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FUNDAMENTAL THEOREMS OF SUMMABILITY THEORY FOR A
NEW TYPE OF SUBSEQUENCES OF DOUBLE SEQUENCES

RALUCA DUMITRU AND JOSE A. FRANCO

Abstract. In 2000, the notion of a subsequence of a double sequence was introduced [3]. Using
this definition, a multidimensional analogue to a result from H. Steinhaus, that states that for any
regular matrix A there exists a sequence of zeros and ones that is not A -summable, was proved.
Additionally, an analogue of a result of R. C. Buck that states that a sequence x is convergent
if and only if there exists a regular matrix A that sums every subsequence of x was presented.
However, this definition imposes a restrictive condition on the entries of the double sequence
that can be considered for the subsequence. In this article, we introduce a less restrictive new
definition of a subsequence. We denote them by f -subsequences of a double sequence and
show that analogues to these two fundamental theorems of summability still hold for these new
subsequences.

1. Introduction

In a seminal article, Patterson introduced the definition of a subsequence of a
double sequence [3]. He, then, established two fundamental theorems of summabil-
ity theory for these subsequences. Namely, the author showed that for any regular
4-dimensional matrix transformation, in the sense of Robison and Hamilton [2, 6], A,
there exists a double sequence of 0’s and 1’s that is not A-summable. Additionally,
he showed that the following characterization holds for these subsequences: “A double
sequence x is convergent in the Pringsheim sense if and only if there exists a regular
4-dimensional matrix transformation, A, such that A sums every subsequence of x.”

However, the construction of these subsequences requires that one imposes a very
stringent condition on the subindices eligible to form them. It is the goal of this article
to introduce a family of sequences, to be denoted 3 -subsequences (3 > 1), of double
sequences that still satisfy the stated summability theorems but that do not impose such
stringent condition.

Therefore, in Section 2, we use an idea similar to that used for 3 -rearrangements
[4], to introduce the concept of a [3-subsequence of a double sequence. In Section
3, we start by establishing the following basic notions of analysis of sequences for
B -subsequences, that is, we show that if a double sequence is convergent, all of its
B -subsequences are convergent and converge to the same limit (see Proposition 1).
Following that, we show that for any f -regular 4-dimensional matrix transformation,
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A, there exists a double sequence of 0’s and 1’s that is not A-summable (see Definition
7 and Theorem 2). We conclude by showing that a double sequence x is convergent
in the Pringsheim sense if and only if there exists a 3 -regular 4-dimensional matrix
transformation, A, such that A sums every 3 -subsequence of x.

2. Definitions and notation

Let v : N x N — N be given in the following way

(1,1) — 1 (1,2) —2

(2,2)—3 (2,1)—4

(1,3)—5 (2,3)—6

(3,3)—7 (3,2)—38
In matrix form, this can be encoded as

Clearly, y is a bijection between N and N x N. Thus, it is invertible. This map
v should be though of as a flattening function of the double sequence. We use this
flattening function to introduce the definition of a 3 -subsequence of a double sequence.
Before that, we start by defining a f§ -section S p C N xN by

Sﬁzz{(mn)ENxN‘E %< }

DEFINITION 1. (3 -subsequence) Let x = [x;;] be a double sequence and let 8 >
1 be an extended real. The double sequence y™P) is called a B -subsequence of the

double sequence x if and only if there exists a strictly increasing function 7 : y(Sg) —
v(Sp) such that

> B,

p
q
gﬂ?

(nB) _ {Zw(m% if 5 p >
Ypg = <

Za(ypa) I

where z; = x . If B = +oo, the inequalities are understood in the limit sense.

vl()

Some remarks are in order.

REMARK 1. Firstly, it must be noted that a double subsequence in the sense of [3]
of x can be realized as a +o-subsequence of x. However, an arbitrary 3 -sequence,
cannot be realized as a double subsequence in the sense of [3]. Thus, the previous
definition provides a generalization of the concept of subsequence of a double sequence.
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REMARK 2. Second, a double subsequence in the sense of [3] is not a subse-
quence of itself. However, every double subsequence is a f3-subsequence of itself
where the map 7 is the identity map on Sg.

For convenience, we consider the compatible decomposition of the double se-
quence x as
x =TI(x) + B(x) + Y(x),

where

xm,na lf IL} < % < ﬁ;
B(xX)mn = .
0, otherwise,

X, it 2 >
H(X)mm = e q .ﬁ7
0, otherwise,
. 1
Xmn, IfL<z
Y(X)mn = 7 N .ﬁ7
0, otherwise.

For computational convenience, we assume the convention y~!(i) = (m;,n;).

DEFINITION 2. (Summability method [6]) Let A be a four dimensional summa-
bility method that maps the complex double sequences x into the double sequence Ax
where the m,n-th term of Ax is given by

(AX)mn = Z A k1 Xk, -
k=1

DEFINITION 3. (P-convergence [5]) A double sequence x = [x;;] has a Pring-
sheim limit L if and only if for every € > 0, there exists N € N such that

|xk7l — L| <E,

whenever k,/ > N. In this case, we say x is P-convergent and we denote it by
L= lim xg;.
Py Kyl

Unless otherwise specified, the notation lim is reserved in this article to limits

k,l—o0
in the Pringsheim sense. /
For our purposes, we need to give an equivalent definition of a P-limit point as
the one given in [3]. This is due to the fact stated in Remark 3. The advantage of the
following definition is its independence from the definition of subsequence.

DEFINITION 4. (P-limit points) A double sequence x = [xi;| has a Pringsheim
limit point L if and only if for every € >0 and N € N, there exist k,/ > N such that

|xk7l — L| < E.
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REMARK 3. Subsequences in the sense of [3] satisfy the following statement: “If
L is a P-limit point of x, then there exists a subsequence of x whose P-limit is L.” This
is not the case for 3 -subsequences. Indeed, consider the double sequence x such that

1, ifm=n,
X, =
i 0, ifm+#n,

and a finite B > 1. Clearly, O and 1 are P-limit points of x. While there are f3-
subsequences of x converging to 0, there are no 3 -subsequences converging to 1.

Pringsheim also introduces a stronger notion of divergence.

DEFINITION 5. (Definite divergence [5]) A double sequence x = [x;,] is said to
be definite divergent if for every G > 0, there exist naturals n,m such that |x;;| > G
forall k > n,l > m.

DEFINITION 6. (RH-regular [6]) Let A be a four dimensional matrix. A is said
to be RH-regular if it maps every bounded P-convergent sequence into a P-convergent
sequence with the same P-limit.

THEOREM 1. (Hamilton [2], Robison [6]) A 4-dimensional matrix A is RH-regular
if and only if:

(RHI) lim ay,x; =0, for each (k1) € N2,
m,n—oo

0,00

(RH2) lim Y appp;=1;

IS 1=0

(RH3) lim Z |@mnii) =0, foreach | € N;
20 '

(RH4) lim Z lamnii|l =0, for each k € N;
A 120 ’

0,00

(RH5) lim 2 |@mn | is P-convergent;

IS 1=0
(RH6) there exist finite positive integers A and B such that

2 ‘am,n,lgl ‘ <A,

k>B
[>B

for each (m,n) € N,
DEFINITION 7. (f -regular) A 4-dimensional matrix A is said to be [ -regular if

and only if A is RH-regular and lim Z Uiy =1.
m,n—oo ’
(k1)eSg
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3. Results

PROPOSITION 1. Let B > 1. Then, the double sequence x is P-convergent to L
if and only if every B -subsequence of x is P-convergent to L.

Proof. Assume x is P-convergentto L and let € > 0. Assume, y(”vﬁ) is a subse-
quence of x. By the P-convergence of x, there exists N € N such that

|xk’l — L| <E,

whenever k,[l > N.
We consider two cases, when (k,l) ¢ Sg and when (k,[) € Sg. In the former case,

Xpe| = y](;;.,ﬁ) so

WGP -1l <

in this case.
The latter case, when (k) € Sg is a little more delicate. Consider y,({ﬁ’ﬁ )
k>N,l > N. Then, '

where

(mp) _
Vit T My (k)
If w(y(k,1)) = w(p,q), there is no guarantee that p > N or ¢ > N, thus \y,(!;’ﬁ) —-L<e
may not be satisfied. See Figure 1.
To circumvent this situation, define M € N by

M=max{peN|1/B < p/N<B}

and consider y,(ﬁ’ﬁ ) = Xp.q» Where k> M,l > M where (k,l) € Sg. Notice that since
7 is strictly increasing and 7(1) > 1 we have that y(p,q) = n(w(k,1)) > (k).
If equality holds, there is nothing to show, so assume that w(p,q) > w(k,l). By the
construction of y, this implies p > k or ¢ > [. We claim it is not possible for p <N
or ¢ < N. For a contradiction, assume g < N. By the definition of N, it is clear that
N <M. Thus, g <N <M< k< p asitisnot possible for g > [ to hold.

This implies that 1 < £ < 5. Since (p,q) € Sg, we have

1 p_vpr

=<I<=<=<pB.

BlSNSg<F
However, p > M which contradicts the maximality of M. The other case is handled
similarly.

Thus, for all k,1 > M
|y,({f§’ﬁ) —L<e¢

and the 3 -subsequence is convergent.

For the converse, just note that x is the 3 -subsequence where 7(x) =x on Sg.
Therefore, x is P-convergent by hypothesis. [

In the following, we modify the proof of [3, Theorem 3.1] to obtain a “Steinhaus-
type” theorem. This will prove a powerful tool in establishing a characterization of
P-convergence in terms of 3 -subsequences below.
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Figure 1: Pictorial representation of how an element in the subsequence (circled) may

fail to belong to {(k,!) | k,l > N}.

THEOREM 2. Let B > 1 andlet A be a B -regular four dimensional matrix. Then,
there exists a sequence x with support on Sg whose entries are only equal to 1 or 0

such that x is not A-summable.

Proof. As in [3, Theorem 3.1] for each i € N, we pick coefficients

moy < --- < m,
nyg < ---<<ng,

inductively with such that by (RH1),

Z |ami7"i7k~,l| <

k<k;
1<l
(k,l)ESﬁ

and by (RH3), (RH4)

Z |ami7"i7k~,l| <

k<k;
I>1;
(k)ESp

Z |ami7"i7k~,l| <

k>k;
1<l;
(k,1)ESg

ko < --- <k,
lp<--- <1,

1
Am: n: <7
kg{f' ml:nnk:l| (l+2)27
I<l;

1
ikl < ——,
kg{f' ml:nnk:l| (l+2)2
I>1;
Z'am-n-kl|<#' (1)
k>ki 151055, (l+2)2
1<;
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In addition, by the B -regularity of A, pick m; and n; so that

1
z Ay kol | = 1—— PR
(k1)eSg (i+2)
So that
Z |ami’"i’k~,l| 2 Z Amyni k1| — Z ‘am,-,n,-, ) Z ‘amhni:k’I
K>k (k)eSp k<ki k<ki
1>1; I<l; I>1;
(k.1)ES (k.1)€Sp (k.1)ES
- Z ‘am-.n-k.l| >1- L
>k; o (i+2)?
1<;
(k1)ES

With these coefficients chosen, we proceed to choose ;| > k; and /1| > [; such that

4
Z Ay e | > 1 — m7 Z ‘ami=ni=k’l| <

T AN

ki <k<kii k>kit (i+2)

li<l<lity [

(k.1)eSp

1 1
> ammril < (=L > lammnil < s 2)

ki <k<kity k>kit

1>l li<I<lity

Now, we define the double sequence x by

1, if (k1) € Sg,kop <k <kypy1and by <1 <lypyy, forp €N,

Xkl = .
0, otherwise.

3)

Noting that @y, , x1xr; = 0 whenever (k,l) ¢ Sg, we have that the m;, n; th term of the
double sequence Ax is given by

A)C m17"1 = 2 amhnhkl

(k.1)ESg

Z Ay g e 1 Xk, Z Ay g 1 Xk, T+ Z Ay g k1 Xk

k<k; k<k; k>k;

I<]; [>1; I<];

(k.1)ESg (k.1)ESg (k.1)€Sp

Y kT Y Gk T D, Gmnkikg (D)
ki<k<kii1 ki <k<kiiy k=kiyq

Li<l<liyy 2>l Li<l<lizy

(k.1)€Sp (k.1)€Sp (k1)eSp
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7
+ Y ki = Y 1.
k>kit J=1
1Zligy
(k1)eSg

We index each of the sums by ; for j=1,...,7. Now based on (3), we note that I =0
or Iy >1— ﬁ depending on whether i is odd or even, respectively. So, whenever i
is odd, we have that

Ax m17"1

E‘J‘ l+2

j#4

which has P-limit equal to zero. On the other hand, however, when i is even, by the
reverse triangle inequality and (4) we obtain

|(AX) ;| = [1a] — 2 |Ij|

J#4
and by (1) and (2), we have
4 1
AX) | > 1— — .
(Amn| > 1= 5y % (i+2)

The latter expression has P-limit equal to 1. Thus, A cannot sum x.

LEMMA 1. Suppose that y and z are two convergent [3 -subsequences of x. If
im yp,= lm z,,, then lim (B(Y)mn—B(2)mn)=0. In particular, if B(x) is
m,n—oo m,n—soo m,n—oo

not summable, then x is not A summable.

Proof. Notice that TI(y) =TI(z) and Y(y) = Y(z) as y,z are subsequences of x.
Therefore,

(y - Z)m.,n = (B(y) - B(Z))mm

for all m,n € N. Therefore, by assumption

lim (B(y)mn —B(2)mn) =0.

m,n—oo

For the second statement, suppose that for some bounded subsequences y,z of x,

lim (B(Ay)mn —B(AZ)mn) # 0.

m,n—oo

Then, by what we just showed we have that

lim (Ay)mn 75 llm (AZ)mm

m,n—o0

thus implying that x is not summable. [



SUBSEQUENCES OF DOUBLE SEQUENCES 31

REMARK 4. The converse of the lemma is not true. Consider the double sequence
z such that z,, = 1 if % < 1/B and z,, = 0 otherwise. Further, let y be the null-
double-sequence. In that case,
lim (B(y)mm - B(Z)mm) =0,

m,n—eo

but clearly lim z,, is undefined, while lim y,,,=0.
m,n—oeo m,n—oo
In [3], Patterson showed that for a special type of 3 -subsequence a “Buck-type”
result (see [ 1, 3]) holds for this special case of double subsequence. As it turns out, this
happens to be true for the more general 3 -subsequences.

THEOREM 3. Let B > 1. A bounded double sequence x is P-convergent if and
only if there exists a (3 -regular matrix A such that A sums every [ -subsequence of x.

Proof. The implication follows from Proposition 1, as any 3 -subsequence of a
bounded convergent double sequence is bounded and convergent. Thus, any RH -
regular matrix A sums it. In particular, any f3 -regular matrix sums it.

For the converse, we shall show that for a bounded but not P-convergent x and
any f3-regular matrix A there exists a f3-subsequence of x that is not summed by A.
By Lemma 1, it suffices to consider subsequences of B(x). Therefore, assume x is
supported on Sg.

If x is bounded but not P-convergent, it must have more than one limit point.
Consider the flattened sequence corresponding to x, namely the sequence defined by
(xqu(i));czl = (xmh"i);c:l and define

o = limsupxy, , and B = liminfx,, ;.

i—so0 i—o0

Since, the P-limit is not unique, we necessarily have that o # 3.
As in [3], we define the double sequence [y, ] by

Xmpn — ﬁ

Ymn = W7 for all n,m € N.

Note that [y ] is supported on Sg, as is x. It is also clear that

limsupy,,, », = 1 and liminfy,, , = 0.

i—so0 i—o0

Then, there exists a subsequences (ymiq,,l._)jf’: , and (y,,likﬁik)f:1 of the flattened se-
Jo ]
quence (Ym, )7 such that

o my
—<—+<B and =<—2L<p
J

B B n

and



32 R. DUMITRU AND J. A. FRANCO

Notice that by Remark 3, there are no such f-subsequences. Indeed, the Pringsheim
limit of the 3 -subsequence corresponding to (ym,.k ’n,.k);’:l is undefined. However, this
flattened subsequence shall suffice for our purposes.

Define

L, if (m,n) = (mj,,n;,) for some k € N,
Ymn =10, if (m,n) = (mj,,n;;) for some j € N,
Ymn, otherwise.

Since y* has infinitely many 0’s and 1’s in its Sg component, by Theorem 2, there
exists a [3-subsequence ZmB) of y* that is not A-summable. Let y(”’ﬁ) denote the
B -subsequence of y induced by the same injection 7 that defines 2B 1t s easy to
see that

lim (yaiP) — Py —o.

m,n—oo

Thus by the linearity and regularity of A, we have

lim (Ay\5P —AZmP) =o.

m,n—oo

This, in turn, implies that the 3 -subsequence y™#) is not A-summable. By the def-
inition of y,, ,, this implies that the corresponding subsequence x(™B) of x is not A-
summable. [

REMARK 5. In the particular case when 3 = +co, Theorem 3 implies Theorem
3.2 in [3], as the set of all subsequences in their sense is contained in the set of all
+-eo-subsequences. Thus, this theorem presents a generalization of the results therein.
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