LETTER TO THE EDITOR

HİKMET SEYHAN ÖZARSLAN

Abstract. In the note some remarks are given concerning certain results of the article [M. A. Sarigöl, A remark on $\varphi - |\overline{N}, q_n; \delta|_k$ summability, this journal, **12**, 1 (2018), 55–58.]

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let (p_n) be a sequence of positive numbers for which there holds

$$P_n = \sum_{\nu=0}^n p_\nu \longrightarrow \infty (n \longrightarrow \infty), \qquad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$

$$(1.1)$$

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu s_\nu \tag{1.2}$$

defines the sequence (σ_n) of the Riesz mean or simply the (\overline{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) [3]. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n; \delta|_k, k \ge 1$ and $\delta \ge 0$ if [2]

$$\sum_{n \ge 1} \left(\frac{P_n}{p_n}\right)^{(\delta+1)k-1} |\sigma_n - \sigma_{n-1}|^k \tag{1.3}$$

converges. In turn, setting $\delta = 0$, we obtain the $|\overline{N}, p_n|_k, k \ge 1$ summability, see [1].

Let (φ_n) be any sequence of positive reals. The series $\sum a_n$ is summable in the sense $\varphi - |\overline{N}, p_n; \delta|_k$, $k \ge 1$ and $\delta \ge 0$ when [7]

$$\sum_{n \ge 1} \varphi_n^{(\delta+1)k-1} |\sigma_n - \sigma_{n-1}|^k < \infty.$$
(1.4)

If we specialize $\delta = 0$ and $\varphi_n = P_n/p_n$, then $\varphi - |\overline{N}, p_n; \delta|_k$ summability reduces to $|\overline{N}, p_n|_k$ summability.

Keywords and phrases: Absolute summability, equivalence theorem, infinite series, Riesz mean.

© EMN, Zagreb	
Paper JCA-14-03	

Mathematics subject classification (2010): 40F05, 40G99.

2. Known results

In [4] Özarslan proved the following theorems to obtain equivalence between two general summability methods.

THEOREM 2.1. Let $k \ge 1$ and $0 \le \delta < 1/k$ while $(\varphi_n), (p_n), (q_n)$ be positive sequences. Assume that

$$\sum_{n=\nu+1}^{m+1} \frac{\varphi_n^{(\delta+1)k-1} q_n^k}{Q_n^k Q_{n-1}} = \mathscr{O}\left(\varphi_\nu^{(\delta+1)k-1} \frac{q_\nu^{k-1}}{Q_\nu^k}\right)$$
(2.1)

as $m \to \infty$. In order that every $\varphi - |\overline{N}, p_n; \delta|_k$ summable series be $\varphi - |\overline{N}, q_n; \delta|_k$ summable it is necessary that there holds

$$\frac{q_n P_n}{Q_n p_n} = \mathcal{O}(1) \,. \tag{2.2}$$

Moreover, when

$$\frac{p_n Q_n}{P_n q_n} = \mathcal{O}(1), \qquad (2.3)$$

then (2.2) is also sufficient for the asserted conclusion.

THEOREM 2.2. Let (p_n) and (q_n) be positive sequences satisfying the constraint (2.1), $k \ge 1$ and $0 \le \delta < 1/k$. In order that $\varphi - |\overline{N}, p_n; \delta|_k$ is equivalent to $\varphi - |\overline{N}, q_n; \delta|_k$ summability it is necessary and sufficient that both (2.2) and (2.3) hold.

3. Remarks upon results

Firstly, reference [5] (listed also in [6]) concerns Fourier series which are not mentioned in [6]. Also, it should be noticed that in [4], Özarslan has not tried to establish both necessary and sufficient conditions in order that every $\varphi - |\overline{N}, p_n; \delta|_k$ summable series should be $\varphi - |\overline{N}, q_n; \delta|_k$ summable; the article [4] contains the equivalence of two general summability methods *only under some suitable conditions*.

So, there is no relevance between [6] and [4].

REFERENCES

- [1] H. BOR, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985), 147–149.
- [2] H. BOR, On local property of |N, p_n; δ|_k summability of factored Fourier series, J. Math. Anal. Appl. 179, 2 (1993), 646–649.
- [3] G. H. HARDY, Divergent Series, Oxford University Press, Oxford, 1949.
- [4] H. S. ÖZARSLAN, Some equivalence theorems on absolute summability methods, Inter. J. Anal. Appl. 13, 1 (2017), 93–97.
- [5] M. A. SARIGÖL, On the local properties of factored Fourier series, Appl. Math. Comput. 216, 11 (2010), 3386–3390.

- [6] M. A. SARIGÖL, A remark on φ |N, q_n; δ|_k summability, J. Classical Anal. 12, 1 (2018), 55–58.
 [7] H. SEYHAN, On the local property of φ |N, p_n; δ|_k summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 25, 4 (1997), 311–316.

(Received July 30, 2018)

Hİkmet Seyhan Özarslan Department of Mathematics Erciyes University 38039 Kayseri, Turkey e-mail: seyhan@erciyes.edu.tr