

6(c−1)
.

Helpfully, Prudnikov et. al. [3, Eq. 7.5.3(9)], (also (D.8)) have, by other means,
listed

4F3(a,a,a,b; 1+a,1+a,1+a; 1) (7.22)

=
a3Γ(a)Γ(1−b)

(
Ψ′ (a)−Ψ′ (1+a−b)+ (Ψ(a)−Ψ(1+a−b))2

)
2Γ(1+a−b)
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so, by applying a simple change (a = 1, b = c) to (7.22) and comparing the right-hand
sides of (7.21) and modified (7.22) we find what appears to be a new identity

∞

∑
k=0

Γ(c+ k−1)Ψ(c+ k)

(c+ k−1)2 Γ(k+1)
(7.23)

= −Γ(c−1)π3

4 sin(π c)
− π Γ(c−1)

sin(π c)

(
1
2

(γ + Ψ(2− c))2 + γ2 + γ Ψ(c−1)− 1
2

Ψ′ (2− c)
)

.

Further interesting results can be obtained from the above (d = 1) case by con-
sidering the substitution c = −m+ ε , followed by the limit ε → 0. As in the previous
sections, terms of order ε−2 and ε−1 arise, and, as before, these must vanish. The first
of these reduces to a limiting version of the case (7.22) discussed above; the second
reproduces (D.9) with a = −m .

The limit m →−1 yields ,with the help of (D.9), the known result

∞

∑
k=0

−γ −Ψ(k+1)

(k+1)4
=

1
6

ζ (3)π2−2ζ (5) . (7.24)

Finally, reverting to the leading term (of order ε0 ) we initially find the reduction
of an infinite series (on the left-hand side) to a collection of finite series on the right, all
in terms of a single integer parameter m (see (7.25) below where m has been replaced
by a for reasons also discussed immediately below).

(Digression and Observation: Experience has shown that occasionally, obscure
underlying relationships exist that govern the behaviour of identities such as the fol-
lowing when m is replaced by a . For a simple example of such a hidden association,
see the discussion surrounding (B.3)–(B.5), and for an extreme example, see Section 6.
Consequently, a fastidious analyst should always check numerically for the possibility
that another more general identity may be lurking when a new identity involving m ∈N

is explored. The requirement is simply that the new identity be unambiguously calcu-
lable when subjected to the replacement m := a , where a ∈ C . The goal is to discover
if the more general identity might be numerically valid, all the while recognizing that
there are an infinite number of ways this transition could be performed, none of which
might be valid. The case where an identity is not unambiguously calculable is explored
in Section 6. If the generalized identity appears to be valid, certification via the WZ
algorithm [20] becomes a possibility.)

Keeping this possibility in mind, numerical tests of (7.25) below, obtained from the
leading term (of order ε0 ) and derived under the condition that a→m∈N , indicate that
it is numerically true under the generalization m := a . However, certification using the
WZ algorithm [20] fails due to the fact that both sides contain digamma functions, and
hence are not of hypergeometric type. We are thus left with the following numerically
tested, but analytically unproven identity (unless a = m). With reference to (7.23), the
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general result (c = −m+ ε , of order ε0 , m := a ) is:

∞

∑
k=0

Ψ(2+ k)Γ(1+ k)

(1+ k)2 Γ(k+3+a)
(7.25)

=
1
2

∞

∑
k=0

(−1)k
(

Ψ(1+ k)2−Ψ′ (1+ k)
)

(1+ k)3 Γ(1+ k)Γ(a− k+1)

+
1

Γ(2+a)

((
−Ψ(2+a)2 + Ψ′ (2+a)

)(
3/4γ2−1/8π2) −1/6γ Ψ(2+a)3

+
(
1/2γ Ψ′ (2+a)− γ3 +1/3π2γ −2ζ (3)

)
Ψ(2+a)

−5γ4

12
+1/6π2γ2 −

(
1/6Ψ(2) (2+a)+10/3ζ (3)

)
γ +

5π4

144

)

As commented above, the series on the right-hand side is truncated at m+1 terms
if a = m , and it can be identified as

lim
b→1

∂ 2

∂b2

(
5 F4 (1,1,1,1,−a; 2,2,2,b; 1)

Γ(b)Γ(a+1)

)
= −

∞

∑
k=0

(−1)k
(

Ψ(k+1)2 −Ψ′ (k+1)
)

Γ(k+1)(k+1)3 Γ(a− k+1)
.

(7.26)
As well, the case a = 0 yields the interesting Euler sum (also see (7.24) and (8.9a))

∞

∑
k=0

Ψ(k+1)

(k+1)3 (2+ k)
= −(γ +1)ζ (3) −

(
1− π2

6

)
γ +

π4

360
+1 . (7.27)

7.1.3. Special cases: d = −n

In the case d = −n , the 3F2(1) on the right-hand side of (7.4) is a limiting case of
the known entry 25 of [17] – that is (after evaluating the appropriate limits)

3F2(c−1,c−1,c−1; c,c+n+1; 1) (7.28)

=
π (c−1)Γ(c+n+1)

sin(πc)Γ(2+n)

(
(−1)n

Γ(c−3−n)

n+1

∑
k=0

(−1)k Ψ(k+1)
Γ(n−k+2)(c−k−2)Γ(k+1)

+
Ψ(c−1)
Γ(c−1)

)
.

Substitution of (7.28) into (7.4) then gives the new result

4F3(1,1,c,−n; 2,2,2; 1) (7.29)

= − Γ(c−1)(−1)n

(c−1)Γ(c−3−n)(n+1)

n+1

∑
k=0

(−1)k Ψ(k+1)
Γ(n−k+2)(c−k−2)Γ(k+1)

+
(Ψ(2+n)+2γ)
(c−1)(1+n)
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and, after differentiating with respect to c

n

∑
k=0

Γ(k+1)Ψ(c+ k)Γ(c+ k)(−1)k

Γ(n− k+1)Γ(k+2)3
(7.30)

=
(−1)n (Ψ(c−3−n)−2Ψ(c−1))Γ(c−1)2

Γ(2+n)Γ(c−3−n)

×
n+1

∑
k=0

(−1)k Ψ(k+1)
Γ(n− k+2)(c− k−2)Γ(k+1)

+
(Ψ(2+n)+2γ)Ψ(c−1)Γ(c−1)

Γ(2+n)

+
Γ(c−1)2 (−1)n

Γ(2+n)Γ(c−3−n)

n+1

∑
k=0

(−1)k Ψ(k+1)

Γ(n− k+2)(c− k−2)2 Γ(k+1)
(7.31)

or, alternatively (by solving and substituting)

4F3(1,1,c,−n; 2,2,2; 1) (7.32)

=
Γ(c−1)(−1)n

Γ(c−3−n)(Ψ(c−3−n)−2Ψ(c−1)) (c−1)(n+1)

×
n+1

∑
k=0

(−1)k Ψ(k+1)

Γ(n− k+2)(c− k−2)2 Γ(k+1)

− Γ(1+n)
(−2Ψ(−1+ c)+ Ψ(c−3−n))Γ(c)

n

∑
k=0

Γ(k+1)Ψ(c+ k)Γ(c+ k)(−1)k

Γ(n− k+1)Γ(k+2)3

+
(Ψ(−1+ c)−Ψ(c−3−n))(Ψ(2+n)+2γ)
(2Ψ(c−1)−Ψ(c−3−n)) (c−1)(n+1)

.

7.1.4. Special case d = −c−n

In the case that d = −c− n , the 3F2(1) on the right-hand side of (7.4) is easily
identified (Note: here only, n � −2) as being contiguous to Watson’s theorem ([17,
entry 1]) for which general closed forms are well known [16]. However, because the
top and bottom parameters are almost all separated by integers, this becomes a very
complicated general limiting case; when the limits are all evaluated, the result contains
far too many terms to realistically reproduce here. For the first few values corresponding
to the variable n = −1,0, . . . , the results are

3F2(c−1,c−1,c−1; c,2c−1; 1) (7.33)

=
4cΓ(−1/2+ c)√

πΓ(c)

((
1
2

Ψ′ (c)− 1
4

Ψ′ (c/2)
)

(c−1)2 +1/4

)

3F2(c−1,c−1,c−1; c,2c; 1) (7.34)

=
4cΓ(1/2+ c)√

πΓ(c+1)

((
Ψ′ (c)−1/2Ψ′ (c/2)

)
(c−1)2 − −c2 + c−1

2c2

)
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3F2(c−1,c−1,c−1; c,2c+1; 1) (7.35)

=
4cΓ(1/2+ c)√

πΓ(c+2)

(
c
(−Ψ′ (c/2)+2Ψ′ (c)

)
(c−1)2 +

c4 + c3−2c2 +3c+1

c(c+1)2

)

3F2 (c−1,c−1,c−1; c,2c+2;1) (7.36)

=
4cΓ(3/2+ c)√

πΓ(c+3)

×
(
−2c

(
Ψ′ (c/2)−2Ψ′ (c)

)
(c−1)2−−2c6−10c5−12c4+14c3−10c2−44c−8

(c+2)2 (c+1)2 c

)
.

The case n =−2 equates to (4.4) with c = a+1. The corresponding results for respec-
tive values of n = −1,0, . . . applied to (7.4) are as follows:

4F3(1,1,c,2− c; 2,2,2; 1) (7.37)

=
1

(c−1)2

(
2γ +2Ψ(c)+

(Ψ′ (c/2)−2Ψ′ (c))sin(π c)
π

)
− 1

(c−1)3
− sin(π c)

π (c−1)4

4F3(1,1,c,1− c; 2,2,2; 1) (7.38)

=
sin(π c)

π

(
Ψ′ (c/2)−2Ψ′ (c)

c(c−1)
− c2− c+1

c3 (c−1)3

)
+2

(Ψ(c+1)+ γ)
c(c−1)

− 2c−1

c2 (c−1)2

4F3(1,1,c,−c; 2,2,2; 1) (7.39)

= 2
Ψ(c+2)+ γ
(c−1)(c+1)

+
1−3c2

c(c+1)2 (c−1)2

− Γ(c)sin(π c)

π Γ(c+2)(c−1)3

(
c
(
2Ψ′ (c)−Ψ′ (c/2)

)
(c−1)2 +

c4 + c3−2c2 +3c+1

c(c+1)2

)

4F3(1,1,c,−1− c; 2,2,2; 1) (7.40)

= 2
Ψ(3+ c)+ γ
(c−1)(c+2)

−2
(2c+1)

(
c2 + c−1

)
c(c+1)(c+2)2 (c−1)2

+
Γ(c)sin (π c)4cΓ(3/2+ c)

π3/2 (c+2)(c−1)3 Γ(2c+2)

×
(

2c
(
Ψ′ (c/2)−2Ψ′ (c)

)
(c−1)2 +

−2c6−10c5−12c4+14c3−10c2−44c−8

(c+2)2 c(c+1)2

)
.

The case n = −2 has been omitted here also, because it corresponds to (7.1) with
a = 2− c , providing an alternative direct derivation of (7.1).
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7.1.5. Special case d = n− c

In this special case, the series representation on the left-hand side of (7.4) will only
converge if n � 3. Since the case n = 3 overlaps with the special cases listed in the
previous subsection, for that case we find (4.4), and correspondingly an equivalent to
(7.1).

7.2. c = 1

Setting c = 1 in (7.1) gives a known result on the left (see (7.22)), and after a
limiting calculation on the right, an interesting transformation results:

4F3(1,1,1,1; 2,2,d; 1) (7.41)

=
1

Γ(1−d)

∞

∑
k=0

Ψ(1+ k)Γ(3−d+ k)
(1+ k)3 Γ(k+1)

+
d−1

6
Ψ(d)3

+
(

d−1
12

(−π2 +18γ2−6Ψ′ (d)
)−2γ

)
Ψ(d)+ (1/2− (d−1)γ) (Ψ′ (d)−Ψ(d)2)

+
d−1

6
Ψ(2) (d)+2/3 (d−1)γ3 −3/2γ2 +4/3ζ (3)d +1/12π2−4/3ζ (3) .

Comparing the right-hand sides of (7.41) and (D.13), with the aid of (D.9) identi-
fies the following sum

∞

∑
k=0

Γ(2−d + k)
Γ(1+ k)(1+ k)2

(
Ψ′ (1+ k)− Ψ(1+ k)

1+ k

)
(7.42)

= Γ(1−d)
(
−Ψ(d)3/3−3Ψ(d)2 γ/2− (2γ2 + π2/6

)
Ψ(d)+ Ψ′ (d)γ/2

+ Ψ(2) (d)/6−5γ3/6−π2γ/4 + ζ (3)/3

)

In the case that d = n , replace the term containing the sum on the right-hand side
of (7.41) with

Γ(n)
n−3

∑
k=0

(−1)k Ψ(1+ k)
(1+ k)3 Γ(1+ k)Γ(n−2− k)

. (7.43)

All other terms are the same subject to the replacement d = n . (7.41) and (D.13)
are unusual, in that they represent one of the few transformations of a hypergeometric
function containing a free bottom parameter.
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8. New transformations

By comparing several of the foregoing results, a number of new transformations
were found. Specifically:

• Comparison of (3.5) and (4.13) produces the identity

5F4(1,1,1,2−a,a+1; 2,2,2,2; 1) (8.1)

= − sin(π a)S1(a)
3a(a−1)π

− 2
3a(a−1)

(
γ2+(Ψ(a)+Ψ(1−a))γ+(Ψ(a))2 +

πΨ(a)cos(πa)
sin(πa)

−π2

6

)
.

• Comparison of (3.5) with (4.2) using (4.4) yields a related transformation

5F4(1,1,1,2−a,a+1; 2,2,2,2; 1) (8.2)

=
(Ψ′ (a/2+1/2)−Ψ′ (a/2)) sin(π a)

2a2 (a−1)π
+2

(γ + Ψ(a))2

a(a−1)

+
4−a sin(πa)Γ(a)

a
√

π (a+1)2 Γ(a+1/2)(a−1)
4F3(a+1,a+1,a+1,a+1;2a+1,a+2,a+2;1).

• A simple comparison between (8.1) and (8.2) gives

4F3(a+1,a+1,a+1,a+1; a+2,a+2,2a+1; 1) (8.3)

= −Γ(a+1/2)4a (a+1)2 S1(a)
3
√

πΓ(a)

+
Γ(a+1/2)4a (a+1)2

3Γ(a)

(
−8

√
πγ2

sin(π a)
− 2

√
π (7Ψ(a)+ Ψ(1−a))γ

sin(π a)

−3
2

(Ψ′ (a/2+1/2)−Ψ′ (a/2))
a
√

π
+

π5/2

3
−8

√
πΨ(a)2

sin(πa)
−2

π3/2 cos(πa)Ψ(a)
sin2 (πa)

)
.

• Comparing (4.7) and (4.13) with a < 1 gives a relationship between two sums:

∞

∑
k=0

Γ(1+ k)Ψ(1−a+ k)

Γ(1−a+ k)(1−a+ k)2
(8.4)

=
sin(π a)Γ(a)S1(a)

3π
+

2Ψ(a)Γ(a)γ
3

+
14
3

Ψ(1−a)Γ(a)γ +
8
3

Γ(a)γ2

+
(

Ψ(1−a)(Ψ′ (a/2)−2Ψ′ (a)) sin(π a)
π

− 1
9

π2 +
8
3

Ψ(a) Ψ(1−a)
)

Γ(a) .
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• After operating on (8.4) with a → 1−a , and noting that S1(a) is invariant under
that operation, eliminate S1(a) from the two resulting equations, and obtain a
transformation between two very slowly converging sums:

Γ(a)
∞

∑
k=0

Γ(1+ k)Ψ(a+ k)

Γ(a+ k)(a+ k)2
(8.5)

= Γ(1−a)
∞

∑
k=0

Γ(1+ k)Ψ(1−a+ k)

Γ(1−a+ k)(1−a+ k)2
− 4π2 cos(π a)γ

sin2 (π a)

+
(
Ψ′ (1/2−a/2)−2Ψ′ (1−a)

)
Ψ(a)+

(
2Ψ′ (a)−Ψ′ (a/2)

)
Ψ(1−a) .

The left-hand side of (8.5) converges for a > 0 while the sum on the right-hand
side converges for a < 1; since an overlap exists, the two sides of the equation
are analytic continuations of each other. That is, the right-hand side represents
the left hand side for a � 0 and, by reversing the equation, the reverse will be
true for a � 1. Both series are very slow to converge when 0 < a < 1, and it is
very difficult to verify (8.5) numerically in the overlap range of the variable a ,
except at a = 1/2, when the two sides reduce to an identity.

• After operating on both sides of (7.1) with ∂
∂ a the following sum is found

∞

∑
k=1

Γ(1−a+ k)Γ(a+ k)(Ψ(a+ k)−Ψ(1−a+ k))
Γ(k)2 k3

(8.6)

= 2Ψ(2) (a)− 1
2

Ψ(2) (a/2)− 2π Ψ′ (a)
sin(π a)

+
2 (γ + Ψ(a))π2 cos(π a)

sin2 (π a)

A comparison of (8.6) with (4.14) suggests a redefinition of the sum S1(a) :

S1(a) = −2
∞

∑
k=1

Γ(k+1−a)Γ(a+k) (Ψ(k)−Ψ(a+k))

k3Γ(k)2 +
1
2

Ψ(2) (a/2)−2Ψ(2) (a)

(8.7)

+
2π Ψ′ (a)
sin (π a)

− 2 (γ + Ψ(a))π2 cos(π a)
sin2 (π a)

• To aid in the verification of (6.2), we explore the reduction of that result in the
limit a → n . This requires that the sums be split at k = n− 1 and appropriate
limits be evaluated. The calculation is straightforward, and requires the invoca-
tion of (D.20) and (7.22) with a = 1 and b = 2−n , all of which eventually give
the following representation reducing an infinite to finite sums:
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∞

∑
k=0

Γ(1+ k)Ψ(k+n)

(k+n)2 Γ(k+n)
(8.8)

= Ψ(n)
n−1

∑
k=1

Γ(n− k)Ψ(k) (−1)k

Γ(n− k+1)2 Γ(k)
+ (−1)n

n−1

∑
k=1

(−1)k Ψ(n− k)(Ψ(k)−Ψ(n))
k2Γ(k)Γ(n− k)

−(−1)n

Γ(n)

(
Ψ(n)3 /2+2γΨ(n)2−(π2/12−3γ2/2+1/2Ψ′ (n)

)
Ψ(n)

−2γ Ψ′ (n)−1/2Ψ(2) (n)
)

.

Setting n = 1 . . .4 gives the first few specific results for a family of generalized
Euler sums

∞

∑
k=0

Ψ(1+ k)

(1+ k)2
= −π2γ/6+ ζ (3)

∞

∑
k=0

Ψ(2+ k)

(1+ k)(2+ k)2
= (1+ γ)π2/6−2γ − ζ (3) (8.9a)

∞

∑
k=0

Ψ(k+3)

(1+ k)(2+ k)(k+3)2
= (−1/8− γ/12)π2 +3/4γ +3/4+ ζ (3)/2

(8.9b)
∞

∑
k=0

Ψ(k+4)

(1+ k)(2+ k)(k+3)(k+4)2
=
(

11
216

+ γ/36

)
π2− 31γ

108
− 5

18
− ζ (3)/6,

(8.9c)

the first of which is well known. See also (8.4) and (D.17).

• Although (D.20) and (D.21) were quoted independently and intended for differ-
ent uses, in the case that a = n , (D.21) reduces to (D.20), in which case a com-
parison of the right-hand sides (with help from (7.22) using a = 1 and b = 2−n ),
eventually yields

n

∑
k=0

(−1)k Ψ(1+ k)

Γ(n− k+1)(n− k+1)2 Γ(1+ k)
(8.10)

=

(
Ψ(n+2)2 +γ Ψ(n+2)−Ψ′ (n+2)

)
(−1)n

Γ(n+2)
−Ψ′ (n/2+1)−Ψ′ (n/2+3/2)

2Γ(n+2)
.

• The result (4.11) contained an arbitrary parameter d ; in the case d → 0, as has
been seen here frequently, the divergent term of order 1/d in the expansion must
vanish. This leads to

4F3(a,1−a,a−b,a−b; 1,1+a−b,1+a−b; 1) (8.11)

=
sin(π a)(a−b)2

π
S2 (a,b)+

π Γ(1+a−b)2

Γ(1−b)sin(π a)Γ(2a−b)
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In the above, if b → a−1 the left-hand side is well known (e.g. [17, Entry 26])
leading to the identification of the sum

∞

∑
k=1

Γ(a+ k−1)Γ(k−a)(Ψ(k−a)−2Ψ(k)+ Ψ(a+ k−1))
Γ(k)2 k

(8.12)

=
1

(a−1)2 a2
+

2π
asin(π a)(−1+a)

The case b → a reproduces (8.1).

• Differentiate (8.11) with respect to b then evaluate the limit b → a to produce
the identity

a(a−1)6F5(1,1,1,1,2−a,1+a; 2,2,2,2,2; 1) (8.13)

= − sin(π a)
4π

S4(a)− ζ (3)
6

− Ψ(2)(a)
12

− π (γ + Ψ(a))2 cos(π a)
2 sin(π a)

+
1
6

(γ + Ψ(a))π2− 1
3

(γ + Ψ(a))3

where

S4(a) =
∞

∑
k=1

Γ(a+ k)Γ(k+1−a)(Ψ(k+1−a)+ Ψ(a+ k)−2Ψ(k))

k4 Γ(k)2 .

(8.14)

Alternatively, let b → a− 1, and, with reference to (D.19), obtain a closed ex-
pression for the infinite sum

∞

∑
k=1

(Ψ(k+1−a)−2Ψ(k+1)+ Ψ(a+ k))Γ(a+ k)Γ(k+1−a)

Γ(k+2)2
(8.15)

= 2
Ψ′ (a/2)
a(a−1)

−2
π
(
a2−a−3

)
Ψ(a)

a(a−1)sin(π a)
−4

Ψ′ (a)
a(a−1)

− π2
(
a2−a−1

)
cos(π a)

a(a−1)sin2 (π a)

− 2a2−2a+2

a3 (a−1)3
− 1

sin(π a)

(
2π
(
a2−a−3

)
γ

a(a−1)
+

3π
a2 (a−1)2

)
.

Cases with b → a−n are accessible by similar means.

• Finally, comparing (5.3) and (5.6) gives the reduction of an infinite series to a
finite sum:

Γ(2n+1)5F4(1,1,n,n,2n; n+1,n+1,n+1,n+1; 1)
n5Γ(n)2 (8.16)

=
(

2Γ(n)
n−1

∑
k=1

(−1)k Ψ(n− k)(Ψ(k)−Ψ(n))
k2Γ(n− k)Γ(k)

+2
n−1

∑
k=1

Γ(k+n)(−1)k (Ψ(n− k)−Ψ(k+n))

Γ(k)2 Γ(n− k)k4
− (5Ψ(n)+4γ)Ψ′ (n)
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−3Ψ(n)3 −6Ψ(n)2 γ +
(−3γ2 + π2/6

)
Ψ(n) + Ψ(2) (n)

)
(−1)n

9. Are there any more?

Apparently not! Although the previous two Sections yielded a rich assortment of
identities, based on the operation (7.2) applied to (A.1), itself inspired by the discovery
of (7.1), when (7.2) was applied to either of the other 4-part transformations – (A.2) or
(A.4) – only a trivial identity was found in both cases.

10. Summary

This work is an attempt to summarize a number of techniques that are available
to attempt to answer questions such as that posed by (1.1). Although they are well
known in the classical literature, three and four part relations are not usually applied to
such problems. Typically the attempt produces relationships between various functions
none of which can be evaluated in a useful form. In the cases studied here the utility of
such relations devolves from the fact that difficult limits were required to be computed
reducing the multi-part relations to simpler forms.

Typically, the computation of such limits involves long and arduous calculations
which occasionally yield a result that can be evaluated in a desirable form, as has been
demonstrated – although not always the result sought! With the availability of modern
computer tools and methods, many of these otherwise lengthy results, which heretofore
have appeared in the literature as theorems in their own right, (e.g. [15]), can now be
obtained as needed. It is anticipated that the methods outlined here will be applicable
to similar and more difficult problems. It is the author’s opinion that the choice of the
bottom parameter 2a in (1.1) is irrelevant to the specificity of the results obtained here.
This suggests that more general closed sums of the form found in Sections 7 and 8
can be obtained by employing the methods outlined here using a generalized bottom
parameter.

It is interesting to note that the function 2F1(a,a;2a;1) is known by virtue of
Gauss’ theorem and the more generalized form 3F2(a,a,a;2a,a+ 1;1) is also known
by virtue of Watson’s theorem – see (4.4). As demonstrated here, no further general-
ization is known, although a solution to 3F2(a,a,b;2a,b+1;1) would clearly provide
a solution to (1.1). In the closing statement of their paper [2] Miller and Paris write:
“. . . there remains the open problem of deducing a summation formula for the series
3F2(a,b, f ;c, f + n;1) . . .We hope that the developments presented herein will stimu-
late further interest in this problem”. Clearly the answer to the question discussed in
this work would benefit from a solution to a limited subset of that problem. (B.6) may
be a step in that direction.
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for the series 4F3 and its application, Honam Mathematical Journal 35 (3): 407–415, 2013.
[11] B. M. MINTON, Generalized hypergeometric function of unit argument, J. Math. Phys. 11 (4): 1375–

6, 1970.
[12] P. W. KARLSSON, Hypergeometric functions with integral parameter differences, J. Math. Phys. 12

(2): 270–271, 1971.
[13] H. M. SRIVASTAVA,Generalized hypergeometric functions with integral parameter differences, Inda-

gationes Mathematicae (Proceedings), 76 (1): 38–40, 1973.
[14] J. E. GOTTSCHALK AND E. N. MASLEN, Reduction formulae for generalised hypergeometric func-

tions of one variable, Journal of Physics A: Mathematical and General 21 (9): 1983, 1988.
[15] M. SAIGO AND R. K. SAXENA, Expansions of 4F3 when the upper parameters differ by integers,

ArXiv Mathematics e-prints, March 1998, https://arxiv.org/abs/math/9803165.
[16] WENCHANG CHU, Analytic formulae for extended 3F2 – series of Watson-Whipple-Dixon with two

extra integer parameters, Mathematics of Computation 81: 467–479, 2012.
[17] M. S. MILGRAM, 447 instances of hypergeometric 3F2(1), ArXiv e-prints, May 2011,

https://arxiv.org/abs/1105.3126; also https://www.researchgate.net/publication/

51891949.
[18] M. A. SHPOT AND H. M. SRIVASTAVA, The Clausenian hypergeometric function 3F2 with

unit argument and negative integral parameter differences, Applied Mathematics and Computa-
tion 259: 819–827, May 2015, also available from ArXiv e-prints,1411.2455v3, April 15, 2015,
doi/10.1016/j.amc.2015.03.031.
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APPENDICES

A. 4-part Transformations of a 4F3(1)

A.1. Miller’s transforms

Miller [9, Eqs. (1.1) and (1.2)] has obtained the following two 4-part transforma-
tions among arbitrary 4F3(1) .

4F3(a,b,c,d; e, f ,g; 1) (A.1)

= Γ(e)Γ( f )Γ(g)Γ(1−d)

×
(

Γ(b−a)Γ(c−a)4F3(a,1+a−e,1+a− f ,1+a−g; 1+a−d,1+a−b,1+a−c; 1)
Γ(b)Γ(c)Γ(e−a)Γ( f−a)Γ(g−a)Γ(1+a−d)

+
Γ(a−b)Γ(c−b)4F3(b,1+b−e,1+b− f ,1+b−g; 1+b−d,1+b−a,1+b−c; 1)

Γ(a)Γ(c)Γ(e−b)Γ( f−b)Γ(g−b)Γ(1+b−d)

+
Γ(a−c)Γ(b−c)4F3(c,1+c−e,1+c− f ,1+c−g; 1+c−d,1+c−a,1+c−b; 1)

Γ(b)Γ(a)Γ(e−c)Γ( f−c)Γ(g−c)Γ(1+c−d)

)

and

4F3(a,b,c,d; e, f ,g; 1) (A.2)

=
Γ(e)Γ( f )Γ(1−d)Γ(1−c)

Γ(1−g)

×
(

Γ(a−b)Γ(1+b−g)4F3(b,1+b−g,1+b− f ,1+b−e;1+b−c,1+b−d,1+b−a;1)
Γ(a)Γ(e−b)Γ( f−b)Γ(1+b−c)Γ(1+b−d)

+
Γ(b−a)Γ(1+a−g)4F3(a,1+a−g,1+a−e,1+a− f ;1+a−c,1+a−d,1+a−b;1)

Γ(b)Γ(e−a)Γ( f−a)Γ(1+a−c)Γ(1+a−d)

−Γ(g−1)Γ(1+a−g)Γ(1+b−g)4F3(1+b−g,1+a−g,1+c−g,1+d−g; 2−g,1+e−g,1+f−g;1)
Γ(a)Γ(b)Γ(g−c)Γ(g−d)Γ(1+e−g)Γ(1+ f−g)

)



30 M. MILGRAM

A.2. Meijer G-function transforms

Any hypergeometric function pFq(ap;bq;z) can always be written as a Meijer G-
function [21, Chapter V] and the reverse. The original intent of the Meijer G-function
was to assign meaning to pFq(z) when p > q+1 by the magic of contour integration
and the residue theorem. This is summarized by the general result [21, Eq. 5.3(1)]

Gm,n
p,q

(
z
∣∣∣ap
bq

)
= Gn,m

q,p

(
1
z

∣∣∣1−bq
1−ap

)
arg

1
z

= −arg z . (A.3)

which shows that the interchange of ap ↔ 1−ap and bq ↔ 1−bq together with p ↔ q
is equivalent to the analytic continuation z → 1/z for any (m and n combination(s) of)
pFq−1(z) . Of course when p = q and z = 1 this is equivalent to a transformation among
(combinations of) qFq−1(1) . For example, with z = 1 in (A.3) along with the pre-
scription [21, Eq. 5.2(7)] for expanding a G-function into a combination of pFq−1(1) ,
and using (−1)a = exp(−iπa) as a template for dealing with terms that arise in the
expansion, rewrite both sides in the form of (a) combination(s) of 4F3(1) by setting
m = 1,n = 4, p = q = 4. The imaginary part of the resulting expression must vanish,
because for the moment, without loss of generality, it is permissible to require that the
variables a, . . .g ∈ R . Solving that equation yields an apparently hitherto unrecognized
4-part transformation as follows

4F3 (a,b,c,d ;e, f ,g; 1) (A.4)

= −Γ(1−a)Γ(1−b)Γ(1−d)Γ(1−c)
Γ(1− f )Γ(1−e)Γ(1−g)

×
(

Γ(g−1)Γ(g− f )Γ(g−e) 4F3 (1−g+a,1−g+b,1−g+c,1−g+d;2−g, f+1−g,e+1−g;1)
Γ(g−b)Γ(g−c)Γ(g−d)Γ(g−a)

+
Γ(e−1)Γ(e− f)Γ(e−g)4F3 (1−e+a,1−e+b,1−e+c,1−e+d;2−e, f+1−e,g+1−e;1)

Γ(e−b)Γ(e−c)Γ(e−d)Γ(e−a)

+
Γ( f−1)Γ(f−e)Γ( f−g)4F3(1−f+a,1− f+b,1− f+c,1− f+d;2−f ,e+1− f ,g+1− f ;1)

Γ( f−b)Γ( f−c)Γ( f−d)Γ( f−a)

)

whose validity can be expanded to include the variables a, . . .g ∈C because of the prin-
ciple of analytic continuation (parameter space is analytic). This relationship appears
to be independent of (A.1) and (A.2). However, it is easily shown that the transfor-
mation arising from the real part of that same expression is a symmetric permutation
of, and therefore equivalent to, (A.1). It is an open question which of the many other
permutations of variables among (A.1), (A.2) and (A.4) will result in new, independent
transformations applicable to 4F3(1) , analogous to Whipple’s categorization of three-
part transformations for hypergeometric 3F2(1) discussed in [21, Section 3.13]. See
Appendix C. This is discussed at some length in [8] and [22].



VARIATIONS ON A HYPERGEOMETRIC THEME 31

B. Application to a 3F2(1)

In Section 4, the motivation for considering transformations among 3F2(1) was
presented. With this in mind, several relationships involving special cases of 3F2(1)
are (re)derived and collected in this Appendix.

B.1. Special cases of Miller, Paris, Shpot and Srivastava

A simple relevant transformation can be obtained using Miller and Paris [2, Eq.
(1.7)] where it is shown for m > n that

3F2 (a,b,n; c,m; 1) (B.1)

=
Γ(m)Γ(1−a)Γ(1−b)

Γ(n)Γ(1−c)

m−n−1

∑
k=0

(−1)k Γ(n+k)Γ(1−c+n+k)
Γ(k+1)Γ(m−n−k)Γ(1−a+n+k)Γ(1−b+n+k)

+
Γ(m)Γ(c)Γ(1−a)Γ(1−b)
Γ(c−a)Γ(c−b)Γ(m−n)

n−1

∑
k=0

(−1)k Γ(k+m−n)Γ(c−a−b+k+m−n)
Γ(k+1)Γ(n−k)Γ(1−a+k+m−n)Γ(1−b+k+m−n)

.

Formally, generalize (B.1) by extending the upper limit of both sums to infinity
(they are truncated by the denominator Gamma functions if m,n∈N) straightforwardly
identifying each of the extended sums as a hypergeometric function. Then relax the
above condition by generalizing such that m,n ∈ R , to obtain

3F2 (a,b,c;e, f ; 1) (B.2)

=
Γ( f )Γ(1−a)Γ(1−b)Γ(−e+c+1)3F2 (c,− f+c+1,−e+c+1;1−b+c,1−a+c; 1)

Γ(1−e)Γ( f−c)Γ(1−a+c)Γ(1−b+c)

+
Γ( f )Γ(e)Γ(1−a)Γ(1−b)Γ(e−a−b+ f−c)

Γ(e−a)Γ(e−b)Γ(c)Γ(1−a+ f−c)Γ(1−b+ f−c)
× 3F2 ( f−c,1−c,e−a−b+ f−c;1−b+ f−c,1−a+ f−c; 1) ,

a known result (see (C.20) below) that resides in [21, Tables (3.3), (3.4) and(3.5)], valid
for all values of the parameters a,b,c,e, f . This observation justifies the apparently ad
hoc replacement c → e,m → f ,n → c in (B.1) to yield (B.2).

REMARK. Reverse this procedure by setting f → m and c → n to obtain a much
simpler derivation of (B.1) from the known result (B.2).

Similarly, Shpot and Srivastava [18] have obtained a result for a more general
related problem as follows:

3F2(a,b,c; b+1+m,c+1+n; z) (B.3)

=
Γ(b+1+m)Γ(c+1+n)

Γ(b)Γ(c)

m

∑
i=0

n

∑
j=0

(−1)i (−1) j

Γ(1−i+m)Γ(n+1− j)Γ(i+1)Γ( j+1)

×
(

2F1(a,c+ j; c+ j+1; z)
(c+ j) (b−c+i− j)

+ 2F1(a,b+i; b+i+1; z)
(b+i) (c−b+ j−i)

)
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After a somewhat lengthy analysis, in the case that z = 1, they reduce this result
to a 3-part transformation [18, Eq. (31)] (see (D.11)) among terminating 3F2(1) on the
right, and the same 3F2(1) that appears in (B.3) on the left. However, following the
same logic as outlined above, by setting

m → e−1−b (B.4)

n → f−1−c

we obtain a generalization of Shpot and Srivastava’s result [18, Eq. (31)] (see (D.11))
in the form of a well known 3-part transformation, specifically [21, Eq. 3.13.3(11)],
and explicitly

3F2(a,b,c; e, f ; 1) (B.5)

= Γ(1−a)Γ( f )Γ(e)
(

Γ(c−b)3F2(b,−e+1+b,b+1− f ; b−c+1,b+1−a; 1)
Γ(c)Γ(e−b)Γ(b+1−a)Γ(−b+ f )

+
Γ(b−c) 3F2(c,− f+c+1,−e+c+1; c+1−a,c−b+1; 1)

Γ(b)Γ(c+1−a)Γ(e−c)Γ( f−c)

)
.

REMARK 1. Reversing (B.4), gives a simple derivation of [18, Eq. (31)] from the
known result (B.5).

REMARK 2 AND DIGRESSION. In (B.3), set z = 1, sum (and reverse) the various
series that arise and compare with [18, Eq. (31)] to find an interesting contiguity relation
(also see [23]):

3 F2 (c,−n,b; a,b+1+m; 1) =
(−1)m Γ(1−b)

Γ(−b−m)

m

∑
i=0

(−1)i
3 F2 (c,−n,b+i; a,b+i+1; 1)

(−b−i)Γ(i+1)Γ(1−i+m)
.

(B.6)

B.2. Obvious reduction from a 4F3

Set a pair of the top and bottom parameters in (A.1) to be equal (e.g. a = e),
and thereby trivially produce the three-part transformations among 3F2(1) reproduced
above (B.5).

With a similar choice of reduction (e = a ) and reassignment of variable names in
(A.4), another three-part transformation among 3F2(1) results. This result is equivalent
to applying (A.3) in the case m = 1, n = 1, p = q = 3. Although this transformation
involves terms clearly embedded in [21, Tables 3.3, 3.4 and 3.5] it is given explicitly
below:

3F2(a,b,c; f ,e; 1) (B.7)

= −Γ(1−b)Γ(1−c)Γ(1−a)
Γ(1− f )Γ(1−e)

×
(

Γ(−1+ f )Γ(−e+ f ) 3F2(1+a− f ,1+b− f ,1+c− f ; 2− f ,1+e− f ; 1)
Γ( f−a)Γ(−b+ f )Γ( f−c)

+
Γ(−1+e)Γ(e− f ) 3F2(1+a−e,1+b−e,1+c−e; 2−e,1+ f−e; 1)

Γ(e−a)Γ(e−b)Γ(e−c)

)
.



VARIATIONS ON A HYPERGEOMETRIC THEME 33

Because of the asymmetry among the parameters of the 4F3 appearing in (A.2),
various reductions from a 4F3 to a 3F2 can be made by choosing to equate different
combinations of top and bottom parameters to yield different transformations. For ex-
ample, the case g = d produces a symmetric permutation equivalent to (B.5) whereas
choosing e = a and reassigning variables generates the following mixture, all of which
are included (see Appendix C) in [21, Tables (3.3), (3.4) and (3.5)]:

3F2(a,b,c; e, f ; 1) =Γ(1+b−e)Γ(1−a)Γ(1−c)Γ( f ) (B.8)

×
(

3F2(b,1+b−e,1+b− f ; 1+b−c,1+b−a; 1)
Γ(1−e)Γ( f−b)Γ(1+b−c)Γ(1+b−a)

+Γ(e) 3F2(1+b−e,1+a−e,1+c−e; 2−e,1−e+ f ; 1)
Γ(2−e)Γ(−c+e)Γ(e−a)Γ(1−e+ f )Γ(b)

)
.

B.3. Curious reduction from a 4F3(1)

A curious combination arises by setting g = d in (A.1) to obtain

3F2(a,b,c; e, f ; 1) (B.9)

=
Γ(e)Γ( f )
sin (π d)

×
(
−sin(π (a−d)) 3F2(a,1+a−e,1+a− f ; 1+a−c,1+a−b; 1)Γ(c−a)Γ(b−a)

Γ( f−a)Γ(e−a)Γ(c)Γ(b)

−Γ(a−b)sin(π (b−d)) 3F2(b,1+b−e,1+b− f ; 1+b−a,1+b−c; 1)Γ(c−b)
Γ(a)Γ(c)Γ( f−b)Γ(e−b)

−Γ(a−c)Γ(b−c)sin(π (−d+c)) 3F2(c,1+c−e,1+c− f ; 1+c−a,1+c−b; 1)
Γ(a)Γ( f−c)Γ(e−c)Γ(b)

)
.

Notice the appearance of the arbitrary parameter d on the right-hand side but not on
the left. Various possibilities were studied for various choices of the parameter d ; even
the choice d = 0 yielded nothing other than one of the results quoted above. A typical
choice of d = 1/2 yields nothing more than a four-part transformation among 3F2(1)
functions (but also see (C.5)). However, a second even more curious transformation
exists: set g = a in (A.2) to obtain another transformation, again with a superflous
and arbitrary parameter a appearing on the right-hand side, but not the left, this time
embedded within the parameters of the hypergeometric functions themselves, rather
than in a multiplicative factor. That is, after redefining parameters (including a := d ):

3F2(a,b,c; e, f ; 1) (B.10)

=
Γ(1+b−d)Γ(1−c)Γ(1−a)Γ( f )Γ(e)

Γ(1−d)

×
(

3F2(b,1+b−e,1+b− f ; 1+b−a,1+b−c; 1)Γ(d−b)
Γ(d)Γ(1+b−a)Γ(1+b−c)Γ( f−b)Γ(e−b)

−Γ(d−b)4F3(1,d,1−e+d,1− f+d; 1+d−a,1+d−b,1+d−c; 1)
Γ( f−d)Γ(e−d)Γ(1+d−b)Γ(1+d−c)Γ(1+d−a)Γ(b)
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−Γ(d−1)4F3(1,1+a−d,1+b−d,1+c−d; 2−d,1+e−d,1+ f−d; 1)
Γ(d)Γ(d−a)Γ(d−c)Γ(1+e−d)Γ(1+ f−d)Γ(b)

)

Although the case d = 0 appears to be superficially interesting, after simplifica-
tion, the result yields nothing more profound than the simple and well known reduction

4 F3 (1,a,b,c; 2,e, f ; 1) =
(e−1)( f−1)(3 F2 (a−1,b−1,c−1; e−1, f−1; 1)−1)

(a−1) (b−1)(c−1)
(B.11)

The result (B.10) however offers potential for investigating the properties of sums
involving digamma functions, because the left hand-side vanishes under the action of
the operator ∂

∂ d .

C. Appendix: A primer on 3-part relations among 3F2(1)

The following should be read in conjunction with Section 3.13.3 of Luke’s book
[21]; Slater’s book [4, Section 4.3.2] also covers much of the same material.

The three part relations among 3F2(1) were classified by Whipple (1923), sum-
marized by Bailey [7, Section 3.5] and reproduced by Luke [21, Section 3.13.3] and
Slater [4, Section 4.3.2]. To say that the notation is obscure would be an understate-
ment, and perhaps that is why these relations are often overlooked in the literature (e.g.
see (B.2) and (B.5)). The following is an addendum to, and clarification of, Whipple’s
classification, the basis of which is a set of six parameters ri where i = 0(1)5. To the
best of my knowledge, these have never been explicitly listed in the literature. Working
backwards from [21, Table 3.3] it is possible to obtain these parameters in terms of
the top and bottom parameters of a canonical function 3F2(a,b,c;e, f ;1) and thereby
clarify the underlying algorithm. In summary,

r0 = 5/6+c/3+b/3−2/3e−2/3 f+a/3 (C.1)

r1 = −2/3b+e/3−1/6+ f/3+a/3−2/3c

r2 = f/3−2/3a+e/3−1/6+b/3−2/3c

r3 = c/3−1/6+e/3−2/3b+ f/3−2/3a

r4 = e/3−1/6+b/3−2/3 f+a/3+c/3

r5 = −1/6+b/3−2/3e+ f/3+a/3+c/3 ,

from which, with the help of [21, Eq. (3.13.3(13)] it is possible to reproduce [21, Table
3.3] in its entirety, and calculate representative (i.e. mixed combination of a,b,c,e, f )
top and bottom parameters αlmn and βmn respectively (see [21, Eq. 3.13(13)]), labelled
by distinct permutations of integers l,m,n = 0(1)5. Whipple then introduces two fun-
damental functions Fp(u;v,w) and Fn(u;v,w) [21, Eqs. 3.13.3(14) and 3.13.3(15)]
defined in terms of 3F2(a,b,c;e, f ;1) , where each of the labels u,v,w take on one of
the distinct, but different, numbers 0,1 . . .5. Representative independent mixtures of
the top and bottom parameters are classified and listed in [21, Tables 3.4 and 3.5]; any
missing combinations from the tables represent simple, irrelevant permutations among
the top three, or between the bottom two, parameters of the canonical 3F2(1) . The
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important point to note is that only the first parameter of Fp(u;v,w) or Fn(u;v,w) is
important; the second and third parameters represent different mixtures among the top
and bottom parameters and are conveniently omitted unless needed for clarity or speci-
ficity. Because of the two-part (Thomae) relations, all twenty of these functions with
the same first parameter are equal; that is

Fp(u;v1,w1) = Fp(u;v2,w2) (C.2)

and

Fn(u;v1,w1) = Fn(u;v2,w2) (C.3)

for any permitted combination of u,v,w = 0(1)5 (no duplication). In the following,
it is assumed that the arguments of any function on either side of an equality sign
are such that the series representation converges (if s ≡ e+ f−a−b−c , then ℜ(s) >
0); otherwise, the equality between sides must be interpreted in the sense of analytic
continuation. With this notation, [21, Eq. 3.13.3(11)] (also [3, Eq. 7.4.4(3)] or (B.5)), a
well known three-part relation among three particular 3F2(1) , can be written in labelled
form

Fp (0;4,5) =
π Γ(α023)
sin(π β23)

(
Fn(2)

Γ(α134)Γ(α135)Γ(α345)
− Fn (3)

Γ(α124)Γ(α125)Γ(α245)
,

)
(C.4)

or, in expanded form

Fp (0;4,5) = −Γ(c+1−b)Γ(b−c)Γ(1−a) (C.5)

×
(

Fn (2;3,1)
Γ(−b+e)Γ(−b+ f )Γ(c)

− Fn (3;1,2)
Γ(e−c)Γ( f−c)Γ(b)

)
.

In (C.5), an arbitrary choice of (superfluous) second and third parameters of Fn(2) and
Fn(3) have been included, and the arguments of the Γ functions have been written
explicitly in terms of the underlying parameters, to specify one of the 20 possibili-
ties equivalent to (B.5). By limiting the left-hand side to one particular (the canoni-
cal) 3F2(1) , and removing the second and third parameters from the right-hand side,
(C.4) represents a family of forty 3-part relations among different combinations of
3F2(1) selected by different combinations of second and third parameters (see [21,
Table 3.13.3.5]) on the right-hand side. Three other (equivalent families of) three-part
relations among 3F2(1) are known and listed in [3, Eqs. 7.4.4(4)–(6)]. The first two of
these, once parsed according to the tables and rules cited above, and illustrated by one
specific instance each, are

Fp (0;4,5) (C.6)

= Γ(1+c−e)

×
(

Γ(e−a−b)Fn (5;0,3)Γ(1+a+b−e)
Γ(s)Γ(−a+e)Γ(−b+e)

+
Γ(a+b−e)Fn (3;0,5)Γ(1+e−b−a)

Γ(b)Γ( f−c)Γ(a)

)
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and

Fp (0;4,5) = Γ(1− f+b)Γ(1+c− f )Γ(1− f+a) (C.7)

×
(

Fn (4;0,2)
Γ(s)Γ( f )Γ(1− f )

+
Fp (5;0,4)

Γ(b)Γ(c)Γ(a)

)
.

Surprisingly, the third equation [3, Eq. 7.4.4(6)] cited above, once parsed in the same
manner turns out to be equivalent to (C.7) with the change Fp (4;0,2) = Fp (4;2,3)
and is therefore not independent, although when expanded in its full glory, this is not
evident.

Finally, it is noted that three more independent equations between the Fn and Fp

functions can be found by changing the signs of the ri terms in [21, Eq. (13)]. This
has the effect of redefining the parameters αlmn → 1−αlmn and βmn → 2−βmn in the
various tables, as well as converting Fp(u) � Fn(u) and s→ 1−s . Thus (C.5) becomes

Fn (0) = − π Γ(a)
sin(π (1+b−c))

(C.8)

×
(

Fp (2)
Γ(1−e+b)Γ(1− f+b)Γ(1−c)

− Fp (3)
Γ(1+c−e)Γ(1+c− f )Γ(1−b)

)
,

this time omitting the superfluous second and third parameters from Fp(0),Fp(2) and
Fp(3) , yet retaining all combinations of parameters in a form that a patient reader could
identify as αlmn or βmn from Luke’s Tables. Similarly, (C.6) and (C.7) become

Fn (0) =
π Γ(e−c)

sin(π (1+e−b−a))
(C.9)

×
(

Fp (5)
Γ(1−e+b)Γ(1−e+a)Γ(1−s)

− Fp (3)
Γ(1−b)Γ(1+c− f )Γ(1−a)

)

and

Fn (0) = Γ(−b+ f )Γ( f−c)Γ( f−a)
(
− sin(π f )Fp (4)

π Γ(1−s)
+

Fn (5)
Γ(1−b)Γ(1−c)Γ(1−a)

)
.

(C.10)

A collection consisting of six such equations is sufficient to interrelate all pos-
sible three-term relations among 120 3F2(1) that can be identified as Fp(u) and/or
Fn(u) [4, Section 4.3.2]. Luke [21, Eq. 3.13(26)] and Slater [4, Eq. (4.3.2.5)] go on
to reproduce an example from Bailey that uses the above to relate Fn(0),Fp(0) and
Fp(5) algebraically. Luke does not say which six equations he used. Similarly, at this
same point, Slater refers to “the relation corresponding to [4, Eq. 4.3.2.1)] which con-
nects Fp(5),Fn(0) and Fn(2) . . . ” but she never identifies the corresponding relation.
Both references in Luke and Slater correspond to (C.5) here. It is reasonable, but not
assured, to assume that Slater, Luke (and Bailey) based this example on the three well-
established 3-part relations [3, Eqs. 7.4.4(3) -(5)] that gave rise to the above (Note:
Bailey refers to Hardy and Whipple in a footnote at this point but also does not say
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which equations were used); Slater [4, Eq. (4.3.2.4)] identifies one. How are other
relations found?

Dealing with the case of Fn(1) and Fp(1) (missing from all six of the above), note
that Fn(1;u,v) and Fn(2;u,v) are related by an interchange of two of a,b or c . For
example, under the (symmetric) exchange a � b , (C.5) becomes

Fp (0) =
π Γ(1−b)

sin (π (a−c))

(
− Fn (1)

Γ(−a+e)Γ( f−a)Γ(c)
+

Fn (3)
Γ(e−c)Γ( f−c)Γ(a)

)
(C.11)

along with its complement

Fn (0) (C.12)

=
π Γ(b)

sin(π (a−c))

(
Fp (1)

Γ(1−e+a)Γ(1− f+a)Γ(1−c)
− Fp (3)

Γ(1+c−e)Γ(1+c− f )Γ(1−a)

)
.

and this establishes that all the basic functions Fn and Fp are at least accessible from
the independent relations. When written in labelled form (C.11) becomes

Fp (0) =
π Γ(α013)
sin(π β13)

(
Fn (1)

Γ(α234)Γ(α235)Γ(α345)
− Fn (3)

Γ(α214)Γ(α215)Γ(α145)
.

)
(C.13)

Notice that (C.4) and (C.13), related by the interchange a � b , are equivalently related
by the interchange of the numeric labels 1 � 2; this demonstrates the fundamental
basis of the notation – the equality of the six equations chosen as a basis is invariant
under interchange of numeric labels. With this understanding, all other relationships
can be found. For example, consider the independently derived result (B.8)

Fp (0) =
(

sin(π e)Fn (2)
π Γ( f−b)

+
Fp (4)

Γ(e−c)Γ(−a+e)Γ(b)

)
Γ(1−c)Γ(1−a)Γ(1−e+b)

(C.14)
along with its complement

Fn (0) =
(

Fn (4)
Γ(1+c−e)Γ(1+a−e)Γ(1−b)

−sin (π e)Fp (2)
π Γ(1− f+b)

)
Γ(c)Γ(a)Γ(−b+e) .

(C.15)
To demonstrate that (C.14) can be obtained from one (or more) of the six indepen-

dent relations given above, start with (C.7), written in labelled form

Fp (0) =
(

sin(π β50)Fn (4)
Γ(α123)π

+
Fp (5)

Γ(α245)Γ(α345)Γ(α145)

)
Γ(α024)Γ(α014)Γ(α034) .

(C.16)
Interchange all labels 4 � 2 followed by the interchange 5 � 4 to find

Fp (0) =
(

sin(π β40)Fn (2)
Γ(α153)π

+
Fp (4)

Γ(α524)Γ(α324)Γ(α124)

)
Γ(α012)Γ(α052)Γ(α032)

(C.17)
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which, when written in terms of the basic parameters, is identifiable as (C.14).
To derive (B.7) is more interesting. Written in this notation, (B.7) becomes

Fp (0) =
sin(π e)sin(π f )Γ(1−a)Γ(1−b)Γ(1−c)

sin(π (e− f ))
(C.18)

×
(

Fp(4)
sin(πe)Γ(−b+e)Γ(e−c)Γ(−a+e)

− Fp(5)
sin(π f )Γ(−b+ f )Γ( f−c)Γ( f−a)

)

and its derivation from any one of the six independent relations by interchanging labels
becomes questionable, because none of them individually relate three Fp functions.
Choose (C.8) and (C.9) as a convenient staring point, equate the right-hand sides of
both and solve for Fp(2) . Written in labelled notation, the solution is

Fp (2) =
(

1
Γ(α035)

+
Γ(α124)sin (π β23)

Γ(α145)Γ(α023)sin(π β35)

)
Γ(α012)Γ(α024)Γ(α025)

Γ(α034)Γ(α013)
Fp (3)

−Fp (5)
Γ(α124)sin(π β23)Γ(α024)Γ(α012)
Γ(α045)sin(π β35)Γ(α015)Γ(α145)

. (C.19)

Now perform the interchange of numeric labels 3 � 4, followed by the interchange
0 � 2, revert to the representation in terms of the underlying parameters, and after
some simplification, (C.18) will be found.

In the section dealing with the generalization of Shpot and Srivastava’s result
(B.3), it was claimed that their [18, Eq.(31)] (see (D.11)) could easily be obtained
from the “well known” result (B.5). A quick scan of [21, Table 3.5] shows that the two
3F2(1) appearing in (B.5) can be identified as Fn(2;3,1) and Fn(3;1,2) as discussed
above. Simple substitution into (C.5) will yield (B.5), justifying the remark that it is
at least a “known”, if not a “well known”, result. In the case of Paris and Miller, their
extended result (B.2) once parsed as discussed here can be written

Fp (0) =
(

sin(π e)Fn (3)
π Γ( f−c)

+
Fp (4)

Γ(−b+e)Γ(−a+e)Γ(c)

)
Γ(1+c−e)Γ(1−b)Γ(1−a)

(C.20)
where specifically Fp(0) = Fp(0;4,5),Fp(4) = Fp(4;1,2) and Fn(3) = Fn(3;1,2) . To
derive (C.20) from the above, solve for Fn(2) in (C.5) and substitute into (C.14). So in
the sense discussed here (C.20) is a known result.

D. A collection of 3F2(1) , 4F3(1) and some lemmas

The following is a collection of relevant results gathered from sources scattered
throughout the literature, plus a few lemmas.

• Minton Karlsson

Minton [11] and Karlsson [12] show that, when a top parameter exceeds a bottom
parameter by a positive integer n , the order of any p+1Fp(1) can be reduced by
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one and replaced by a sum of n terms. In the case p = 3, this gives

4F3(a,b,c,e+n; e, f ,g; 1) (D.1)

=
Γ(1+n)Γ(e)Γ( f )Γ(g)

Γ(a)Γ(b)Γ(c)

×
n

∑
k=0

Γ(k+a)Γ(b+k)Γ(c+k) 3F2(k+a,b+k,c+k; f+k,g+k; 1)
Γ(k+1)Γ(1+n−k)Γ(e+k)Γ( f+k)Γ(g+k)

.

See also [14].

• Sheppard-Andersen Theorem

Based on [24, Corollary 3.3.4], the general result for a k-balanced, terminating
3F2(1) is given by

3F2(a,b,−n; c,k−n+a+b−c; 1) (D.2)

= −π (−1)n Γ(a−c+1)(−1)k Γ(k−n+a+b−c)Γ(n+1)Γ(k)Γ(c)
sin(π (c−b))Γ(k−n+b−c)Γ(k+b−c+a)Γ(n+c)Γ(a)

×
N

∑
j=0

Γ(a+ j)
Γ(1+n− j)Γ(−b+c−k+1+ j)Γ(a−n−c+1+ j)Γ(1+ j)Γ(k− j)

where N = min(k−1,n) . In the case k = 2 a simpler result [25, Eq. (2.9),
misprinted] is

3F2(a,b,−n; c,2−n+a+b−c; 1) (D.3)

=
Γ(−b+c+n−1)Γ(n+c−a)Γ(c−a−b−1)Γ(c)
Γ(c−b−1)Γ(c−a)Γ(−b+c+n−1−a)Γ(n+c)

(
1− na

(c−b−1)(−a+n+c−1)

)

REMARK. The result (D.2) is usually referenced in the literature to an inacces-
sible paper by Sheppard [26], where it is also usually noted that Andersen [27]
obtained (D.3) independently. In fact, Andersen obtained the following result
(transcribed in hypergeometric notation)

3F2(1,a,m+b; 2+m,a+b; 1) (D.4)

=
(−1)m sin(π a)sin (π b)Γ(1−b−m)Γ(b+a)Γ(−a+1)Γ(2+m)

(−m+a−1)π2 (b−1)

− (1+m)(b+a−1)
(−m+a−1)(b−1)

and a similar result for the case where the bottom parameter is a+b+1, both of
which are special cases of [17, Entry 28].
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• Whipples tranformation

The result (D.2) is based upon the following transformation of a terminating 1-
balanced 4F3(1) due to Whipple (1926) (see [24, Theorem 3.3.3])

4F3(a,b,c,−n; d,e, f ; 1) (D.5)

=
Γ(n+e−a)Γ(n+ f−a)Γ(e)Γ( f )4F3(a,−n,d−b,d−c;d,a+1−n− f ,a+1−n−e;1)

Γ(e−a)Γ( f−a)Γ(n+e)Γ(n+ f )

where f = a+b+ c+1−d− e−n .

Suppose d = c−1. Then (D.5) gives the following result for a special (Minton-
Karlsson), 1-balanced, terminating 4F3(1)

4F3 (−n,a,b,c;c−1,e,a+b+2−n−e;1) (D.6)

= A
Γ(a+b+2−n−e)Γ(n+e−a−1)Γ(b+1−e)Γ(e)

Γ(b+2−n−e)Γ(a+b+2−e)Γ(n+e)Γ(e−a)

where

A = −e2+(a+b−n+2)e−(b+1)(a−c+1)(n−1)
c−1

+
(−b−1+n)ac

c−1
. (D.7)

Other variations are apparent.

• A special q+1 Fq(1)

Prudnikov et. al. [3, Eq. 7.10.2(6)] give the following general result

q+1 Fq (a,b, . . . ,b; b+1, . . . ,b+1; 1)=
(−1)q−1 bqΓ(1−a)

(q−1)!
∂ q−1

∂bq−1

(
Γ(b)

Γ(1+b−a)

)
.

(D.8)

When q = 4 and b = 1, we find

(1−a)5F4(1,1,1,1,a; 2,2,2,2; 1) (D.9)

= 1/6 (Ψ(2−a)+γ)3

+
(
1/12π2−1/2Ψ′ (2−a)

)
(Ψ(2−a)+γ)+1/3ζ (3)+1/6Ψ(2) (2−a)

and similarly with q = 5,

(1−a)6F5(1,1,1,1,1,a; 2,2,2,2,2; 1) (D.10)

= 1/8Ψ′ (2−a)2 +
π4

160
−1/24Ψ(3) (2−a)

+1/24 (Ψ(2−a)+γ)4 +
(
1/3ζ (3)+1/6Ψ(2) (2−a)

)
(Ψ(2−a)+γ)

−
(
1/4 (Ψ(2−a)+γ)2 +1/24π2

)
Ψ′ (2−a)+1/24π2 (Ψ(2−a)+γ)2 .
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• A result from Shpot and Srivastava [18]

The following reproduces [18, Eq. (31)]

3 F2 (a,b,c; b+1+m,c+1+n; 1)Γ(b)Γ(c)
Γ(b+1+m)Γ(c+1+n)

= T (a,b,c,m,n)+T (a,c,b,n,m)

(D.11)
where

T (a,b,c,m,n) =
Γ(b)Γ(1−a)Γ(c−b) 3 F2 (b,−m,b−c−n; 1+b−a,1+b−c; 1)

Γ(1+b−a)Γ(n+1+c−b)Γ(m+1)
(D.12)

• From a previous work [28, Theorem 2.2]

4F3(1,1,1,1; 2,2,d; 1) (D.13)

= (d−1)
(

Ψ(2) (d−1)/2−(Ψ′ (d−1)+π2/6
)
(γ+Ψ(d−1))

+2ζ (3)− 1
Γ(2−d)

∞

∑
k=0

Ψ′ (k+2)Γ(3−d+k)
Γ(1+k)(1+k)2

)

• Lemma 1

Because
n−1

∑
k=0

Γ(n+k−b)(−1)k

Γ(k+1)2 Γ(n−k)
=

Γ(n−b) 2 F1 (n−b,−n+1; 1; 1)
Γ(n)

= − (−1)n Γ(n−b)2

Γ(−b+1)Γ(n)2
,

(D.14)
differentiate with respect to b giving

n−1

∑
k=0

Γ(n+k−b)(−1)k Ψ(n+k−b)
Γ(k+1)2 Γ(n−k)

= − (−1)n π (−Ψ(1−b)+2Ψ(n−b))Γ(b)
sin(π b)Γ(n)2 Γ(−n+b+1)2 ,

(D.15)

• Lemma 2

From [17, Entry 13], corresponding to 3 F2 (1,1,a; 1+a,1+a; 1) , a case contigu-
ous to Whipple’s theorem we have

∞

∑
k=1

Γ(k)
(k+a−1)Γ(k+a)

=
Ψ′ (a/2)−Ψ′ (a/2+1/2)

2Γ(a)
, (D.16)

and, after differentiating with respect to a , we obtain
∞

∑
k=1

Γ(k)Ψ(k+a)
(k+a−1)Γ(k+a)

(D.17)

= −
∞

∑
k=1

Γ(k)

(k+a−1)2 Γ(k+a)

+
(Ψ′ (a/2)−Ψ′ (a/2+1/2))Ψ(a)/2−1/4Ψ(2) (a/2)+1/4Ψ(2) (a/2+1/2)

Γ(a)



42 M. MILGRAM

• Lemma 3

By adding and subtracting a term corresponding to k = −1, from its series rep-
resentation, we have

4 F3 (1,2,2−a,a+1; 3,3,3; 1) =
8π 4 F3 (1,1,a,1−a;2,2,2;1)
(1−a)Γ(1−a)Γ(a)asin(π a)

− 8
(1−a)a

(D.18)
so that, after the invocation of (7.38)

4F3(1,2,2−a,a+1; 3,3,3; 1) (D.19)

=
sin(π a)

a2 (a−1)2 π

(
16Ψ′ (a)−8Ψ′ (a/2)+8

a2−a+1

a2 (a−1)2

)

−16
Ψ(a+1)

a2 (a−1)2−16
γ

a2 (a−1)2 +8
a4−2a3+a2+2a−1

a3 (a−1)3 .

• Lemma 4

From [17, Entry 26] after evaluating some limits,

3F2(1,1,n; n+1,n+1; 1) (D.20)

= −
(

n−3

∑
k=0

(−1)kΨ(1+k)
Γ(n−k−1)(n−k−1)2Γ(1+k)

+
n−3

∑
k=0

(−1)k

Γ(n−k−1)(n−k−1)3Γ(1+k)

)
n2Γ(n)

+(−1)n
(

1/2−(Ψ(n)+1)n3+n2
(

γ2/2+2γ Ψ(n)+π2/12+3/2Ψ(n)2

+Ψ(n)−2Ψ′ (n)+1/2Ψ′ (n+1)+2

))

• Lemma 5

From [17, Entry 13] – contiguous to Whipples theorem, and a generalization of
(D.20)

3 F2 (1,1,a; a+1,a+1; 1) =
a2

4
Ψ′ (a/2+1)+

a2

4
Ψ′ (a/2)−a2

2
Ψ′ (a/2+1/2)+1

(D.21)
so that, after differentiating we obtain

∞

∑
k=1

Γ(k)Ψ(k+a)
(k+a−1)Γ(k+a)

(D.22)

= −
∞

∑
k=1

Γ(k)

(k+a−1)3 Γ(k+a−1)

+
2Ψ′ (a/2)Ψ(a)−2Ψ′ (a/2+1/2)Ψ(a)−Ψ(2) (a/2)+Ψ(2) (a/2+1/2)

4Γ(a)

For a comparison of (D.20) and (D.21), see (8.10).
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• Lemma 6

Trivially,

3 F2 (1,1,2−a; 2,2; 1) =
Ψ(a)+γ

Γ(a)
(D.23)

leading to
∞

∑
k=1

(−1)k Ψ(a−k)
k2Γ(k)Γ(a−k)

=
Ψ′ (a)
Γ(a)

−Ψ(a)2

Γ(a)
−γ

Ψ(a)
Γ(a)

(D.24)
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