FUNDAMENTAL THEOREMS OF SUMMABILITY THEORY FOR A NEW TYPE OF SUBSEQUENCES OF DOUBLE SEQUENCES

Raluca Dumitru and Jose A. Franco

Abstract

In 2000, the notion of a subsequence of a double sequence was introduced [3]. Using this definition, a multidimensional analogue to a result from H . Steinhaus, that states that for any regular matrix A there exists a sequence of zeros and ones that is not A-summable, was proved. Additionally, an analogue of a result of R. C. Buck that states that a sequence x is convergent if and only if there exists a regular matrix A that sums every subsequence of x was presented. However, this definition imposes a restrictive condition on the entries of the double sequence that can be considered for the subsequence. In this article, we introduce a less restrictive new definition of a subsequence. We denote them by β-subsequences of a double sequence and show that analogues to these two fundamental theorems of summability still hold for these new subsequences.

1. Introduction

In a seminal article, Patterson introduced the definition of a subsequence of a double sequence [3]. He, then, established two fundamental theorems of summability theory for these subsequences. Namely, the author showed that for any regular 4-dimensional matrix transformation, in the sense of Robison and Hamilton [2, 6], A, there exists a double sequence of 0 's and 1 's that is not A-summable. Additionally, he showed that the following characterization holds for these subsequences: "A double sequence x is convergent in the Pringsheim sense if and only if there exists a regular 4-dimensional matrix transformation, A, such that A sums every subsequence of x."

However, the construction of these subsequences requires that one imposes a very stringent condition on the subindices eligible to form them. It is the goal of this article to introduce a family of sequences, to be denoted β-subsequences $(\beta>1)$, of double sequences that still satisfy the stated summability theorems but that do not impose such stringent condition.

Therefore, in Section 2, we use an idea similar to that used for β-rearrangements [4], to introduce the concept of a β-subsequence of a double sequence. In Section 3, we start by establishing the following basic notions of analysis of sequences for β-subsequences, that is, we show that if a double sequence is convergent, all of its β-subsequences are convergent and converge to the same limit (see Proposition 1). Following that, we show that for any β-regular 4-dimensional matrix transformation,

[^0]A, there exists a double sequence of 0 's and 1 's that is not A-summable (see Definition 7 and Theorem 2). We conclude by showing that a double sequence x is convergent in the Pringsheim sense if and only if there exists a β-regular 4-dimensional matrix transformation, A, such that A sums every β-subsequence of x.

2. Definitions and notation

Let $\psi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be given in the following way

$$
\begin{array}{ll}
(1,1) \mapsto 1 & (1,2) \mapsto 2 \\
(2,2) \mapsto 3 & (2,1) \mapsto 4 \\
(1,3) \mapsto 5 & (2,3) \mapsto 6 \\
(3,3) \mapsto 7 & (3,2) \mapsto 8 \ldots
\end{array}
$$

In matrix form, this can be encoded as

$$
\left(\begin{array}{ccccc}
\psi(1,1) & \psi(1,2) & \psi(1,3) & \psi(1,4) & \cdots \\
\psi(2,1) & \psi(2,2) & \psi(2,3) & \psi(2,4) & \cdots \\
\psi(3,1) & \psi(3,2) & \psi(3,3) & \psi(3,4) & \cdots \\
\psi(4,1) & \psi(4,2) & \psi(4,3) & \psi(4,4) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 2 & 5 & 10 & \cdots \\
4 & 3 & 6 & 11 & \cdots \\
9 & 8 & 7 & 12 & \cdots \\
16 & 15 & 14 & 13 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Clearly, ψ is a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Thus, it is invertible. This map ψ should be though of as a flattening function of the double sequence. We use this flattening function to introduce the definition of a β-subsequence of a double sequence. Before that, we start by defining a β-section $S_{\beta} \subset \mathbb{N} \times \mathbb{N}$ by

$$
S_{\beta}:=\left\{(m, n) \in \mathbb{N} \times \mathbb{N} \left\lvert\, \frac{1}{\beta} \leqslant \frac{m}{n} \leqslant \beta\right.\right\} .
$$

DEfinition 1. (β-subsequence) Let $x=\left[x_{k, l}\right]$ be a double sequence and let $\beta>$ 1 be an extended real. The double sequence $y^{(\pi, \beta)}$ is called a β-subsequence of the double sequence x if and only if there exists a strictly increasing function $\pi: \psi\left(S_{\beta}\right) \rightarrow$ $\psi\left(S_{\beta}\right)$ such that

$$
y_{p, q}^{(\pi, \beta)}= \begin{cases}z_{\psi(p, q)}, & \text { if } \frac{1}{\beta}>\frac{p}{q} \text { or } \frac{p}{q}>\beta, \\ z_{\pi(\psi(p, q))}, & \text { if } \frac{1}{\beta} \leqslant \frac{p}{q} \leqslant \beta\end{cases}
$$

where $z_{i}=x_{\psi^{-1}(i)}$. If $\beta=+\infty$, the inequalities are understood in the limit sense.
Some remarks are in order.
REMARK 1. Firstly, it must be noted that a double subsequence in the sense of [3] of x can be realized as a $+\infty$-subsequence of x. However, an arbitrary β-sequence, cannot be realized as a double subsequence in the sense of [3]. Thus, the previous definition provides a generalization of the concept of subsequence of a double sequence.

REMARK 2. Second, a double subsequence in the sense of [3] is not a subsequence of itself. However, every double subsequence is a β-subsequence of itself where the map π is the identity map on S_{β}.

For convenience, we consider the compatible decomposition of the double sequence x as

$$
x=\Pi(x)+B(x)+\Upsilon(x)
$$

where

$$
\begin{gathered}
B(x)_{m, n}= \begin{cases}x_{m, n}, & \text { if } \frac{1}{\beta} \leqslant \frac{p}{q} \leqslant \beta, \\
0, & \text { otherwise }\end{cases} \\
\Pi(x)_{m, n}= \begin{cases}x_{m, n}, & \text { if } \frac{p}{q}>\beta \\
0, & \text { otherwise }\end{cases} \\
\Upsilon(x)_{m, n}= \begin{cases}x_{m, n}, & \text { if } \frac{p}{q}<\frac{1}{\beta} \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

For computational convenience, we assume the convention $\psi^{-1}(i)=\left(m_{i}, n_{i}\right)$.
DEFINITION 2. (Summability method [6]) Let A be a four dimensional summability method that maps the complex double sequences x into the double sequence $A x$ where the m, n-th term of $A x$ is given by

$$
(A x)_{m, n}=\sum_{k, l=1}^{\infty} a_{m, n, k, l} x_{k, l}
$$

Definition 3. (P-convergence [5]) A double sequence $x=\left[x_{k, l}\right]$ has a Pringsheim limit L if and only if for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\left|x_{k, l}-L\right|<\varepsilon
$$

whenever $k, l>N$. In this case, we say x is P-convergent and we denote it by

$$
L=\lim _{k, l \rightarrow \infty} x_{k, l} .
$$

Unless otherwise specified, the notation $\lim _{k, l \rightarrow \infty}$ is reserved in this article to limits in the Pringsheim sense.

For our purposes, we need to give an equivalent definition of a P-limit point as the one given in [3]. This is due to the fact stated in Remark 3. The advantage of the following definition is its independence from the definition of subsequence.

Definition 4. (P-limit points) A double sequence $x=\left[x_{k, l}\right]$ has a Pringsheim limit point L if and only if for every $\varepsilon>0$ and $N \in \mathbb{N}$, there exist $k, l \geqslant N$ such that

$$
\left|x_{k, l}-L\right|<\varepsilon
$$

REMARK 3. Subsequences in the sense of [3] satisfy the following statement: "If L is a P-limit point of x, then there exists a subsequence of x whose P-limit is L." This is not the case for β-subsequences. Indeed, consider the double sequence x such that

$$
x_{m, n}= \begin{cases}1, & \text { if } m=n \\ 0, & \text { if } m \neq n\end{cases}
$$

and a finite $\beta>1$. Clearly, 0 and 1 are P-limit points of x. While there are β subsequences of x converging to 0 , there are no β-subsequences converging to 1 .

Pringsheim also introduces a stronger notion of divergence.
DEfinition 5. (Definite divergence [5]) A double sequence $x=\left[x_{k, l}\right]$ is said to be definite divergent if for every $G>0$, there exist naturals n, m such that $\left|x_{k, l}\right|>G$ for all $k>n, l>m$.

DEFINITION 6. (RH-regular [6]) Let A be a four dimensional matrix. A is said to be RH -regular if it maps every bounded P -convergent sequence into a P -convergent sequence with the same P-limit.

Theorem 1. (Hamilton [2], Robison [6]) A 4-dimensional matrix A is RH-regular if and only if:
(RH1) $\lim _{m, n \rightarrow \infty} a_{m, n, k, l}=0$, for each $(k, l) \in \mathbb{N}^{2}$;
(RH2) $\lim _{m, n \rightarrow \infty} \sum_{k, l=0}^{\infty, \infty} a_{m, n, k, l}=1$;
(RH3) $\lim _{m, n \rightarrow \infty} \sum_{k=0}^{\infty}\left|a_{m, n, k, l}\right|=0$, for each $l \in \mathbb{N}$;
(RH4) $\lim _{m, n \rightarrow \infty} \sum_{l=0}^{\infty}\left|a_{m, n, k, l}\right|=0$, for each $k \in \mathbb{N}$;
(RH5) $\lim _{m, n \rightarrow \infty} \sum_{k, l=0}^{\infty, \infty}\left|a_{m, n, k, l}\right|$ is P-convergent;
(RH6) there exist finite positive integers A and B such that

$$
\sum_{\substack{k>B \\ l>B}}\left|a_{m, n, k, l}\right|<A,
$$

for each $(m, n) \in \mathbb{N}^{2}$.
Definition 7. (β-regular) A 4-dimensional matrix A is said to be β-regular if and only if A is RH-regular and $\lim _{m, n \rightarrow \infty} \sum_{(k, l) \in S_{\beta}} a_{m, n, k, l}=1$.

3. Results

Proposition 1. Let $\beta>1$. Then, the double sequence x is P-convergent to L if and only if every β-subsequence of x is P-convergent to L.

Proof. Assume x is P-convergent to L and let $\varepsilon>0$. Assume, $y^{(\pi, \beta)}$ is a subsequence of x. By the P-convergence of x, there exists $N \in \mathbb{N}$ such that

$$
\left|x_{k, l}-L\right|<\varepsilon
$$

whenever $k, l>N$.
We consider two cases, when $(k, l) \notin S_{\beta}$ and when $(k, l) \in S_{\beta}$. In the former case, $x_{k, l}=y_{k, l}^{(\pi, \beta)}$ so

$$
\left|y_{k, l}^{(\pi, \beta)}-L\right|<\varepsilon,
$$

in this case.
The latter case, when $(k, l) \in S_{\beta}$ is a little more delicate. Consider $y_{k, l}^{(\pi, \beta)}$ where $k>N, l>N$. Then,

$$
y_{k, l}^{(\pi, \beta)}=x_{\psi^{-1}(\pi(\psi(k, l)))}
$$

If $\pi(\psi(k, l))=\psi(p, q)$, there is no guarantee that $p>N$ or $q>N$, thus $\left|y_{k, l}^{(\pi, \beta)}-L\right|<\varepsilon$ may not be satisfied. See Figure 1.

To circumvent this situation, define $M \in \mathbb{N}$ by

$$
M=\max \{p \in \mathbb{N} \mid 1 / \beta \leqslant p / N \leqslant \beta\}
$$

and consider $y_{k, l}^{(\pi, \beta)}=x_{p, q}$, where $k>M, l>M$ where $(k, l) \in S_{\beta}$. Notice that since π is strictly increasing and $\pi(1) \geqslant 1$ we have that $\psi(p, q)=\pi(\psi(k, l)) \geqslant \psi(k, l)$. If equality holds, there is nothing to show, so assume that $\psi(p, q)>\psi(k, l)$. By the construction of ψ, this implies $p>k$ or $q>l$. We claim it is not possible for $p \leqslant N$ or $q \leqslant N$. For a contradiction, assume $q \leqslant N$. By the definition of N, it is clear that $N \leqslant M$. Thus, $q \leqslant N \leqslant M<k<p$ as it is not possible for $q>l$ to hold.

This implies that $1 \leqslant \frac{p}{N} \leqslant \frac{p}{q}$. Since $(p, q) \in S_{\beta}$, we have

$$
\frac{1}{\beta}<1 \leqslant \frac{p}{N} \leqslant \frac{p}{q}<\beta
$$

However, $p>M$ which contradicts the maximality of M. The other case is handled similarly.

Thus, for all $k, l>M$

$$
\left|y_{k, l}^{(\pi, \beta)}-L\right|<\varepsilon
$$

and the β-subsequence is convergent.
For the converse, just note that x is the β-subsequence where $\pi(x)=x$ on S_{β}. Therefore, x is P-convergent by hypothesis.

In the following, we modify the proof of [3, Theorem 3.1] to obtain a "Steinhaustype" theorem. This will prove a powerful tool in establishing a characterization of P -convergence in terms of β-subsequences below.

Figure 1: Pictorial representation of how an element in the subsequence (circled) may fail to belong to $\{(k, l) \mid k, l>N\}$.

THEOREM 2. Let $\beta>1$ and let A be a β-regular four dimensional matrix. Then, there exists a sequence x with support on S_{β} whose entries are only equal to 1 or 0 such that x is not A-summable.

Proof. As in [3, Theorem 3.1] for each $i \in \mathbb{N}$, we pick coefficients

$$
\begin{array}{rr}
m_{0}<\cdots<m_{i}, & k_{0}<\cdots<k_{i} \\
n_{0}<\cdots<n_{i}, & l_{0}<\cdots<l_{i}
\end{array}
$$

inductively with such that by (RH1),

$$
\sum_{\substack{k \leqslant k_{i} \\ l \leq l_{i} \\(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right| \leqslant \sum_{\substack{k \leqslant k_{i} \\ l \leqslant l_{i}}}\left|a_{m_{i}, n_{i}, k, l}\right|<\frac{1}{(i+2)^{2}},
$$

and by (RH3), (RH4)

$$
\begin{align*}
& \sum_{\substack{k \leqslant k_{i} \\
l>l_{i} \\
(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right| \leqslant \sum_{\substack{k \leqslant k_{i} \\
l>l_{i}}}\left|a_{m_{i}, n_{i}, k, l}\right|<\frac{1}{(i+2)^{2}}, \\
& \sum_{\substack{k>k_{i} \\
l \leq l_{i} \\
(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right| \leqslant \sum_{\substack{k>k_{i} \\
l \leqslant l_{i}}}\left|a_{m_{i}, n_{i}, k, l}\right|<\frac{1}{(i+2)^{2}} . \tag{1}
\end{align*}
$$

In addition, by the β-regularity of A, pick m_{i} and n_{i} so that

$$
\left|\sum_{(k, l) \in S_{\beta}} a_{m_{i}, n_{i}, k, l}\right|>1-\frac{1}{(i+2)^{2}} .
$$

So that

$$
\begin{aligned}
& \sum_{\substack{k>k_{i} \\
l>l_{i} \\
(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right| \geqslant\left|\sum_{(k, l) \in S_{\beta}} a_{m_{i}, n_{i}, k, l}\right|-\sum_{\substack{k \leqslant k_{i} \\
l \leqslant l_{i} \\
(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right|-\sum_{\substack{k \leqslant k_{i} \\
l>l_{i} \\
(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right| \\
&-\sum_{\substack{k>k_{i} \\
l \leqslant l_{i} \\
(k, l) \in S_{\beta}}}\left|a_{m_{i}, n_{i}, k, l}\right|>1-\frac{4}{(i+2)^{2}} .
\end{aligned}
$$

With these coefficients chosen, we proceed to choose $k_{i+1}>k_{i}$ and $l_{i+1}>l_{i}$ such that

$$
\begin{align*}
& \left|\sum_{\substack{k_{i}<k<k_{i+1} \\
l_{i}<l<l_{i+1} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l}\right|>1-\frac{4}{(i+2)^{2}}, \sum_{\substack{k \geqslant k_{i+1} \\
l \geqslant l_{i+1}}}\left|a_{m_{i}, n_{i}, k, l}\right|<\frac{1}{(i+2)^{2}}, \\
& \sum_{\substack{k_{i}<k<k_{i+1} \\
l \geqslant l_{i+1}}}\left|a_{m_{i}, n_{i}, k, l}\right|<\frac{1}{(i+2)^{2}}, \quad \sum_{\substack{k \geqslant k_{i+1} \\
l_{i}<l<l_{i+1}}}\left|a_{m_{i}, n_{i}, k, l}\right|<\frac{1}{(i+2)^{2}} . \tag{2}
\end{align*}
$$

Now, we define the double sequence x by

$$
x_{k, l}= \begin{cases}1, & \text { if }(k, l) \in S_{\beta}, k_{2 p}<k<k_{2 p+1} \text { and } l_{2 p}<l<l_{2 p+1}, \text { for } p \in \mathbb{N}, \tag{3}\\ 0, & \text { otherwise }\end{cases}
$$

Noting that $a_{m, n, k, l} x_{k, l}=0$ whenever $(k, l) \notin S_{\beta}$, we have that the m_{i}, n_{i} 'th term of the double sequence $A x$ is given by

$$
\begin{align*}
(A x)_{m_{i}, n_{i}}= & \sum_{\substack{(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} \\
= & \sum_{\substack{k \leqslant k_{i} \\
l \leq l_{i} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l}+\sum_{\substack{k \leqslant k_{i} \\
l>l_{i} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l}+\sum_{\substack{k>k_{i} \\
l \leqslant l_{i} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l} \\
& +\sum_{\substack{k_{i}<k<k_{i+1} \\
l_{i}<l<l_{i+1} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l}+\sum_{\substack{k_{i}<k<k_{i+1} \\
l \geqslant l_{i+1} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l}+\sum_{\substack{k \geqslant k_{i+1} \\
l_{i}<l<l_{i+1} \\
(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l} \tag{4}
\end{align*}
$$

$$
+\sum_{\substack{k \geqslant k_{i+1} \\ l \geqslant l_{i+1} \\(k, l) \in S_{\beta}}} a_{m_{i}, n_{i}, k, l} x_{k, l}=: \sum_{j=1}^{7} I_{j}
$$

We index each of the sums by I_{j} for $j=1, \ldots, 7$. Now based on (3), we note that $I_{4}=0$ or $I_{4}>1-\frac{4}{(i+2)^{2}}$ depending on whether i is odd or even, respectively. So, whenever i is odd, we have that

$$
\left|(A x)_{m_{i}, n_{i}}\right| \leqslant \sum_{j \neq 4}\left|I_{j}\right| \leqslant \frac{6}{(i+2)^{2}}
$$

which has P-limit equal to zero. On the other hand, however, when i is even, by the reverse triangle inequality and (4) we obtain

$$
\left|(A x)_{m_{i}, n_{i}}\right| \geqslant\left|I_{4}\right|-\sum_{j \neq 4}\left|I_{j}\right|
$$

and by (1) and (2), we have

$$
\left|(A x)_{m_{i}, n_{i}}\right|>1-\frac{4}{(i+2)^{2}}-\sum_{j \neq 4} \frac{1}{(i+2)^{2}}
$$

The latter expression has P-limit equal to 1 . Thus, A cannot sum x.

Lemma 1. Suppose that y and z are two convergent β-subsequences of x. If $\lim _{m, n \rightarrow \infty} y_{m, n}=\lim _{m, n \rightarrow \infty} z_{m, n}$, then $\lim _{m, n \rightarrow \infty}\left(B(y)_{m, n}-B(z)_{m, n}\right)=0$. In particular, if $B(x)$ is not summable, then x is not A summable.

Proof. Notice that $\Pi(y)=\Pi(z)$ and $\Upsilon(y)=\Upsilon(z)$ as y, z are subsequences of x. Therefore,

$$
(y-z)_{m, n}=(B(y)-B(z))_{m, n}
$$

for all $m, n \in \mathbb{N}$. Therefore, by assumption

$$
\lim _{m, n \rightarrow \infty}\left(B(y)_{m, n}-B(z)_{m, n}\right)=0
$$

For the second statement, suppose that for some bounded subsequences y, z of x,

$$
\lim _{m, n \rightarrow \infty}\left(B(A y)_{m, n}-B(A z)_{m, n}\right) \neq 0
$$

Then, by what we just showed we have that

$$
\lim _{m, n \rightarrow \infty}(A y)_{m, n} \neq \lim _{m, n \rightarrow \infty}(A z)_{m, n}
$$

thus implying that x is not summable.

REMARK 4. The converse of the lemma is not true. Consider the double sequence z such that $z_{m, n}=1$ if $\frac{m}{n}<1 / \beta$ and $z_{m, n}=0$ otherwise. Further, let y be the null-double-sequence. In that case,

$$
\lim _{m, n \rightarrow \infty}\left(B(y)_{m, n}-B(z)_{m, n}\right)=0
$$

but clearly $\lim _{m, n \rightarrow \infty} z_{m, n}$ is undefined, while $\lim _{m, n \rightarrow \infty} y_{m, n}=0$.
In [3], Patterson showed that for a special type of β-subsequence a "Buck-type" result (see $[1,3]$) holds for this special case of double subsequence. As it turns out, this happens to be true for the more general β-subsequences.

Theorem 3. Let $\beta>1$. A bounded double sequence x is P-convergent if and only if there exists a β-regular matrix A such that A sums every β-subsequence of x.

Proof. The implication follows from Proposition 1, as any β-subsequence of a bounded convergent double sequence is bounded and convergent. Thus, any RH regular matrix A sums it. In particular, any β-regular matrix sums it.

For the converse, we shall show that for a bounded but not P-convergent x and any β-regular matrix A there exists a β-subsequence of x that is not summed by A. By Lemma 1, it suffices to consider subsequences of $B(x)$. Therefore, assume x is supported on S_{β}.

If x is bounded but not P -convergent, it must have more than one limit point. Consider the flattened sequence corresponding to x, namely the sequence defined by $\left(x_{\psi^{-1}(i)}\right)_{i=1}^{\infty}=\left(x_{m_{i}, n_{i}}\right)_{i=1}^{\infty}$ and define

$$
\alpha=\limsup _{i \rightarrow \infty} x_{m_{i}, n_{i}} \quad \text { and } \quad \beta=\liminf _{i \rightarrow \infty} x_{m_{i}, n_{i}}
$$

Since, the P -limit is not unique, we necessarily have that $\alpha \neq \beta$.
As in [3], we define the double sequence $\left[y_{m, n}\right]$ by

$$
y_{m, n}=\frac{x_{m, n}-\beta}{\alpha-\beta}, \quad \text { for all } n, m \in \mathbb{N}
$$

Note that $\left[y_{m, n}\right]$ is supported on S_{β}, as is x. It is also clear that

$$
\underset{i \rightarrow \infty}{\limsup } y_{m_{i}, n_{i}}=1 \quad \text { and } \quad \liminf _{i \rightarrow \infty} y_{m_{i}, n_{i}}=0
$$

Then, there exists a subsequences $\left(y_{m_{i}}, n_{i_{j}}\right)_{j=1}^{\infty}$ and $\left(y_{m_{i_{k}}}, n_{i_{k}}\right)_{k=1}^{\infty}$ of the flattened sequence $\left(y_{m_{i}, n_{i}}\right)_{i=1}^{\infty}$ such that

$$
\frac{1}{\beta}<\frac{m_{i_{k}}}{n_{i_{k}}}<\beta \quad \text { and } \quad \frac{1}{\beta}<\frac{m_{i_{j}}}{n_{i_{j}}}<\beta
$$

and

$$
\lim _{j \rightarrow \infty} y_{m_{i_{j}}, n_{i_{j}}}=0 \quad \text { and } \quad \lim _{k \rightarrow \infty} y_{m_{i_{k}}, n_{i_{k}}}=1
$$

Notice that by Remark 3, there are no such β-subsequences. Indeed, the Pringsheim limit of the β-subsequence corresponding to $\left(y_{m_{i_{k}}}, n_{i_{k}}\right)_{k=1}^{\infty}$ is undefined. However, this flattened subsequence shall suffice for our purposes.

Define

$$
y_{m, n}^{*}= \begin{cases}1, & \text { if }(m, n)=\left(m_{i_{k}}, n_{i_{k}}\right) \text { for some } k \in \mathbb{N} \\ 0, & \text { if }(m, n)=\left(m_{i_{j}}, n_{i_{j}}\right) \text { for some } j \in \mathbb{N} \\ y_{m, n}, & \text { otherwise }\end{cases}
$$

Since y^{*} has infinitely many 0's and 1's in its S_{β} component, by Theorem 2, there exists a β-subsequence $z^{(\pi, \beta)}$ of y^{*} that is not A-summable. Let $y^{(\pi, \beta)}$ denote the β-subsequence of y induced by the same injection π that defines $z^{(\pi, \beta)}$. It is easy to see that

$$
\lim _{m, n \rightarrow \infty}\left(y_{m, n}^{(\pi, \beta)}-z_{m, n}^{(\pi, \beta)}\right)=0
$$

Thus by the linearity and regularity of A, we have

$$
\lim _{m, n \rightarrow \infty}\left(A y_{m, n}^{(\pi, \beta)}-A z_{m, n}^{(\pi, \beta)}\right)=0
$$

This, in turn, implies that the β-subsequence $y^{(\pi, \beta)}$ is not A-summable. By the definition of $y_{m, n}$, this implies that the corresponding subsequence $x^{(\pi, \beta)}$ of x is not A summable.

Remark 5. In the particular case when $\beta=+\infty$, Theorem 3 implies Theorem 3.2 in [3], as the set of all subsequences in their sense is contained in the set of all $+\infty$-subsequences. Thus, this theorem presents a generalization of the results therein.

Acknowledgement. The authors of this article are indebted to Professor Richard F. Patterson for useful discussions during the preparation of this manuscript.

REFERENCES

[1] Buck, R. C., A note on subsequences, Bull. Amer. Math. Soc. 49, (1943), 898-899.
[2] Hamilton, H. J., Transformations of multiple sequences, Duke Math. J. 2, 1 (1936), 29-60.
[3] Patterson, R. F., Analogues of some fundamental theorems of summability theory, Int. J. Math. Math. Sci. 23, 1 (2000), 1-9.
[4] Patterson, R. F., and Rhoades, B. E., Summability of λ-rearrangements for double sequences, Analysis (Munich) 24, 3 (2004), 213-225.
[5] Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53, 3 (1900), 289-321.
[6] Robison, G. M., Divergent double sequences and series, Trans. Amer. Math. Soc. 28, 1 (1926), 50-73.
(Received June 3, 2019)
Raluca Dumitru
Department of Mathematics and Statistics
University of North Florida
Jacksonville, FL 32224
e-mail: raluca.dumitru@unf.edu
Jose A. Franco
Department of Mathematics and Statistics
University of North Florida
Jacksonville, FL 32224
e-mail: jose.franco@unf.edu

[^0]: Mathematics subject classification (2010): 40B05, 40A05.
 Keywords and phrases: Subsequences of a double sequence, β-sections, convergence, divergence, limit points, Pringsheim.

