

ON TRIPLE SEQUENCE OF BERNSTEIN OPERATOR OF WEIGHTED ROUGH I_{λ} -CONVERGENCE

NAGARAJAN SUBRAMANIAN AND AYHAN ESI

Abstract. We introduce and study some basic properties of rough I_{λ} -convergence of weight g, where $g: \mathbb{N}^{3} \to [0,\infty)$ is a function satisfying $g(m,n,k) \to \infty$ and $\frac{\|(m,n,k)\|}{g(m,n,k)} \not\to 0$ as $m,n,k \to \infty$, of triple sequence of Bernstein polynomials and also study the set of all rough I_{λ} -convergence of weight g limits of a triple sequence of Bernstein polynomials and relation between analyticness and rough I_{λ} -convergence of weight g of a triple sequences of Bernstein polynomials.

1. Introduction

The notion of the ideal convergence is the dual (equivalent) to the notion of filter convergence introduced by Cartan et al. [4]. The notion of the filter convergence is a generalization of the classical notion of convergence of a sequence and it has been an important tool in general topology and functional analysis. Nowadays many authors to use an equivalent dual notion of the ideal convergence. Kostyrko et al. [16] and Nuray and Ruckle [18] independently studied in details about the notion of ideal convergence which is based on the structure of the admissible ideal I of subsets of natural numbers \mathbb{N} . Later on it was further investigated by many authors, e.g. Šalát et al [25], Hazarika and Mohiuddine [15], and references therein.

The idea of rough convergence was first introduced by Phu [20, 21, 22] in finite dimensional normed spaces. He showed that the set LIM_x^r is bounded, closed and convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough convergence and other convergence types and the dependence of LIM_x^r on the roughness of degree r. Aytar [1] studied of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained to statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar [2] studied that the r-limit set of the sequence is equal to intersection of these sets and that r-core of the sequence is equal to the union of these sets. Dündar and Cakan [7] investigated of rough ideal convergence and defined the set of rough ideal limit points of a sequence. Dündar [9] introduced rough ideal convergence for double sequences. In [24], Sahiner and Tripathy introduced the notion of I-convergence of a triple sequences, which is based on the structure of the ideal I of subsets of $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, where \mathbb{N} is the set of all natural numbers, is a natural generalization of the notion of convergence and statistical convergence.

Keywords and phrases: Triple sequences, rough convergence, closed and convex, cluster points and rough limit points, Bernstein polynomials, I-convergence.

Mathematics subject classification (2010): 40F05, 40J05, 40G05, 40G15.

In this paper we investigate some basic properties of rough I-convergence of a triple sequence of Bernstein polynomials in three dimensional cases which are not earlier. We study the set of all rough I-limits of a triple sequence of Bernstein polynomials and also the relation between analyticness and rough I-convergence of a triple sequence of Bernstein polynomials.

Let K be a subset of the set of positive integers $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and let us denote the set $K_{ik\ell} = \{(m,n,k) \in K : m \leq i, n \leq j, k \leq \ell\}$. Then the natural density of K is given by

$$\delta(K) = \lim_{i,j,\ell\to\infty} \frac{\left|K_{ij\ell}\right|}{i\,j\ell},$$

where $|K_{ii\ell}|$ denotes the number of elements in $K_{ii\ell}$.

The Bernstein operator of order (r, s, t) is given by

$$B_{rst}\left(f,x\right) = \sum_{m=0}^{r} \sum_{k=0}^{s} \sum_{k=0}^{t} f\left(\frac{mnk}{rst}\right) \binom{r}{m} \binom{s}{n} \binom{t}{k} x^{m+n+k} \left(1-x\right)^{(m-r)+(n-s)+(k-t)},$$

where f is a continuous (real or complex valued) function defined on [0,1].

Throughout the paper, \mathbb{R}^3 denotes the real of three dimensional space with usual metric. Consider a triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ such that $(B_{mnk}(f,x)) \in \mathbb{R}^3$, $(m,n,k) \in \mathbb{N}^3$.

Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be statistically convergent to $0 \in \mathbb{R}$, written as $st_3 - \lim B_{mnk}(f,x) = 0$, provided that the set

$$K_{\varepsilon} := \left\{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x) - f(x)| \geqslant \varepsilon \right\}$$

has natural density zero for any $\varepsilon > 0$. In this case, 0 is called the statistical limit of the triple sequence of Bernstein polynomials. i.e., $\delta(K_{\varepsilon}) = 0$. That is,

$$\lim_{\substack{r,s,t\to\infty\\r\leqslant t}}\frac{1}{rst}\left|\left\{\left(m,n,k\right)\leqslant\left(r,s,t\right):\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|\geqslant\varepsilon\right\}\right|=0.$$

In this case, we write $st_3 - \lim B_{mnk}(f, x) = f(x)$ or $B_{mnk}(f, x) \xrightarrow{st_3} f(x)$.

Throughout the paper, \mathbb{N} denotes the set of all positive integers, χ_A -the characteristic function of $A \subset \mathbb{N}, \mathbb{R}$ the set of all real numbers. A subset A of \mathbb{N}^3 is said to have asymptotic density d(A) if

$$d\left(A\right) = \lim_{i,j,\ell\to\infty} \frac{1}{ij\ell} \sum_{m=1}^{i} \sum_{n=1}^{j} \sum_{k=1}^{\ell} \chi_A\left(K\right).$$

A triple sequence (real or complex) can be defined as a function $x: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ (\mathbb{C}), where \mathbb{C} denote the set of complex numbers. The different types of notions of triple sequence was introduced and investigated by Sahiner et al. [23]. Later on further studied by Esi [10, 14], Esi and Catalbas [11], Esi and Savas [12], Esi et al. [13], Dutta et al. [5], Debnath et al. [6], Malik and Maity [17], Pal et al. [19], Savas and Esi [26], Tripathy and Goswami [27, 30, 31, 32], [28], [29] and many others.

A triple sequence of Bernstein polynomials is said to be triple Bernstein polynomials of analytic if

$$\sup_{m,n,k}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|^{\frac{1}{m+n+k}}<\infty.$$

The space of all triple of Bernstein polynomials of analytic sequences are usually denoted by Λ_R^3 .

2. Definitions and preliminaries

Throughout the paper, we consider a triple sequence $x = (x_{mnk})$ such that $x_{mnk} \in \mathbb{R}^3$; $m, n, k \in \mathbb{N}$. We recall the following definitions.

DEFINITION 1. [16] A class I of subsets of a nonempty set X is said to be an ideal in X provided

- (i) $\varnothing \in I$
- (ii) $A, B \in I$ implies $A \cup B \in I$.
- (iii) $A \in I, B \subset A$ implies $B \in I$.

I is called a nontrivial ideal if $X \notin I$.

DEFINITION 2. [16] A nonempty class F of subsets of a nonempty set X is said to be a filter in X. Provided

- (i) $\varnothing \in F$.
- (ii) $A, B \in F$ implies $A \cap B \in F$.
- (iii) $A \in F, A \subset B$ implies $B \in F$.

DEFINITION 3. *I* is a non trivial ideal in X, $X \neq \emptyset$, then the class

$$F(I) = \{M \subset X : M = X \setminus A \text{ or some } A \in I\}$$

is a filter on X, called the filter associated with I.

DEFINITION 4. A non trivial ideal I in X is called admissible if $\{x\} \in I$ for each $x \in X$.

DEFINITION 5. [7] A sequence $x = (x_k)$ in a normed space (X, ||.||) is said to be rough I-convergent to x_0 if for every $\varepsilon > 0$,

$$\{k \in \mathbb{N} : ||x_k - x_0|| \geqslant r + \varepsilon\} \in I.$$

It is equivalent that the condition $I - \limsup ||x_k - x_0|| \le r$ is satisfied. In this case we write $x_k \xrightarrow{r-I} x_0$ if and only if $||x_k - x_0|| < r + \varepsilon$ holds for every $\varepsilon > 0$ and almost all k.

REMARK 1. If I is an admissible ideal, then usual convergence in X implies I-convergence in X.

REMARK 2. If I is an admissible ideal, then usual rough convergence implies rough I—convergence.

DEFINITION 6. [9] For some given real number $r \ge 0$, a double sequence $x = (x_{mn})$ is said to be $r - I_2$ -convergent to x_0 with the roughness degree r, denoted by $x_{mn} \xrightarrow{r-I_2} x_0$, provided that

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:||x_{mn}-x_0||\geqslant r+\varepsilon\}\in I_2.$$

It is equivalent that the condition $I_2 - \limsup ||x_{mn} - x_0|| \le r$ is satisfied. In this case we write $x_{mn} \xrightarrow{r-I_2} x_0$ if and only if $||x_{mn} - x_0|| < r + \varepsilon$ holds for every $\varepsilon > 0$ and almost all (m,n).

Now the following definition are obtained:

DEFINITION 7. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be statistically convergent to f(x) denoted by $B_{mnk}(f,x) \xrightarrow{st_3} f(x)$, if for any $\varepsilon > 0$ we have $d(A(\varepsilon)) = 0$, where

$$A(\varepsilon) = \left\{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk}(f, x) - f(x)| \geqslant \varepsilon \right\}.$$

In this case, f(x) is called the statistical limit of the sequence of Berstein polynomials.

DEFINITION 8. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ in $(\mathbb{R}^3,|.,.|)$ and r be a non-negative real number, is said to be r-convergent to f(x), denoted by $B_{mnk}(f,x) \xrightarrow{r} f(x)$, if for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that for all $m,n,k \geqslant N_{\varepsilon}$ we have

$$|B_{mnk}(f,x) - f(x)| < r + \varepsilon.$$

In this case f(x) is called an r-limit of $B_{mnk}(f,x)$.

REMARK 3. We consider r-limit set of $B_{mnk}(f,x)$ which is denoted by $LIM^r_{B_{mnk}(f,x)}$ and is defined by

$$LIM_{B_{mnk}(f,x)}^{r} = \left\{ B_{mnk}\left(f,x\right) \in X : B_{mnk}\left(f,x\right) \xrightarrow{r} f\left(x\right) \right\}.$$

DEFINITION 9. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be r-convergent if $LIM_{B_{mnk}(f,x)}^r \neq \varnothing$ and r is called a rough convergence degree of $B_{mnk}(f,x)$. If r=0 then it is ordinary convergence of triple sequence of Bernstein polynomials.

DEFINITION 10. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ in a metric space $(X,|\cdot,\cdot|)$ and r be a non-negative real number is said to be r-statistically convergent to f(x), denoted by $B_{mnk}f(x) \xrightarrow{r-st_3} f(x)$, if for any $\varepsilon > 0$ we have $d(A(\varepsilon)) = 0$, where

$$A(\varepsilon) = \left\{ (m, n, k) \in \mathbb{N}^3 : |B_{mnk} f(x) - f(x)| \geqslant r + \varepsilon \right\}.$$

In this case f(x) is called r-statistical limit of $B_{mnk}f(x)$. If r=0 then it is ordinary statistical convergent of triple sequence of Bernstein polynomials.

3. Weighted rough I_{λ} -convergence

Consider $\omega = \{0,1,2,\ldots\}$, recently Balcerzak et al. [3] introduced the density of the weight g, where $g:\omega \longrightarrow [0,\infty)$ with $g(n) \longrightarrow \infty$ but $\frac{n}{g(n)} \nrightarrow 0$. Based on this concept we introduce the rough ideal convergence of weight g, for triple sequences of Bernstein polynomials of reals. Let $\lambda = (\lambda_{pqj})$ be a non-decreasing triple sequence of positive numbers tending to ∞ such that $\lambda_{111} = 1$, $\lambda_{p+1q+1j+1} \leqslant \lambda_{pqj} + 1$ for all p,q,j.

DEFINITION 11. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ in $(\mathbb{R}^3,|.,.|)$ and r be a non-negative real number is said to be rough ideal convergent of weight g or rI_{λ} -convergent to f(x) of weight g, denoted by $B_{mnk} \xrightarrow{rI_{\lambda}^g} f(x)$, if for any $\varepsilon > 0$ we have

$$\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|\geqslant r+\varepsilon\right\} \in I.$$

In this case f(x) is called rI_{λ} -limit of $(B_{mnk}(f,x))$ of weight g, and a triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is called rough I_{λ} -convergent weight g to f(x) with r as roughness of degree. If r=0 then it is ordinary I_{λ} -convergent of weight g.

DEFINITION 12. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be I_{λ} -convergent f(x) of weight g if

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right) - f(x)\right| \geqslant \varepsilon \right\} \in I.$$

for some $\varepsilon > 0$.

REMARK 4. It is clear that rI_{λ}^{g} -limit of $B_{mnk}(f,x)$ is not necessarily unique.

DEFINITION 13. The rI_{λ}^g -limit set is denoted by

$$I_{\lambda}^{g}-LIM_{B_{mnk}\left(f,x\right)}^{r}=\left\{ f\left(x\right)\in\left[0,1\right]:B_{mnk}\left(f,x\right)\xrightarrow{rI_{\lambda}^{g}}f\left(x\right)\right\} ,$$

then the triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be rI_{λ} -convergent of weight g, if $I_{\lambda}^g - LIM_{B_{mnk}(f,x)}^r \neq \phi$ and r is called a rough I_{λ} -convergence of weight g degree of $B_{mnk}(f,x)$.

DEFINITION 14. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be I_{λ}^g -analytic if there exists a positive real number M such that

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) \right|^{1/m+n+k} \geqslant M \right\} \in I.$$

DEFINITION 15. A point $f(x) \in X$ is said to be an I_{λ}^g -accumulation point, where f is a continuous function defined on the closed interval [0,1], of a triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ if and only if for each $\varepsilon > 0$ the set

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right| < \varepsilon \right\} \notin I.$$

We denote the set of all I_{λ}^g -accumulation points of $(B_{mnk}(f,x))$ by $I_{\lambda}^g\left(\Gamma_{B_{mnk}(f,x)}\right)$.

DEFINITION 16. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ of real numbers, the notions of ideal limit superior and ideal limit inferior are defined as follows:

$$I_{\lambda}^{g}-\limsup B_{mnk}\left(f,x\right)=\left\{\begin{array}{ll}\sup B_{B_{mnk}\left(f,x\right)}, & \text{if } B_{B_{mnk}\left(f,x\right)}\neq\varnothing,\\ -\infty, & \text{if } B_{B_{mnk}\left(f,x\right)}=\varnothing\end{array}\right\},$$

and

$$I_{\lambda}^{g} - \liminf(B_{mnk}(f, x)) = \left\{ \begin{array}{ll} \inf A_{B_{mnk}(f, x)}, & \text{if } A_{B_{mnk}(f, x)} \neq \emptyset, \\ +\infty, & \text{if } A_{B_{mnk}(f, x)} = \emptyset \end{array} \right\},$$

where $A_{B_{mnk}(f,x)} = \left\{ a \in \mathbb{R} : \left\{ (m,n,k) \in \mathbb{N}^3 : B_{mnk}(f,x) < a \right\} \notin I \right\}$ and

$$B_{B_{mnk}(f,x)} = \left\{ b \in \mathbb{R} : \left\{ (m,n,k) \in \mathbb{N}^3 : B_{mnk}(f,x) > b \right\} \notin I \right\}.$$

DEFINITION 17. Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is said to be rough I_{λ} -convergent of weight g, if $I_{\lambda}^g - LIM^r B_{mnk}(f,x) \neq \varnothing$. It is clear that if $I_{\lambda}^g - LIM^r B_{mnk}(f,x) \neq \varnothing$ for a triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ of real numbers, then we have

$$I_{\lambda}^{g}-LIM^{r}B_{mnk}\left(f,x\right)=\left[I_{\lambda}^{g}-\limsup B_{mnk}\left(f,x\right)-r,I_{\lambda}^{g}-\liminf B_{mnk}\left(f,x\right)+r\right].$$

THEOREM 1. Let f be a continuous function defined on the closed interval [0,1] and let $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers. If $I_{\lambda}^{r} - LIM^{r}B_{mnk}(f,x) \neq \emptyset$ for a triple sequence of Bernstein polynomials of real numbers, and $I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x) = \left[I_{\lambda}^{g} - \lim\sup_{m \neq k} (f,x) - r, I_{\lambda}^{g} - \lim\inf_{m \neq k} (f,x) + r\right]$ then $diam(LIM^{r}B_{mnk}(f,x)) \leq diam\left(I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)\right)$.

Proof. We know that $I_{\lambda}^g - LIM^r B_{mnk}(f,x) = \emptyset$ for an unbounded triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ of real numbers. But such a sequence might be rough I_{λ} -convergent of weight g. For instance, let $I = I_d$ of $\mathbb N$ and define

$$B_{mnk}\left(f,x\right) = \left\{ \begin{array}{ll} \cos\left(mnk\right)\pi, & \text{if } \left(m,n,k\right) \neq \left(ij\ell\right)^3\left(i,j,\ell \in \mathbb{N}\right), \\ \left(mnk\right), & \text{otherwise} \end{array} \right\},$$

in \mathbb{R}^3 . Because the set $\{1,64,739,\cdots\}$ belong to I, we have

$$I_{\lambda}^{g} - LIM^{r}B_{mnk}(f, x) = \left\{ \begin{array}{l} \phi, & \text{if } r < 1, \\ [1 - r, r - 1], & \text{otherwise} \end{array} \right\},$$

and $LIM^rB_{mnk}(f,x) = \varnothing$ for all $r \geqslant 0$. The fact that $I_{\lambda}^g - LIM^rB_{mnk}(f,x) \neq \varnothing$ does not imply $LIM^rB_{mnk}(f,x) \neq \varnothing$. Because I is a admissible ideal

$$LIM^{r}B_{mnk}(f,x) \neq \varnothing \Longrightarrow I_{\lambda}^{g}LIM^{r}B_{mnk}(f,x) \neq \varnothing,$$

i.e., if $B_{mnk}(f,x)$) $\in LIM^rB_{mnk}(f,x)$, then by Remark 3, $B_{mnk}(f,x)$ $\in I^g_\lambda-LIM^rB_{mnk}(f,x)$, for each triple sequences of Bernstein polynomials. Also, if we define all the rough convergence of weight g by LIM^r and rough I_λ -convergence of weight g sequences by $I^g_\lambda-LIM^r$, then we get $LIM^r\subseteq I^g_\lambda-LIM^r$.

$$\{r \geqslant 0 : LIM^{r}B_{mnk}(f,x) \neq \emptyset\} \subseteq \{r \geqslant 0 : I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x) \neq \emptyset\}.$$

Hence the sets yields immediately

$$\inf\{r \geqslant 0 : LIM^{r}B_{mnk}(f,x) \neq \emptyset\} \supseteq \{r \geqslant 0 : I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x) \neq \emptyset\},\,$$

for each triple sequences of Bernstein polynomials of $B_{mnk}(f,x)$. Moreover, it also yield directly

$$diam(LIM^{r}B_{mnk}(f,x)) \leq diam(I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)). \quad \Box$$

REMARK 5. The rough I_{λ} -convergent of weight g, limit of a triple sequence of Bernstein polynomials $(B_{mnk}(f,x))$ is unique for the roughness degree r>0. The following result is related to the this fact.

THEOREM 2. Let f be a continuous function defined on the closed interval [0,1] and let $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers, and $I \subset 2^{\mathbb{N}}$ be an admissible ideal. Then diam $(I_{\lambda}^g - LIM^r B_{mnk}(f,x)) \leq 2r$. In general, diam $(I_{\lambda}^g - LIM^r B_{mnk}(f,x))$ has an upper bound.

Proof. Assume that diam $(LIM^rB_{mnk}(f,x)) = 2r$. Then $\exists u,v \in LIM^rB_{mnk}(f,x) \ni$: |u-v| > 2r. Take $\varepsilon \in \left(0,\frac{|u-v|}{2}-r\right)$. Since $u,v \in I^g_\lambda - LIM^rB_{mnk}(f,x)$, we have $A_1(\varepsilon) \in I$ and $A_2(\varepsilon) \in I$ for every $\varepsilon > 0$, where

$$A_{1}\left(\varepsilon\right)=\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-u\right|\geqslant r+\varepsilon\right\}$$

and

$$A_{2}\left(\varepsilon\right)=\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-v\right|\geqslant r+\varepsilon\right\}$$

for all $(m, n, k) \in \mathbb{N}^3$.

Using the properties F(I), we get

$$\left(A_{1}\left(\varepsilon\right)^{c}\bigcap A_{2}\left(\varepsilon\right)^{c}\right)\in F\left(I\right).$$

Thus we write

$$|u-v| \leq \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - u| + \frac{1}{g(\lambda_{rst})} |B_{mnk}(f,x) - v|$$

$$< (r+\varepsilon) + (r+\varepsilon) < 2(r+\varepsilon), \text{ for all } (p,q,j) \in A_1(\varepsilon)^c \bigcap A_2(\varepsilon)^c$$

which is a contradiction. Hence diam $(LIM^rB_{mnk}(f,x)) \leq 2r$.

Now, consider a triple sequence of Bernstein polynomials of $(B_{mnk}(f,x))$ of real numbers such that $I_{\lambda}^g - \lim_{mnk \to \infty} B_{mnk}(f,x) = f(x)$.

Let $\varepsilon > 0$. For all $(m, n, k) \in \mathbb{N}^3$, we can write

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right| \geqslant \varepsilon \right\} \in I.$$

Thus we have

$$\frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - t| \leq \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - f(x)| + \frac{1}{g(\lambda_{pqj})} |f(x) - t|$$

$$\leq \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - f(x)| + r \leq r + \varepsilon$$

for each $t \in \overline{B}_r(f(x)) := \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} | t - f(x) | \leqslant r \right\}.$

Then, we get

$$\frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - t| < r + \varepsilon$$

for each $(m,n,k) \in \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right| < \varepsilon \right\}$. Because the triple sequence of Bernstein polynomials of $B_{mnk}\left(f,x\right)$ is I_{λ} -convergent of weight g to $f\left(x\right)$, we have

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} | B_{mnk}(f,x) - f(x) | < \varepsilon \right\} \in F(I).$$

Therefore, we get $t \in I_{\lambda}^g - LIM^r B_{mnk}(f,x)$. Consequently, we can write

$$I_{\lambda}^{g}-LIM^{r}B_{mnk}\left(f,x\right) =\overline{B}_{r}\left(f\left(x\right) \right) .$$

Since $diam(\bar{B}_r(f(x))) = 2r$, this shows that in general, the upper bound 2r of the diameter of the set $I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$ is not lower bound.

THEOREM 3. Let $I \subset 3^{\mathbb{N}}$ be an admissible ideal and Let f be a continuous function defined on the closed interval [0,1], and $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials is I^g_{λ} -analytic if and only if there exists a non-negative real number r such that $I^g_{\lambda} - LIM^r B_{mnk}(f,x) \neq \emptyset$ for all r > 0, an I^g_{λ} -analytic triple sequence of Bernstein polynomials always contains a sub sequence $\left(B_{m_i n_j k_\ell}(f, x)\right)$ with $I_{\lambda}^{g} - LIM^{r}B_{m_{i}n_{i}k_{\ell}}(f,x) \neq \varnothing.$

Proof. Since the triple sequence of Bernstein polynomials of $B_{mnk}(f,x)$ is I_{λ}^g analytic then there exists a positive real number M such that

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x)|^{1/m+n+k} \geqslant M \right\} \in I.$$

Define
$$r' = \sup \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) \right|^{1/m+n+k} \geqslant M : (m,n,k) \in K^c \right\},$$
 where $K = \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) \right|^{1/m+n+k} \geqslant M \right\}.$

Then the set $I_{\lambda}^g - LIM^{r'}B_{mnk}(f,x)$ contains the origin of \mathbb{R}^3 . So we have $I_{\lambda}^g -$

 $LIM^{r'}B_{mnk}(f,x) \neq \varnothing$. If $I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x) \neq \varnothing$ for some $r \geqslant 0$, then there exists f(x) such that $f(x) \in I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$, i.e.,

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right|^{1/m + n + k} \geqslant r + \varepsilon \right\} \in I$$

for each $\varepsilon > 0$. Then we say that almost all $B_{mnk}(f,x)$ are contained in some ball with any radius greater than r. So the triple sequence space of Bernstein polynomials of $B_{mnk}(f,x)$ is I_{λ}^{g} -analytic.

Since $B_{mnk}(f,x)$ is a I_{λ}^g -analytic triple sequence of Bernstein polynomials in a three-dimensional metric space, it certainly contains a I_{λ} -convergent of weight g sub sequence $(B_{m_i n_j k_\ell}(f, x))$. Let f(x) be its I^g_{λ} -limit point, then $I^g_{\lambda} - LIM^r B_{m_i n_j k_\ell}(f, x) =$ $\overline{B}_r(f(x))$ and, for r > 0,

$$I_{\lambda}^{g}-LIM^{r}\left(B_{m_{i}n_{j}k_{\ell}}\left(f,x\right)\right)\neq\varnothing.$$

THEOREM 4. Let $I \subset 3^{\mathbb{N}}$ be an admissible ideal. If $(B_{m_i n_j k_\ell}(f, x))$ is a sub sequence of $(B_{mnk}(f,x))$, then

$$I_{\lambda}^{g}-LIM^{r}B_{mnk}(f,x)\subseteq I_{\lambda}^{g}-LIM^{r}B_{m_{i}n_{j}k_{\ell}}(f,x)$$
.

Proof. The proof is trivial (See [8], Proposition 2.3).

THEOREM 5. Let f be a continuous function defined on the closed interval [0, 1] and $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials, and $I \subset 3^{\mathbb{N}}$ be an admissible ideal. Then $I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$ is closed.

Proof. The result is true for $I_{\lambda}^g - LIM^r B_{mnk}(f, x) = \phi$. Assume that $I_{\lambda}^g - LIM^r B_{mnk}(f, x) \neq \emptyset$. Then, we can choose a triple sequence of Bernstein polynomials of $B_{mnk}(f,y)\subseteq I^g_\lambda-LIM^rB_{mnk}(f,x)$ such that $B_{mnk}(f,y)\stackrel{r}{\to} f(y)$ for $m,n,k\to\infty$. To prove $f(x)\in I^g_\lambda-LIM^rB_{mnk}(f,x)$. Let $\varepsilon>0$ be given. Because $B_{mnk}(f,y)\to f(y)$, $\exists i,j,\ell=i_{\frac{\varepsilon}{2}},j_{\frac{\varepsilon}{2}},\ell_{\frac{\varepsilon}{2}}\in\mathbb{N}$ such that

$$\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,y\right)-f\left(y\right)\right|<\frac{\varepsilon}{2},\forall m\geqslant i_{\frac{\varepsilon}{2}},n\geqslant j_{\frac{\varepsilon}{2}},k\geqslant\ell_{\frac{\varepsilon}{2}}.$$

Now choose an $m_0, n_0, k_0 \in \mathbb{N}$ such that $m_0 \geqslant i_{\frac{\varepsilon}{2}}, n_0 \geqslant j_{\frac{\varepsilon}{2}}, k_0 \geqslant \ell_{\frac{\varepsilon}{2}}$. Then we can write

$$\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{m_0n_0k_0}\left(f,y\right)-f\left(y\right)\right|<\frac{\varepsilon}{2}.$$

On the other hand, because $B_{mnk}(f,y) \subseteq I_{\lambda}^g - LIM^r B_{mnk}(f,x)$, we have $B_{m_0n_0k_0}(f,y) \in$ $I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$, namely,

$$A\left(\frac{\varepsilon}{2}\right) = \left\{ \left(p,q,j\right) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - B_{m_0n_0k_0}\left(f,y\right) \right| \geqslant r + \frac{\varepsilon}{2} \right\} \in I.$$

Now let us prove that the inclusion

$$A^{c}\left(\frac{\varepsilon}{2}\right) \subseteq A^{c}\left(\varepsilon\right) \tag{1}$$

holds, where $A(\varepsilon) = \left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - f(x)| \ge r + \varepsilon \right\}$. Take $(u, v, w) \in A^{c}\left(\frac{\varepsilon}{2}\right)$. Then we have

$$\frac{1}{g\left(\lambda_{paj}\right)}\left|B_{uvw}\left(f,x\right) - B_{m_0n_0k_0}\left(f,y\right)\right| < r + \frac{\varepsilon}{2}$$

and hence

$$\begin{split} &\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{uvw}\left(f,x\right)-f\left(x\right)\right| \\ &\leqslant \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{uvw}\left(f,x\right)-B_{m_{0}n_{0}k_{0}}\left(f,y\right)\right|+\left|b_{m_{0}n_{0}k_{0}}\left(f,y\right)-f\left(x\right)\right| < r+\varepsilon, \end{split}$$

i.e., $(u, v, w) \in A^{c}(\varepsilon)$, which proves (1). Thus we get

$$A(\varepsilon) \in I(i.e., f(x)) \in I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$$
. \square

THEOREM 6. Let f be a continuous function defined on the closed interval [0,1] and $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers, and $I \subset 2^{\mathbb{N}}$ be an admissible ideal. Then the rough I_{λ}^{g} -limit set of triple sequence of Bernstein polynomials of $B_{mnk}(f,x)$ is convex.

Proof. Let $y_1, y_2 \in I_{\lambda}^g - LIM^r B_{mnk}(f, x)$ for triple sequence of Bernstein polynomials of $B_{mnk}(f, x)$ and let $\varepsilon > 0$ be given. Define

$$A_{1}\left(\varepsilon\right) = \left\{ \left(p, q, j\right) \in \mathbb{N}^{3} : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f, x\right) - y_{1} \right| \geqslant r + \varepsilon \right\}$$

and

$$A_{2}(\varepsilon) = \left\{ (p,q,j) \in \mathbb{N}^{3} : \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - y_{2}| \geqslant r + \varepsilon \right\},$$

because $y_1,y_2 \in I^g_{\lambda} - LIM^rB_{mnk}\left(f,x\right)$, we have $A_1\left(\varepsilon\right), \ A_2\left(\varepsilon\right) \in I$. Thus we have

$$\frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - [(1-\lambda)y_1 + \lambda y_2]|$$

$$= \frac{1}{g(\lambda_{pqj})} |(1-\lambda)(B_{mnk}(f,x) - y_1) + \lambda (B_{mnk}(f,x) - y_2)|$$

$$\leq (1-\lambda) \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - y_1| + \lambda \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f,x) - y_2|$$

$$< (1-\lambda)(r+\varepsilon) + \lambda (r+\varepsilon) < r+\varepsilon$$

for each $(m,n,k) \in A_1^c(\varepsilon) \cap A_2^c(\varepsilon)$ and each $\lambda \in [0,1]$. Because $(A_1^c(\varepsilon) \cap A_2^c(\varepsilon)) \in F(I)$ by definition of F(I), we get

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - \left[(1-\lambda)y_1 + \lambda y_2 \right] \right| \geqslant r + \varepsilon \right\} \in I,$$

that is

$$[(1-\lambda)y_1+\lambda y_2] \in I_{\lambda}^g - LIM^r B_{mnk}(f,x),$$

which proves the convexity of the set $I_{\lambda}^{g} - LIM^{r}B_{mnk}\left(f,x\right)$. \square

THEOREM 7. Let f be a continuous function defined on the closed interval [0,1] and let $I \subset 3^{\mathbb{N}}$ be an admissible ideal. Then a triple sequence of Bernstein polynomials of $(B_{mnk}(f,x))$ of reals with r > 0 is rough I_{λ} -convergent to weight g of f(x) if and only if there exists a triple sequence of Bernstein polynomials of $B_{mnk}(f,y)$ such that

$$I_{\lambda}^{g} - \lim B_{mnk}(f, y) = f(x)$$

and

$$\frac{1}{g(\lambda_{pqj})}|B_{mnk}(f,x) - B_{mnk}(f,y)| \le r, \text{ for each } m,n,k,p,q,j \in \mathbb{N}.$$
 (2)

Proof. Assume that the triple sequence of Bernstein polynomials of $B_{mnk}(f,x)$ is rough I_{λ} -convergent to weight g of f(x). Then we have

$$I_{\lambda}^{g} - \limsup \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f, x) - f(x)| \leqslant r.$$
(3)

Define

$$B_{mnk}\left(f,y\right) = \begin{cases} f\left(x\right), \text{ if } \frac{1}{g\left(\lambda_{pqj}\right)} \left|B_{mnk}\left(f,x\right) - f\left(x\right)\right| \leqslant r, \\ B_{mnk}\left(f,x\right) + r\left(\frac{f\left(x\right) - B_{mnk}\left(f,x\right)}{\frac{1}{g\left(\lambda_{pqj}\right)} \left|B_{mnk}\left(f,x\right) - f\left(x\right)\right|}\right), \text{ otherwise.} \end{cases}$$

We write

$$\begin{split} &\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,y\right)-f\left(x\right)\right| \\ &= \begin{cases} &\frac{1}{g\left(\lambda_{pqj}\right)}\left|f\left(x\right)-f\left(x\right)\right|, if \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right| \leqslant r, \\ &\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right| + r\left(\frac{\frac{1}{g\left(\lambda_{pqj}\right)}\left|f\left(x\right)-f\left(x\right)\right|-\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|}{\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|}\right), \text{ otherwise,} \end{cases} \end{split}$$

(i.e)

$$\frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,y\right) - f\left(x\right) \right|$$

$$= \begin{cases} 0, if \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right| \leqslant r, \\ \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right| - r \left(\frac{\frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right|}{\frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - f\left(x\right) \right|} \right), \text{ otherwise,}$$

(i.e)

$$\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,y\right)-f\left(x\right)\right| = \begin{cases} 0, if \, \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right| \leqslant r, \\ \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right| - r, \, \, \text{otherwise}. \end{cases}$$

We have

$$\begin{split} &\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,y\right)-f\left(x\right)\right|\geqslant\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|-r\\ &\Longrightarrow\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)-B_{mnk}\left(f,y\right)+f\left(y\right)\right|\leqslant r \end{split}$$

i.e.

$$\frac{1}{g(\lambda_{paj})} \left| B_{mnk}(f, x) - B_{mnk}(f, x) \right| \leqslant r$$

for all $m, n, k, p, q, j \in \mathbb{N}$. By equation (3) and by definition of $B_{mnk}(f, y)$, we get

$$\begin{split} I_{\lambda}^{g} - \limsup \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f, y\right) - f\left(x\right) \right| &= 0. \\ \Longrightarrow I_{\lambda}^{g} - \lim B_{mnk}\left(f, y\right) &= f\left(x\right). \end{split}$$

Assume that (2) holds. Since $I_{\lambda}^{g} - \lim B_{mnk}(f, y) = f(x)$, we have

$$A\left(\varepsilon\right) = \left\{\left(p,q,j\right) \in \mathbb{N}^{3} : \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,y\right) - f\left(x\right)\right| \geqslant r + \varepsilon\right\} \in I,$$

for each $\varepsilon > 0$. Now, define the set

$$B(\varepsilon) = \left\{ (p, q, j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} |B_{mnk}(f, x) - f(x)| \geqslant r + \varepsilon \right\} \in I.$$

We have $B(\varepsilon) \subseteq A(\varepsilon)$ holds. Since $A(\varepsilon) \in I \Longrightarrow B(\varepsilon) \in I$. Hence $B_{mnk}(f,x)$ is rough I_{λ} -convergent to weight g of f(x). \square

REMARK 6. If we replace the condition $\frac{1}{g(\lambda_{pqj})}|B_{mnk}(f,x)-B_{mnk}(f,y)| \leq r$ for all $m,n,k,p,q,j\in\mathbb{N}$ in the hypothesis of the above theorem with the condition

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - B_{mnk}\left(f,y\right) \right| > r \right\} \in I$$

then the theorem will also be valid.

THEOREM 8. Let f be a continuous function defined on the closed interval [0,1], let $I \subset 3^{\mathbb{N}}$ be an admissible ideal, and $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers. For an arbitrary $c \in I_{\lambda}^{g}(\Gamma_{x})$, we have $\frac{1}{g(\lambda_{pqj})}|f(x)-c| \leq r$ for all $f(x) \in I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$.

Proof. Assume on the contrary that there exist a point $c \in I^g_{\lambda}(\Gamma_x)$ and $f(x) \in I^g_{\lambda} - LIM^r B_{mnk}(f,x)$ such that $\frac{1}{g(\lambda_{pqj})}|f(x)-c| > r$. Define

$$\varepsilon := \frac{\frac{1}{g(\lambda_{pqj})} |f(x) - c| - r}{3}.$$

Then

$$\begin{split} &\left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)}\left|f\left(x\right) - c\right| < \varepsilon \right\} \\ &\subseteq \left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right) - f\left(x\right)\right| \geqslant r + \varepsilon \right\}. \end{split}$$

Since $c \in I_{\lambda}^{g}(\Gamma_{x})$, we have

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^3 : \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - c \right| < \varepsilon \right\} \notin I.$$

From definition of I_{λ} -convergence of weight g, since

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right) - f\left(x\right)\right| \geqslant r + \varepsilon \right\} \in I,$$

so by (3) we have

$$\left\{ \left(p,q,j\right) \in \mathbb{N}^{3}: \frac{1}{g\left(\lambda_{pqj}\right)} \left| B_{mnk}\left(f,x\right) - c \right| < \varepsilon \right\} \in I,$$

which contradicts the fact $c \in I_{\lambda}^{g}(\Gamma_{x})$. On the other hand, if $c \in I_{\lambda}^{g}(\Gamma_{x})$ i.e.,

$$\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-c\right|<\varepsilon\right\} \notin I,$$

then

$$\left\{\left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|\geqslant r+\varepsilon\right\}\notin I,$$

which contradicts the fact $f(x) \in I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$. \square

THEOREM 9. Let f be a continuous function defined on the closed interval [0,1], let $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers, and $I \subset 3^{\mathbb{N}}$ be an admissible ideal, $(\mathbb{R}^3, |.,.|)$ be a strictly convex, if there exist $y_1, y_2, y_3, y_4, y_5, y_6 \in I_2^g - LIM^r B_{mnk}(f,x)$ such that

$$\frac{1}{g\left(\lambda_{pqj}\right)}\left|y_{1}-y_{2}\right|<2r,\quad\frac{1}{g\left(\lambda_{pqj}\right)}\left|y_{3}-y_{4}\right|<2r$$

and

$$\frac{1}{g(\lambda_{pai})}|y_5 - y_6| < 2r,$$

then this triple sequence of Bernstein polynomials is I_{λ} -convergent to weight g to

$$\frac{1}{6} \frac{1}{g(\lambda_{pqj})} (y_1 + y_2 + y_3 + y_4 + y_5 + y_6).$$

Proof. Let $c \in I_{\lambda}^g(\Gamma_x)$. Then since y_1 , y_2 , y_3 , y_4 , y_5 , $y_6 \in I_{\lambda}^g - LIM^rB_{mnk}(f,x)$. By Theorem 8, we have

$$\frac{1}{g(\lambda_{pqj})}|y_1 - c| \leqslant r, \quad \frac{1}{g(\lambda_{pqj})}|y_2 - c| \leqslant r, \quad \frac{1}{g(\lambda_{pqj})}|y_3 - c| \leqslant r,
\frac{1}{g(\lambda_{pqj})}|y_4 - c| \leqslant r, \quad \frac{1}{g(\lambda_{pqj})}|y_5 - c| \leqslant r \text{ and } \frac{1}{g(\lambda_{pqj})}|y_6 - c| \leqslant r.$$
(4)

On the other hand, we have

$$6rg((p,q,j)) = |y_1 - y_6| \leq |y_1 - c| + |y_2 - c| + |y_3 - c| + |y_4 - c| + |y_5 - c| + |y_6 - c|.$$
 (5)

Therefore, we get $\frac{1}{g(\lambda_{pqj})}|y_1-c|=\cdots=\frac{1}{g(\lambda_{pqj})}|y_6-c|=r$ by inequalities (4) and (5). Since

$$\frac{1}{6} \frac{1}{g(\lambda_{pqj})} (y_6 - y_1)
= \frac{1}{6} \frac{1}{g(\lambda_{pqj})} [(c - y_1) + (c - y_2) (c - y_3) (c - y_4) + (c - y_5) + (c - y_6)]$$
(6)

we get $\frac{1}{g(\lambda_{pqj})} \left| \frac{1}{6} (y_6 - y_1) \right| = r$. By the strict convexity of the space from the equality (6), we get

$$\frac{1}{6} \frac{1}{g\left(\lambda_{pqj}\right)} \left(y_6 - y_1\right) = \frac{1}{g\left(\lambda_{pqj}\right)} \left(c - y_1\right) = \dots = \frac{1}{g\left(\lambda_{pqj}\right)} \left(c - y_6\right),$$

which implies that

$$c = \frac{1}{6} \frac{1}{g(\lambda_{pqj})} (y_1 + y_2 + y_3 + y_4 + y_5 + y_6).$$

Hence c is the unique I_{λ}^g - cluster point of the triple sequence of Bernstein polynomials of $(B_{mnk}(f,x))$.

On the other hand, the assumption y_1 , y_2 , y_3 , y_4 , y_5 , $y_6 \in I_{\lambda}^g - LIM^r B_{mnk}(f,x) \Longrightarrow I_{\lambda}^g - LIM^r B_{mnk}(f,x) \neq \phi$. By theorem 3, the triple sequence of Bernstein polynomials of $B_{mnk}(f,x)$ is I_{λ}^g -analytic. Consequently, the triple sequence space of Bernstein polynomials of $B_{mnk}(f,x)$ must I_{λ} -convergent to weight g to

$$\frac{1}{6} \frac{1}{g(\lambda_{pqj})} (y_1 + y_2 + y_3 + y_4 + y_5 + y_6),$$

i.e.,

$$I_{\lambda}^{g} - limB_{mnk}(f, x) = \frac{1}{6} \frac{1}{g(\lambda_{pqj})} (y_1 + y_2 + y_3 + y_4 + y_5 + y_6).$$

THEOREM 10. Let f be a continuous function defined on the closed interval [0,1] and let $(B_{mnk}(f,x))$ be a triple sequence of Bernstein polynomials of real numbers and $I \subset 3^{\mathbb{N}}$ be an admissible ideal.

(i) If
$$c \in I_{\lambda}^{g}(\Gamma_{x})$$
 then $I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x) \subseteq \overline{B}_{r}(c)$. (ii)

$$I_{\lambda}^{g}-LIM^{r}B_{mnk}\left(f,x\right)=\bigcap_{c\in I_{\lambda}^{g}\left(\Gamma_{x}\right)}\overline{B}_{r}\left(c\right)=\left\{ f\left(x\right)\in\mathbb{R}^{3}:I_{\lambda}^{g}\left(\Gamma_{x}\right)\subseteq\overline{B}_{r}\left(f\left(x\right)\right)\right\} .\tag{7}$$

Proof. (i) If $c \in I_{\lambda}^g(\Gamma_x)$ then by Theorem 8, we have $\frac{1}{g(\lambda_{ngi})}|f(x)-c| \leq r$ for all $f(x) \in I_{\lambda}^{g} - LIM^{r}B_{mnk}(f,x)$, other wise we get

$$\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-f\left(x\right)\right|\geqslant r+\varepsilon\right\} \notin I,$$

for $\varepsilon:=\frac{\frac{1}{g\left(\lambda_{pqj}\right)}|f(x)-c|-r}{3}$. Because c is an I_{λ}^{g} -cluster point of $B_{mnk}\left(f,x\right)$, this contradicts with the fact that $f\left(x\right)\in I_{\lambda}^{g}-LIM^{r}B_{mnk}\left(f,x\right)$.

(ii) From (7) we have

$$I_{\lambda}^{g} - LIM^{r}B_{mnk}(f, x) \subseteq \bigcap_{c \in I_{\lambda}^{g}(\Gamma_{X})} \overline{B}_{r}(c).$$
 (8)

Now, let $B_{mnk}(f,x) \in \bigcap_{c \in I_1^g(\Gamma_x)} \overline{B}_r(c)$. Then we have

$$\frac{1}{g(\lambda_{pqj})}|B_{mnk}(f,x)-c| \leqslant r$$

for all $c \in I_{\lambda}^{g}(\Gamma_{x})$, which is equivalent to $I_{\lambda}^{g}(\Gamma_{x}) \subseteq \overline{B}_{r}(B_{mnk}(f,y))$, i.e.,

$$\bigcap_{c \in I_{\lambda}^{g}(\Gamma_{x})} \overline{B}_{r}(c) = \left\{ f(x) \in \mathbb{R}^{3} : I_{\lambda}^{g}(\Gamma_{x}) \subseteq \overline{B}_{r}(f(x)) \right\}. \tag{9}$$

Now, let $B_{mnk}(f,y) \notin I_{\lambda}^g - LIM^r B_{mnk}(f,x)$. Then, there exists an $\varepsilon > 0$ such that

$$\left\{ \left(p,q,j\right)\in\mathbb{N}^{3}:\frac{1}{g\left(\lambda_{pqj}\right)}\left|B_{mnk}\left(f,x\right)-B_{mnk}\left(f,y\right)\right|\geqslant r+\varepsilon\right\} \notin I,$$

 \implies the existence of an I_{λ}^g -cluster point c of the sequence $B_{mnk}(f,x)$ with

$$\frac{1}{g(\lambda_{pqj})}|B_{mnk}(f,y)-c|\geqslant r+\varepsilon,$$

i.e.,

$$I_{\lambda}^{g}\left(\Gamma_{x}\right) \nsubseteq \overline{B}_{r}\left(B_{mnk}\left(f,y\right)\right)$$

and

$$B_{mnk}(f,y) \notin \left\{ f(x) \in \mathbb{R}^3 : I_{\lambda}^g(\Gamma_x) \subseteq \overline{B}_r(f(x)) \right\}.$$

Hence $B_{mnk}(f,y) \in I_{\lambda}^g - LIM^r B_{mnk}(f,x)$ follows from

$$B_{mnk}(f,y) \in \left\{ f(x) \in \mathbb{R}^3 : I_{\lambda}^g(\Gamma_x) \subseteq \overline{B}_r(f(x)) \right\},$$

i.e.,

$$\left\{ f(x) \in \mathbb{R}^3 : I_{\lambda}^g(\Gamma_x) \subseteq \overline{B}_r(f(x)) \right\} \subseteq I_{\lambda}^g - LIM^r B_{mnk}(f, x). \tag{10}$$

Therefore, the inclusions (8)-(10) ensure that (7) holds i.e.,

$$I_{\lambda}^{g}-LIM^{r}B_{mnk}\left(f,x\right)\bigcap_{c\in I_{\lambda}^{g}\left(\Gamma_{x}\right)}\overline{B}_{r}\left(c\right)=\left\{ f\left(x\right)\in\mathbb{R}^{3}:I_{\lambda}^{g}\left(\Gamma_{x}\right)\subseteq\overline{B}_{r}\left(f\left(x\right)\right)\right\} .\quad\Box$$

THEOREM 11. Let $I \subset 3^{\mathbb{N}}$ be an admissible ideal and Let f be a continuous function defined on the closed interval [0,1]. If $(B_{mnk}(f,x))$ is an I_{λ}^{g} -analytic sequence of Bernstein polynomials of real numbers with $r \geqslant diam(I_{\lambda}^{g}(\Gamma_{x}))$, then $I_{\lambda}^{g}(\Gamma_{x}) \subseteq I_{\lambda}^{g}$ $LIM^{r}B_{mnk}(f,x)$.

Proof. Let $c \notin I_{\lambda}^g - LIM^r B_{mnk}(f,x)$. Then there exists an $\varepsilon > 0$ such that

$$\left\{ (p,q,j) \in \mathbb{N}^3 : \frac{1}{g(\lambda_{pqj})} \left| B_{mnk}(f,x) - c \right|^{1/m+n+k} \geqslant r + \varepsilon \right\} \notin I. \tag{11}$$

Since $B_{mnk}(f,x)$ is I_{λ}^g -analytic and from the inequality (11), there exists an I_{λ}^g -cluster point c_1 such that

$$\frac{1}{g(\lambda_{paj})}|c-c_1| > r + \varepsilon_1$$
, where $\varepsilon_1 := \frac{\varepsilon}{2}$.

So we get $diam\left(I_{\lambda}^{g}\left(\Gamma_{x}\right)\right)>r+\varepsilon_{1}$. The converse of this theorem is also true, i.e., if $I_{\lambda}^{g}\left(\Gamma_{x}\right)\subseteq I_{\lambda}^{g}-LIM^{r}B_{mnk}\left(f,x\right)$, then we have $r \geqslant diam\left(I_{\lambda}^{g}\left(\Gamma_{x}\right)\right)$.

REFERENCES

- [1] S. AYTAR, Rough statistical convergence, Numer. Funct. Anal. Optimiz. 29 (3-4) (2008) 291-303.
- [2] S. AYTAR, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz. 29 (3-4) (2008) 283-290.
- [3] M. BALCERZAK, P. DAS, M. FILIPCZAK, AND J. SWACZYNA, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (1) (2015) 97-115.
- [4] H. CARTAN, Filters et ultrafilters, C. R. Acad. Sci. Paris 205 (1937) 777-779.
- [5] A. J. DUTTA, A. ESI, B. C. TRIPATHY, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal. 4 (2) (2013) 16-22.
- [6] S. DEBNATH, B. SARMA, B. C. DAS, Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Optimiz. 6 (1) (2015) 71-79.
- [7] E. DÜNDAR, C. ÇAKAN, Rough 1-convergence, Demonstratio Math. XLVII (3) (2014) 638–651.
- [8] E. DÜNDAR, C. ÇAKAN, Rough convergence of double sequences, Gulf J. Math. 2 (1) (2014) 45-51.
- [9] E. DÜNDAR, On Rough I2-Convergence of Double Sequences, Numer. Funct. Anal. Optimiz. 37 (4) (2016) 480-491.
- [10] A. ESI, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Math. Structures 1 (2) (2014) 16–25.
- [11] A. ESI, M. NECDET CATALBAS, Almost convergence of triple sequences, Global J. Math. Anal. 2 (1) (2014) 6-10.
- [12] A. ESI, E. ŞAVAS, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9 (5) (2015) 2529–2534.
- [13] A. ESI, S. ARACI, M. ACIKGOZ, Statistical Convergence of Bernstein Operators, Appl. Math. Inf. Sci. 10 (6) (2016) 2083-2086.

- [14] A. Esi, λ₃-Statistical convergence of triple sequences on probabilistic normed space, Global J. Math. Anal. 1 (2) (2013) 29–36.
- [15] B. HAZARIKA, S. A. MOHIUDDINE, *Ideal convergence of random variables*, J. Func. Spaces Appl. 2013 (2013), Article ID 148249, 7 pages.
- [16] P. KOSTYRKO, T. ŠALÁT, W. WILCZYŚKI, On 1-convergence, Real Analysis Exchange 26 (2) (2000–2001) 669–686.
- [17] P. MALIK, M. MAITY, On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat. 27 (1) (2016) 141–148.
- [18] F. NURAY, W. H. RUCKLE, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000) 513–527.
- [19] S. K. PAL, D. CHANDRA, S. DUTTA, Rough Ideal Convergence, Hacettepe J. Math. Stat. 42 (6) (2013) 633–640.
- [20] H. X. PHU, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz. 22 (2001) 199–222.
- [21] H. X. PHU, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz. 23 (2002) 139-146.
- [22] H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz. 24 (2003) 285–301.
- [23] A. SAHINER, M. GURDAL, F. K. DUDEN, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8 (2) (2007) 49–55.
- [24] A. SAHINER, B. C. TRIPATHY, Some 1 related properties of triple sequences, Selcuk J. Appl. Math. 9 (2) (2008) 9–18.
- [25] T. ŠALÁT, B. C. TRIPATHY, M. ZIMAN, On some properties of 1-convergence, Tatra Mt. Math. Publ. 28 (2004) 279–286.
- [26] E. SAVAS, A. ESI, Statistical convergence of triple sequences on probabilistic normed space, Ann. Uni. Craiova, Math. Compu. Sci. Series 39 (2) (2012) 226–236.
- [27] B. C. TRIPATHY, R. GOSWAMI, On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones J. Math. 33 (2) (2014) 157–174.
- [28] A. ESI, S. ARACI AND A. ESI, λ-Statistical convergence of Bernstein polynomial sequences, Advances and Application in Mathematical Sciences, 16 (3) (2017), 113–119.
- [29] A. ESI, N. SUBRAMANIAN AND A. ESI, Triple rough statistical convergence of sequence of Bernstein operators, Int. J. Adv. Appl. Sci. 4 (2) (2017), 28–34.
- [30] B. C. TRIPATHY AND R. GOSWAMI, *Vector valued multiple sequences defined by Orlicz functions*, Boletim da Sociedade Paranaense de Matematica, **33** (1) (2015), 67–79.
- [31] B. C. TRIPATHY AND R. GOSWAMI, Multiple sequences in probabilistic normed spaces, Afrika Mathematica, 26 (5–6) (2015), 753–760.
- [32] B. C. TRIPATHY AND R. GOSWAMI, Fuzzy real valued p-absolutely summable multiple sequences in probabilistic normed spaces, Afrika Mathematica 26 (7–8) (2015), 1281–1289.

(Received April 3, 2017)

Nagarajan Subramanian Department of Mathematics SASTRA University Thanjavur-613 401, India e-mail: nsmaths@yahoo.com

Ayhan Esi Department of Mathematics Adiyaman University 02040, Adiyaman, Turkey e-mail: aesi23@hotmail.com