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ON THE CALCULATION OF TWO ESSENTIAL

HARMONIC SERIES WITH A WEIGHT 5 STRUCTURE,

INVOLVING HARMONIC NUMBERS OF THE TYPE H2n

CORNEL IOAN VĂLEAN

Abstract. The core of the present paper is represented by the calculation of two essential har-
monic series with a weight 5 structure, involving harmonic numbers of the type H2n . The two
main series are evaluated by also exploiting results and strategies presented in the book, (Almost)
Impossible Integrals, Sums, and Series, 2019 .

1. Introduction

The central results of the paper are represented by two harmonic series, involving
harmonic numbers of the type H2n .

The n th generalized harmonic number of order m is defined by

H(m)
n = 1+

1
2m + · · ·+ 1

nm ,

where m is a positive integer.
We call the two main series presented in the paper essential since they are usually

a critical part in the derivation process of other such harmonic series.
In the classical sense, by the weight of a harmonic series we understand the value

W = a1 +a2 + · · ·+ak +a we obtain from the summand of the harmonic series

∞

∑
n=1

H(a1)
n H(a2)

n · · ·H(ak)
n

na ,

where a1,a2, ...,ak , and a are positive integers.
By analogy with the series presented above, we may consider that the two main

series have a weight 5 structure.
During the calculations we will also make use of results and strategies presented

in the book, (Almost) Impossible Integrals, Sums, and Series.
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2. The lemmas and their proofs

LEMMA 1. (Two useful series representations) The following equalities hold:

i)

− log(1+ x) log(1− x) =
∞

∑
n=1

x2n
(

H2n−Hn

n
+

1
2n2

)
, |x| < 1;

ii)

log(1− x)Li2(x) = 3
∞

∑
n=1

xn

n3 −2
∞

∑
n=1

xn Hn

n2 −
∞

∑
n=1

xn H(2)
n

n
, |x| � 1∧ x �= 1,

where Lin denotes the Polylogarithm function.

Proof. The proofs of both results are straightforward if we apply the Cauchy prod-
uct of two series (e.g. check the proof presented in [2, Chapter 6, p. 344]).

LEMMA 2. (Special logarithmic integrals) Let n be a positive integer. The fol-
lowing equalities hold:

i) ∫ 1

0
xn−1 log(1− x)dx = −Hn

n
;

ii) ∫ 1

0
x2n−1 log(1+ x)dx =

H2n−Hn

2n
.

Proof. For a straightforward proof of i) , make use of the series representation,

log(1− x) = −
∞

∑
n=1

xn

n
. Then, for the point ii) we may use that log(1+ x) = log(1−

x2)− log(1− x) , and we see immediately the resulting integrals may be calculated by
using i) . For an alternative way to the integral i) , see [2, Chapter 3, p. 59].

LEMMA 3. (An identity with harmonic numbers) The following equality holds:

∞

∑
k=1

Hk

(k+1)(k+n+1)
=

H2
n +H(2)

n

2n
.

Proof. The present result may be viewed as a particular case of a more general
result which may be found in [2, Chapter 4, p. 289] and proved in [2, Chapter 6, p.
372–374] by using The Master Theorem of Series defined in [3] and [2, Chapter 4, p.
288–289].
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LEMMA 4. (A powerful identity involving harmonic numbers) The following equal-
ity holds:

∞

∑
n=1

1
(2k+2n+1)2n

=
1

(2k+1)2 +
H2k

2k+1
− Hk

2(2k+1)
− log(2)

2k+1
.

Proof. The calculations are straightforward if we use the partial fraction expan-
sion, add and subtract 1/(2n+ 1) inside the summand, and then split the series. The
details of such an approach may be found in [2, Chapter 6, p. 531].

LEMMA 5. (Two classical Euler sums) The following equalities hold:

i)

2
∞

∑
k=1

Hk

km = (m+2)ζ (m+1)−
m−2

∑
k=1

ζ (m− k)ζ (k+1),m � 2;

ii)

∞

∑
k=1

(−1)k−1 Hk

k2m =
(

m+
1
2

)
η(2m+1)−1

2
ζ (2m+1)−

m−1

∑
i=1

η(2i)ζ (2m−2i+1),

m � 1,

where ζ represents the Riemann zeta function and η denotes the Dirichlet eta function.

Proof. The result from the point i) is known in the mathematical literature from
old times. For example, an elementary solution may be found in [1, Chapter 2, pp.
103–105]. Another way to prove it is based on the identity in Lemma 3, by multiplying
its both sides by n and then considering the differentiation with respect to n . A solution
to the series result from the point ii) may be found in [4].

LEMMA 6. (A bunch of key harmonic series). The following equalities hold:

i)
∞

∑
n=1

H(2)
n

n3 = 3ζ (2)ζ (3)− 9
2

ζ (5);

ii)
∞

∑
n=1

H2
n

n3 =
7
2

ζ (5)− ζ (2)ζ (3);

iii)

∞

∑
n=1

(−1)n−1 Hn

n3 =
11
4

ζ (4)− 7
4

log(2)ζ (3)+
1
2

log2(2)ζ (2)− 1
12

log4(2)

−2Li4

(
1
2

)
;
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iv)
∞

∑
n=1

(−1)n−1 H(2)
n

n3 =
5
8

ζ (2)ζ (3)− 11
32

ζ (5);

v)

∞

∑
n=1

(−1)n−1 H2
n

n3 =
2
15

log5(2)− 11
8

ζ (2)ζ (3)− 19
32

ζ (5)+
7
4

log2(2)ζ (3)

− 2
3

log3(2)ζ (2)+4log(2)Li4

(
1
2

)
+4Li5

(
1
2

)
;

vi)

∞

∑
n=1

(−1)n−1 HnH
(2)
n

n2 =
23
8

ζ (5)− 7
4

log2(2)ζ (3)+
2
3

log3(2)ζ (2)+
15
16

ζ (2)ζ (3)

− 2
15

log5(2)−4log(2)Li4

(
1
2

)
−4Li5

(
1
2

)
,

where ζ represents the Riemann zeta function and Lin denotes the Polylogarithm func-
tion.

Proof. All the series results are found in [2, Chapter 4, pp. 292–293, pp. 309–
312].

3. The main theorems and their proofs

THEOREM 1. (Main results - the first part) The following equality holds:
∞

∑
n=1

HnH2n

(2n)3 =
307
128

ζ (5)− 1
16

ζ (2)ζ (3)+
1
3

log3(2)ζ (2)− 7
8

log2(2)ζ (3)− 1
15

log5(2)

−2log(2)Li4

(
1
2

)
−2Li5

(
1
2

)
,

where ζ represents the Riemann zeta function and Lin denotes the Polylogarithm func-
tion.

Proof. Based on Lemma 1, the point i) , we obtain by integration that

−
∫ x

0

log(1+ y) log(1− y)
y

dy =
∞

∑
n=1

x2n
(

H2n−Hn

2n2 +
1

4n3

)
,

and if we multiply both sides by log(1+ x)/x and integrate from x = 0 to x = 1, using
Lemma 2, the point ii) , we have

−
∫ 1

0

log(1+ x)
x

(∫ x

0

log(1+ y) log(1− y)
y

dy

)
dx =

∞

∑
n=1

H2n−Hn

2n

(
H2n−Hn

2n2 +
1

4n3

)
.

(1)
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If in (1) we integrate by parts, then use
∞

∑
n=1

a2n =
1
2

(
∞

∑
n=1

an−
∞

∑
n=1

(−1)n−1an

)
for

the series in the right-hand side, and afterwards rearrange, we get

∞

∑
n=1

HnH2n

(2n)3

=
7
32

∞

∑
n=1

Hn

n4 − 1
4

∞

∑
n=1

(−1)n−1 Hn

n4 +
5
16

∞

∑
n=1

H2
n

n3 − 1
4

∞

∑
n=1

(−1)n−1 H2
n

n3 − 5
64

ζ (2)ζ (3)

+
1
4

∫ 1

0

log(1+ x) log(1− x)Li2(−x)
x

dx

=
23
16

ζ (5)− 9
64

ζ (2)ζ (3)+
1
6

log3(2)ζ (2)− 7
16

log2(2)ζ (3)− 1
30

log5(2)

− log(2)Li4

(
1
2

)
−Li5

(
1
2

)
+

1
4

∫ 1

0

log(1+ x) log(1− x)Li2(−x)
x

dx, (2)

where in the calculations we also used Lemma 5, the point i) with m = 4, the point ii)
with m = 2, and Lemma 6, the points ii) and v) .

On the other hand, using Lemma 1, the point ii) , Lemma 2, the point i) , and then
the series results from Lemma 5, the point ii) with m = 2, and Lemma 6, the points v)
and vi) , the integral in (2) may be written as

∫ 1

0

log(1+ x) log(1− x)Li2(−x)
x

dx

=
∫ 1

0

(
2

∞

∑
n=1

(−1)n−1xn−1 Hn

n2 +
∞

∑
n=1

(−1)n−1xn−1 H(2)
n

n
−3

∞

∑
n=1

(−1)n−1 xn−1

n3

)
log(1−x)dx

=3
∞

∑
n=1

(−1)n−1 Hn

n4 −2
∞

∑
n=1

(−1)n−1 H2
n

n3 −
∞

∑
n=1

(−1)n−1 HnH
(2)
n

n2

=
123
32

ζ (5)+
5
16

ζ (2)ζ (3)+
2
3

log3(2)ζ (2)− 7
4

log2(2)ζ (3)− 2
15

log5(2)

−4log(2)Li4

(
1
2

)
−4Li5

(
1
2

)
. (3)

By combining (2) and (3) the desired result follows.

THEOREM 2. (Main results - the second part) The following equality holds:

∞

∑
n=1

HnH2n

(2n+1)3 =
1
12

log5(2)+
31
128

ζ (5)− 1
2

log3(2)ζ (2)+
7
4

log2(2)ζ (3)

− 17
8

log(2)ζ (4)+2log(2)Li4

(
1
2

)
,

where ζ represents the Riemann zeta function and Lin denotes the Polylogarithm func-
tion.
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Proof. Using the identity with harmonic numbers in Lemma 3 where we replace
n by 2n , then multiply both sides by 1/n2 , and consider the summation from n = 1 to
∞ , we have

2
∞

∑
n=1

H2
2n

(2n)3 +2
∞

∑
n=1

H(2)
2n

(2n)3 =
∞

∑
n=1

(
∞

∑
k=1

Hk

(k+1)(k+2n+1)n2

)

=
1
4

∞

∑
n=1

(
∞

∑
k=1

H2k−1

k(k+n)n2

)
+

∞

∑
n=1

(
∞

∑
k=1

H2k

(2k+1)(2k+2n+1)n2

)

=
1
4

∞

∑
k=1

(
∞

∑
n=1

H2k−1

k(k+n)n2

)
+

∞

∑
k=1

H2k

2k+1

(
∞

∑
n=1

1
(2k+2n+1)n2

)

=
1
4

∞

∑
k=1

( ∞

∑
n=1

H2k−1

k2n2

)
− 1

4

∞

∑
k=1

H2k−1

k2

( ∞

∑
n=1

1
n(k+n)

)
+

∞

∑
k=1

H2k

(2k+1)2

( ∞

∑
n=1

1
n2

)

−4
∞

∑
k=1

H2k

(2k+1)2

( ∞

∑
n=1

1
(2k+2n+1)2n

)

=
1
4

ζ (2)
∞

∑
k=1

H2k −1/(2k)
k2 − 1

4

∞

∑
k=1

Hk(H2k −1/(2k))
k3 + ζ (2)

∞

∑
k=1

H2k+1−1/(2k+1)
(2k+1)2

−4
∞

∑
k=1

H2k

(2k+1)2

(
1

(2k+1)2 +
H2k

2k+1
− Hk

2(2k+1)
− log(2)

2k+1

)

=
1
8

∞

∑
n=1

Hn

n4 + ζ (2)
∞

∑
n=1

H2n

(2n)2 + ζ (2)
∞

∑
n=1

H2n+1

(2n+1)2 +4log(2)
∞

∑
n=1

H2n+1

(2n+1)3

+4
∞

∑
n=1

H2n+1

(2n+1)4 −4
∞

∑
n=1

H2
2n+1

(2n+1)3 +2
∞

∑
n=1

HnH2n

(2n+1)3 −
1
4

∞

∑
n=1

HnH2n

n3

+ ζ (2)− ζ (2)ζ (3)− 15
4

log(2)ζ (4)+4log(2),

and using that
∞

∑
n=1

an=a1+
∞

∑
n=1

a2n+
∞

∑
n=1

a2n+1 and
∞

∑
n=1

a2n =
1
2

(
∞

∑
n=1

an−
∞

∑
n=1

(−1)n−1an

)
,

we arrive at
∞

∑
n=1

HnH2n

(2n+1)3

=
3
2

∞

∑
n=1

H2
n

n3 +
1
2

∞

∑
n=1

H(2)
n

n3 − 1
2

ζ (2)
∞

∑
n=1

Hn

n2 − log(2)
∞

∑
n=1

Hn

n3 − 17
16

∞

∑
n=1

Hn

n4 +
∞

∑
n=1

HnH2n

(2n)3

+
1
2

∞

∑
n=1

(−1)n−1 H2
n

n3 − 1
2

∞

∑
n=1

(−1)n−1 H(2)
n

n3 − log(2)
∞

∑
n=1

(−1)n−1 Hn

n3 −
∞

∑
n=1

(−1)n−1 Hn

n4

+
15
8

log(2)ζ (4)+
1
2

ζ (2)ζ (3)

=
1
12

log5(2)+
31
128

ζ (5)− 1
2

log3(2)ζ (2)+
7
4

log2(2)ζ (3)− 17
8

log(2)ζ (4)
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+2log(2)Li4

(
1
2

)
.

In the calculations we have used results from Lemma 4, Lemma 5, the point i) with
m = 2,3,4, the point ii) with m = 2, Lemma 6, the points i) , ii) , iii) , iv) , v) , and
Theorem 1.
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