

ON NORMAL FUNCTIONS IN SEVERAL COMPLEX VARIABLES

TING ZHU, SHENGYAO ZHOU AND LIU YANG*

Abstract. In this paper, we generalize the conception of φ -normal to holomorphic functions of several complex variables. Extensions of some classical criteria for normality of holomorphic functions of several complex variables are also given.

1. Introduction

Let $\mathbb{D} = \{z; |z| < 1\}$ be the unit disc in the complex plane \mathbb{C} . A meromorphic function f in \mathbb{D} is called normal if

$$\sup_{z\in\mathbb{D}}(1-|z|^2)f^{\#}(z)<\infty,$$

where $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$ is the spherical derivative of f. Lappan [6] showed that there exists a set E consisting of five distinct points such that if f is a meromorphic in $\mathbb D$ then the condition that $\sup_{z\in f^{-1}(E)}(1-|z|^2)f^{\#}(z)<\infty$ in its anormal function. This well-known result of Lappan is called five-point theorem. For a meromorphic function f in $\mathbb D$ and a positive integer f the expression $|f^{(k)}(z)|/(1+|f(z)|^{k+1})$ is an extension of the spherical derivative of f. For this expression involves higher derivatives, some interesting results related to normal functions were obtained.

THEOREM A. ([5]) If f is a normal function in \mathbb{D} , then for each integer k > 0,

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^k \frac{|f^{(k)}(z)|}{1 + |f(z)|^{k+1}} < \infty.$$

THEOREM B. ([13]) Let k be a positive integer, and let f be a meromorphic function in \mathbb{D} , and suppose that there exists M>0 such that $\max_{1\leqslant i\leqslant k-1}|f^{(i)}(z)|\leqslant M$ whenever f(z)=0. If there exists a subset E of $\mathbb{C}\cup\{\infty\}$ containing at least k+4 distinct points such that

$$\sup_{z \in f^{-1}(E)} (1 - |z|^2)^k \frac{|f^{(k)}(z)|}{1 + |f(z)|^{k+1}} < \infty,$$

Mathematics subject classification (2010): 32H30, 30D35.

Keywords and phrases: ϕ -normal functions, normal functions, several complex variables, spherical derivative.

This research was supported by NNSF of China (Grant No. 11701006), and also by NSF of Anhui Province (1808085QA02), China.

* Corresponding author.

then f is a normal function.

In [1], R. Aulaskari and J. Rättyä introduced the concept of smoothly increasing functions and enlarged the class of normal functions. An increasing function φ : $[0,1) \to (0,\infty)$ is called smoothly increasing if

$$\varphi(r)(1-r) \to \infty$$
, as $r \to 1^-$, (1)

and

$$\mathcal{R}_a(z) := \frac{\varphi(|a+z/\varphi(|a|)|)}{\varphi(|a|)} \to 1 \quad \text{as} \quad |a| \to 1^-$$
 (2)

uniformly on compact subsets of \mathbb{C} . For a given such φ , we call a function f is φ -normal if f is meromorphic in \mathbb{D} , and

$$\sup_{z\in\mathbb{D}}\frac{f^{\#}(z)}{\varphi(|z|)}<\infty.$$

Applying Nevanlinna theory of meromorphic functions, Xu and Qiu [14] improved Theorems A and B and establish analogues for φ -normal functions. In [12], condition (1) was replaced by a weaker one as

$$\varphi(r)(1-r) \geqslant 1, r \in [0,1).$$
 (3)

So the function $\varphi_0(r) = \frac{1}{1-r}$ is smoothly increasing and the concept of φ_0 -normal functions coincides with the concept of normal functions. In addition, the authors in [12] obtained the four-point theorem on the φ -normal criteria for meromorphic functions via bounding some quantities related to spherical derivatives of f and f'.

THEOREM C. ([12]) Let φ : $[0,1) \to (0,\infty)$ be a smoothly increasing function, and let f be a meromorphic function in \mathbb{D} . Assume that there is a subset $E := \{a_1, a_2, a_3, a_4\} \subset \mathbb{C} \cup \{\infty\}$ such that

$$\sup_{z\in f^{-1}(E)}\frac{f^{\#}(z)}{\varphi(|z|)}<\infty,\quad and \sup_{z\in f^{-1}(E\setminus\{\infty\})}(f')^{\#}(z)<\infty.$$

Then f is a φ -normal function.

2. Preliminaries and results

To state our main results, we first introduce some standard notations. Let

$$\mathbb{C}^n = \{ z = (z_1, \dots, z_n); z_1, \dots, z_n \in \mathbb{C} \}$$

be the complex space of dimension n.

Denote the unit ball with respect norm $\|\cdot\|$ in \mathbb{C}^n to by $\mathbb{B}_n = \{z \in \mathbb{C}^n; \|z\| < 1\}$. The boundary of \mathbb{B}_n will be denoted by \mathbb{S}_n and is called the unit sphere in \mathbb{C}^n . Thus $\mathbb{S}_n = \{z \in \mathbb{C}^n; \|z\| = 1\}$.

Let $\Omega \subset \mathbb{C}^n$ be a domain and $\mathscr{H}(\Omega)$ the collection of all holomorphic functions in Ω . Let

$$\nabla f(z) = (f_{z_1}(z), \dots, f_{z_n}(z)), \ z \in \Omega$$

where $f_{z_i}(z) = \frac{\partial f}{\partial z_i}(z)$.

For every function F of class $\mathscr{C}^2(\Omega)$, we define at each point $z \in \Omega$ a Hermitian form

$$L_z(F, v) = \sum_{i,j=1}^{n} \frac{\partial^2 F(z)}{\partial z_i \partial \overline{z}_j} v_i \overline{v}_j$$

and call it the Levi form of the function F at z. For a holomorphic function f in Ω , set

$$f^{\#}(z) = \sup_{|v|=1} \left(L_z \left(\log(1+|f|^2), v \right) \right)^{\frac{1}{2}},$$

where $v = (v_1, \dots, v_n) \in \mathbb{C}^n, |v| = (\sum_{j=1}^n |v_j|^2)^{\frac{1}{2}}$.

REMARK 1. Let $\Omega \subset \mathbb{C}^n$ be a domain and $f \in \mathcal{H}(\Omega)$. Then

$$f^{\#}(z) = \sup_{|v|=1} \frac{|\langle \nabla f(z), \overline{v} \rangle|}{1 + |f(z)|^2} = \frac{(\sum_{j=1}^{n} |f_{z_j}(z)|^2)^{\frac{1}{2}}}{1 + |f(z)|^2}, \ z \in \Omega.$$

where $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$ is the Hermitian scalar product for $z = (z_1, \dots, z_n), w = (w_1, \dots, w_n) \in \mathbb{C}^n$.

Proof. Since $f(z) = f(z_1, \dots, z_n)$ is holomorphic on Ω , we have $f = f_{\overline{z}_j}(z) = 0$ for every $z \in \Omega$ and $1 \le j \le n$. An easy computation shows that

$$\frac{\partial}{\partial \overline{z}_j} \log(1+|f|^2)(z) = \frac{f(z)\overline{f}_{\overline{z}_j}(z)}{1+|f(z)|^2} = \frac{f(z)\overline{(f_{z_j}(z))}}{1+|f(z)|^2}$$

and

$$\frac{\partial^2}{\partial z_i \partial \overline{z}_j} \log(1 + |f|^2)(z) = \frac{f f_{\overline{z}_j}}{1 + |f(z)|^2} = \frac{f_{z_i}(z) \overline{(f_{z_j}(z))}}{(1 + |f(z)|^2)^2}$$

for $z \in \Omega$ and $1 \le i, j \le n$. Hence, for each $v = (v_1, \dots, v_n) \in \mathbb{C}^n$, we get

$$\begin{split} \sum_{i,j=1}^{n} \frac{\partial^{2} \log(1+|f|^{2})(z)}{\partial z_{i} \partial \overline{z}_{j}} \ v_{i} \overline{v}_{j} &= \sum_{i,j=1}^{n} \frac{f_{z_{i}}(z) v_{i} \overline{(f_{z_{j}}(z) v_{j})}}{(1+|f(z)|^{2})^{2}} = \frac{1}{(1+|f(z)|^{2})^{2}} |\sum_{k=1}^{n} f_{z_{k}}(z) v_{k}|^{2} \\ &= \frac{|\langle \nabla f(z), \overline{v} \rangle|^{2}}{(1+|f(z)|^{2})^{2}}. \end{split}$$

This shows that

$$f^{\#}(z) = \sup_{|y|=1} \frac{|\langle \nabla f(z), \overline{v} \rangle|}{1 + |f(z)|^2}.$$

Now we prove the second identity. If $\nabla f(z)=(0,0,\cdots,0)$, there is nothing to prove. We assume that $\nabla f(z)\neq (0,0,\cdots,0)$. We have, from Cauchy-Buniakowsky-Schwarz inequality, that $|\langle \nabla f(z), \overline{v} \rangle| \leqslant |\nabla f(z)| \cdot |\overline{v}|$. On the other hand, fix any $z\in \Omega$, we take

$$v^* = \left(\frac{f_{z_1}(z)}{|\nabla f(z)|}, \frac{f_{z_2}(z)}{|\nabla f(z)|}, \cdots, \frac{f_{z_n}(z)}{|\nabla f(z)|}\right)$$

It is obvious that $v^* \in \mathbb{C}^n, |v^*| = 1$ and

$$|\langle \nabla f(z), \overline{v^*} \rangle| = \sum_{i=1}^n f_{z_i}(z) \cdot \frac{\overline{f}_{z_i}(z)}{|\nabla f(z)|} = |\nabla f(z)|.$$

This leads that $\sup_{|v|=1} |\langle \nabla f(z), \overline{v} \rangle| = |\nabla f(z)|$. And hence,

$$\sup_{|y|=1} \frac{|\langle \nabla f(z), \overline{y} \rangle|}{1 + |f(z)|^2} = \frac{(\sum_{j=1}^n |f_{z_j}(z)|^2)^{\frac{1}{2}}}{1 + |f(z)|^2}, \ z \in \Omega.$$

We have completed the proof of Remark 1.

Let $I = (i_1, \dots, i_n) \in \mathbb{N}^n$. We call I a multi-index and define $|I| = \sum_{\mu=1}^n i_{\mu}$. For $z \in \mathbb{C}^n$ and a multi-index I we define the partial derivative operators

$$D^I := rac{\partial^{|I|}}{\partial z_1^{i_1} \cdots \partial z_n^{i_n}}.$$

Now we extend the concepts of smoothly increasing functions and φ -normal functions to the case of several complex variables.

DEFINITION 1. An increasing function $\varphi:[0,1)\to(0,\infty)$ is called smoothly increasing if

$$\varphi(r)(1-r) \geqslant 1, \quad r \in [0,1),$$
 (4)

and

$$\mathcal{R}_a(z) := \frac{\varphi(\|a + z/\varphi(\|a\|)\|)}{\varphi(\|a\|)} \to 1 \text{ as } \|a\| \to 1^-$$
 (5)

uniformly on compact subsets of \mathbb{C}^n .

DEFINITION 2. For a smoothly increasing function φ , a function $f \in \mathcal{H}(\mathbb{B}_n)$ is called φ -normal if

$$||f||_{\mathscr{N}^{\varphi}} := \sup_{z \in \mathbb{B}_n} \frac{f^{\#}(z)}{\varphi(||z||)} < \infty.$$
 (6)

The class of all φ -normal functions is denoted by $\mathscr{N}^{\varphi}(\mathbb{B}_n)$.

We generalize Theorems A, B and C to holomorphic functions of several complex variables. More precisely, we have the following results.

THEOREM 1. If f is a φ -normal function in \mathbb{B}_n , then, for each multi-index $I = (i_1, \dots, i_n)$, there exists a constant $M_I > 0$ such that

$$\frac{1}{\varphi(||z||)^k} \frac{|D^I f(z)|}{1 + |f(z)|^{k+1}} \leqslant M_I, \ z \in \mathbb{B}_n,$$

where k = |I|.

THEOREM 2. Let φ be a smoothly increasing function, and let k be a positive integer. Suppose $f \in \mathcal{H}(\mathbb{B}_n)$ such that

$$\sup\{|D^{J}f(z)|; \ z \in f^{-1}(\{0\}), J \in \mathbb{N}^{n}, \ 1 \le |J| \le k-1\} < \infty. \tag{7}$$

If there exists a set E of three distinct points in \mathbb{C} such that

$$\sup \left\{ \frac{1}{\varphi(\|z\|)^k} \frac{|D^I f(z)|}{1 + |f(z)|^{k+1}}; \ z \in f^{-1}(E) \right\} < \infty, \ I \in \mathbb{N}^n \ with \ |I| = k.$$

Then f is φ -normal.

We notice that the number of points in E has nothing to do with k which is related to the order of the derivatives. In particular, when k = 1, we get the following corollary:

COROLLARY 1. Let φ be a smoothly increasing function and $f \in \mathcal{H}(\mathbb{B}_n)$. If there exists a set E of three distinct points in \mathbb{C} such that

$$\sup_{z\in f^{-1}(E)}\frac{f^{\#}(z)}{\varphi(||z||)}<\infty.$$

Then f is φ -normal.

THEOREM 3. Let φ be a smoothly increasing function and $f \in \mathcal{H}(\mathbb{B}_n)$. If there exists a subset E of \mathbb{C} containing two distinct points such that

$$\sup_{z\in f^{-1}(E)}\frac{f^{\#}(z)}{\varphi(||z||)}<\infty \ \ and \ \ \sup_{z\in f^{-1}(E)}\left(\frac{\partial f}{\partial z_i}\right)^{\#}(z)<\infty, \quad 1\leqslant i\leqslant n.$$

Then f is φ -normal.

3. Proof of Theorem 1

The theory of normal family is used to prove our main results. For the relationship between normal family and normal function, see [8].

DEFINITION 3. A family \mathscr{F} of holomorphic functions on $\Omega \subset \mathbb{C}^n$ is normal in Ω if every sequence of functions $\{f_{\mu}\}\subseteq \mathscr{F}$ contains either a subsequence which converges to a limit function $f \not\equiv \infty$ uniformly on each compact subset of Ω , or a subsequence which converges uniformly to ∞ on each compact subset.

LEMMA 1. ([3]) A family \mathscr{F} of functions holomorphic on $\Omega \subset \mathbb{C}^n$ is normal on Ω if and only if for each compact subset $K \subset \Omega$ there exists a constant M(K) > 0 such that at each point $z \in K$, $f^{\#}(z) \leq M(K)$ for all $f \in \mathscr{F}$.

LEMMA 2. Let φ be a smoothly increasing function and $f \in \mathcal{H}(\mathbb{B}_n)$. Then $f \in \mathcal{N}^{\varphi}(\mathbb{B}_n)$ if and only if for every sequence $\{a_{\mu}\} \subset \mathbb{B}_n$ with $\|a_{\mu}\| \to 1$, the family

$$\mathscr{F} = \left\{ g_{\mu}(z) := f\left(a_{\mu} + \frac{1}{\varphi(||a_{\mu}||)}z\right); \ \mu = 1, 2, \dots \right\}$$

is normal in \mathbb{B}_n .

Proof. Since φ is a smoothly increasing function, from (4) we have $\frac{1}{\varphi(\|a_{\mu}\|)} \le 1 - \|a_{\mu}\|$ for $\mu = 1, 2, 3, \ldots$ Thus, for each $z \in \mathbb{B}_n$,

$$||a_{\mu} + \frac{1}{\varphi(||a_{\mu}||)}z|| \le ||a_{\mu}|| + \frac{||z||}{\varphi(||a_{\mu}||)} < ||a_{\mu}|| + \frac{1}{\varphi(||a_{\mu}||)} \le 1.$$

Then $g_{\mu}(z) := f\left(a_{\mu} + \frac{1}{\varphi(\|a_{\mu}\|)}z\right)$ is well-defined and holomorphic on \mathbb{B}_n .

Suppose that $f \in \mathcal{N}^{\varphi}(\mathbb{B}_n)$. Then $||f||_{\mathcal{N}^{\varphi}} < \infty$. An easy computation shows that

$$g_{\mu}^{\#}(z) = \frac{1}{\varphi(\|a_{\mu}\|)} f^{\#} \left(a_{\mu} + \frac{z}{\varphi(\|a_{\mu}\|)} \right) = \frac{\varphi(\|a_{\mu} + \frac{z}{\varphi(\|a_{\mu}\|)}\|)}{\varphi(\|a_{\mu}\|)} \cdot \frac{f^{\#}(a_{\mu} + \frac{z}{\varphi(\|a_{\mu}\|)})}{\varphi(\|a_{\mu} + \frac{z}{\varphi(\|a_{\mu}\|)}\|)}$$

$$\leq \frac{\varphi(\|a_{\mu} + \frac{z}{\varphi(\|a_{\mu}\|)}\|)}{\varphi(\|a_{\mu}\|)} \cdot \|f\|_{\mathcal{N}^{\varphi}} = \mathcal{R}_{a_{\mu}}(z) \cdot \|f\|_{\mathcal{N}^{\varphi}}$$

Together with (5), this implies that $\{g_{\mu}(z)\}$ is bounded uniformly on compact subsets of \mathbb{B}^n . Hence, it follows from Lemma 1 that $\{g_{\mu}(z)\}$ is a normal family in \mathbb{B}_n .

Conversely assume, to the contrary, that $f \notin \mathcal{N}^{\varphi}(\mathbb{B}_n)$. Then by (2), there exist $\{b_{\mu}\} \subset \mathbb{B}_n$ with $\|b_{\mu}\| \to 1$, such that

$$\lim_{\mu \to \infty} \frac{f^{\#}(b_{\mu})}{\varphi(\|b_{\mu}\|)} = \infty. \tag{8}$$

Now, we investigate the family

$$\mathscr{F} = \left\{ g_{\mu}(z) := f\left(b_{\mu} + \frac{1}{\varphi(||b_{\mu}||)}z\right); \ \mu = 1, 2, \dots \right\}.$$

It follows from (8) that

$$g_{\mu}^{\#}(0) = \frac{f^{\#}(b_{\mu})}{\varphi(\|b_{\mu}\|)} \to \infty$$

as $\mu \to \infty$. Because of Lemma 1, we get the family $\{g_{\mu}(z) = f(b_{\mu} + \frac{1}{\varphi(\|b_{\mu}\|)}z); \ \mu = 1, 2, ...\}$ is not normal in \mathbb{B}_n .

REMARK 2. If the function φ satisfies condition (1) instead of (4), that is $\lim_{r\to 1^-} \varphi(r)(1-r) = \infty$, we have a similar fact. Take R>0. It follows from $\|a_\mu\|\to 1^-$ that $\frac{1}{\varphi(\|a_\mu\|)}<\frac{1-\|a_\mu\|}{R}$ for sufficiently large μ . Thus, we have

$$||a_{\mu} + \frac{1}{\varphi(||a_{\mu}||)}z|| \le ||a_{\mu}|| + \frac{||z||}{\varphi(||a_{\mu}||)} \le ||a_{\mu}|| + \frac{R}{\varphi(||a_{\mu}||)} < 1$$

for $||z|| \le R$ and sufficiently large μ . Therefore, for each compact set K in \mathbb{C}^n , $g_{\mu}(z) := f\left(a_{\mu} + \frac{1}{\varphi(||a_{\mu}||)}z\right)$ is well-defined and holomorphic on K for sufficiently large μ . By the proof of Lemma 2, we obtain $f \in \mathscr{N}^{\varphi}(\mathbb{B}_n)$ if and only if for every sequence $\{a_{\mu}\} \subset \mathbb{B}_n$ with $||a_{\mu}|| \to 1$, the family $\{g_{\mu}(z) := f\left(a_{\mu} + \frac{1}{\varphi(||a_{\mu}||)}z\right); \mu = 1, 2, \ldots\}$ is normal in \mathbb{C}^n .

Proof of Theorem 1. If k=1, there really isn't anything to do once we notice the definition of f as a φ -normal function. It suffices to prove the theorem in the case where $k \geqslant 2$. Suppose the conclusion is not valid, then there exists a sequence $\{z_{\mu}\} \subset \mathbb{B}_n$, such that

$$\frac{1}{\varphi(\|z_{\mu}\|)^{k}} \frac{|D^{I} f(z_{\mu})|}{1 + |f(z_{\mu})|^{k+1}} \to \infty, \quad \mu \to \infty.$$
 (9)

Since f is φ -normal in \mathbb{B}_n , by Lemma 2, we get

$$\left\{g_{\mu}(z) = f\left(z_{\mu} + \frac{1}{\varphi(\|z_{\mu}\|)}z\right), \ z \in \mathbb{B}_n\right\}$$

is a normal family. Then, for each sequence $\{g_{\mu}\}$, in view of Definition 3, there exists a subsequence of $\{g_{\mu}\}$ (without loss of generality, we still denote by $\{g_{\mu}\}$ for convenience) which either converges locally uniformly to holomorphic function g(z) or tends locally uniformly to infinity in \mathbb{B}_n .

We distinguish two cases.

Case 1. $g(z) \in \mathcal{H}(\mathbb{B}_n)$.

Then g(z) is holomorphic in $\mathbb{B}_{r_0} = \{z : ||z|| < r_0\}$, where $0 < r_0 < 1$. Weierstrass Theorem of several complex variables (see [11], p.16) implies that

$$D^I g_{\mu}(z) \to D^I g(z), \quad z \in \mathbb{B}_{r_0}.$$

Then, we have

$$\frac{|D^I g_{\mu}(z)|}{1 + |g_{\mu}(z)|^{k+1}} \to \frac{|D^I g(z)|}{1 + |g(z)|^{k+1}}, \quad z \in \mathbb{B}_{r_0}.$$

Since g is holomorphic, then |g(z)| and $|D^Ig(z)|$ is bounded in $\overline{\mathbb{B}}_{r_0} = \{z : ||z|| \le r_0\}$, obviously, there exists Q > 0 such that

$$\max_{z \in \overline{\mathbb{B}}_{r_0}} \frac{|D^I g(z)|}{1 + |g(z)|^{k+1}} \leqslant Q.$$

Then, for sufficiently large μ , we obtain

$$\max_{z\in\overline{\mathbb{B}}_{r_0}}\frac{|D^Ig_{\mu}(z)|}{1+|g_{\mu}(z)|^{k+1}}\leqslant Q+1.$$

In particular, for sufficiently large μ , taking z = 0, we get

$$\frac{|D^I g_{\mu}(0)|}{1 + |g_{\mu}(0)|^{k+1}} = \frac{1}{\varphi(\|z_{\mu}\|)^k} \frac{|D^I f(z_{\mu})|}{1 + |f(z_{\mu})|^{k+1}} \le Q + 1.$$

we get a contradiction with (9).

Case 2. $g(z) \equiv \infty$. Then $\frac{1}{g} \equiv 0$ in \mathbb{B}_n . For sufficiently large μ , $\frac{1}{g_\mu}$ is holomorphic and $\frac{1}{g_\mu} \to 0$ in \mathbb{B}_n . Next we prove that $\frac{D^l g_{\mu}}{g^{k+1}} \to 0$ by using induction on k = |I|.

If
$$k=1$$
, set $D^I=\frac{\partial}{\partial z_i}$ for some $i\in\{1,2,\cdots,n\}$, we deduce that $\frac{1}{g_\mu^2}\cdot\frac{\partial g_\mu}{\partial z_i}=-\frac{\partial\frac{1}{g_\mu}}{\partial z_i}\to 0,\ i=1,2,\cdots,n,\ z\in\mathbb{B}_n.$

By the induction principle, we have to prove that $\frac{D^I g_{\mu}}{g_{\kappa}^{k+1}} \to 0$ when |I| = m under the induction hypothesis that $\frac{D^l g_{\mu}}{g_{\mu}^{k+1}} \to 0$ when $1 \le |k| \le m-1$. It is easy to check that for each I with |I| = m,

$$\frac{D^{I}g_{\mu}}{g_{\mu}^{m+1}} = -\frac{D^{I}(\frac{1}{g_{\mu}})}{g_{\mu}^{m-1}} + \text{a polynomial of } \frac{D^{J}g_{\mu}}{g_{\mu}^{|J|+1}}, \ 1 \leqslant |J| \leqslant m-1.$$

Hence $\frac{D^I g_{\mu}}{\varrho_{\cdot \cdot \cdot}^{m+1}} \to 0$, $z \in \mathbb{B}_n$, |I| = m.

Obviously,

$$\frac{|D^I g_{\mu}(z)|}{1+|g_{\mu}(z)|^{k+1}} \leqslant \frac{|D^I g_{\mu}(z)|}{|g_{\mu}(z)|^{k+1}} \to 0, \ z \in \mathbb{B}_n.$$

Taking z = 0, we obtain

$$\frac{|D^I g_{\mu}(0)|}{1+|g_{\mu}(0)|^{k+1}} = \frac{1}{\varphi(\|z_{\mu}\|)^k} \frac{|D^I f(z_{\mu})|}{1+|f(z_{\mu})|^{k+1}} \to 0,$$

which is also a contradiction with (9).

4. Proof of Theorem 2

Zalcman's Rescalling Lemma in several complex variables plays an important role in the proofs of Theorems 2 and 3.

LEMMA 3. ([4]) Suppose that a family \mathscr{F} of functions holomorphic on $\Omega \subset \mathbb{C}^n$ is not normal at some point $z_0 \in \Omega$. Then there exist sequences $\{f_{\mu}\} \in \mathscr{F}, \ z_{\mu} \to z_0, \ \rho_{\mu} = 1/f_{\mu}^{\#}(z_{\mu}) \to 0$ such that the sequence

$$g_{\mu}(z) = f_{\mu}(z_{\mu} + \rho_{\mu}z)$$

converges locally uniformly in \mathbb{C}^n to a non-constant entire function g satisfying $g^{\#}(z) \leq g^{\#}(0) = 1$.

LEMMA 4. ([9, 10]) Let $\Omega \subseteq \mathbb{C}^n$ be open. Let f_j be holomorphic functions on Ω for $j = 1, 2, \dots, n$. Suppose that f is holomorphic on Ω and that $f_j \to f$ normally. If each f_j is zero-free, then prove that either f is zero-free or $f \equiv 0$ on Ω .

Proof. Because the reference [9] is written in Chinese, we give here a detailed proof of Lemma 4. Assume that $f \not\equiv 0$. For any $a \in \Omega$, we prove $f(a) \not= 0$. Take polydisc $P(a,r) \subset \Omega$, and take $\alpha_1, \dots, \alpha_n$ and λ such that $|\alpha_j| < r$, $|\lambda| < 1$. Then $(a_1 + \alpha_1 \lambda, \dots, a_n + \alpha_n \lambda) \in P(a,r) \subset \Omega$. Select a group of a_j that satisfies the above conditions so that $\psi(\lambda) = f(a_1 + \alpha_1 \lambda, \dots, a_n + \alpha_n \lambda) \not\equiv 0$ in $|\lambda| < 1$. This can be done, otherwise $f \equiv 0$ in P(a,r). Let

$$\psi_k(\lambda) = f_k(a_1 + \alpha_1 \lambda, \dots, a_n + \alpha_n \lambda).$$

Thus, ψ_k converges locally uniformly to ψ in $|\lambda| < 1$, and $\psi \not\equiv 0$. From Hurwitz's theorem of one complex variable, ψ is not equal to 0 everywhere in $|\lambda| < 1$. In particular, $\psi(0) \neq 0$, that is, $f(a) \neq 0$.

Proof of Theorem 2. Suppose f is not φ -normal. Then, by Lemma 2, the family $\mathscr{F} = \{g_{\mu}(z)\}$ is not normal at some point $z_0 \in \mathbb{B}_n$. In view of Lemma 3, there exist sequences $\{g_{\mu}(z)\} \subset \mathscr{F}$ (we still denote by $\{g_{\mu}\}$ for convenience), a sequence $\{z_{\mu}\} \subset \mathbb{B}^n$ with $z_{\mu} \to z_0$, $\rho_{\mu} \to 0$ such that

$$G_{\mu}(z) = g_{\mu}(z_{\mu} + \rho_{\mu}z) = f\left(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}z\right) \to G(z)$$
(10)

uniformly on compact subsets of \mathbb{C}^n , where G(z) is a nonconstant holomorphic function on \mathbb{C}^n . Therefore, for each $J \in \mathbb{N}^n$,

$$D^{J}G_{\mu}(z) = \left(\frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}\right)^{|J|}D^{J}f\left(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}z\right) \to D^{J}G(z)$$
(11)

uniformly on compact subsets of \mathbb{C}^n .

Let K be a compact set containing z_0 and assume that $G(z_0)=0$. Lemma 4 implies that there exists a sequence $z_u^* \to z_0$ such that

$$f\left(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}z_{\mu}^{*}\right) = G_{\mu}(z_{\mu}^{*}) = 0.$$

For brevity, set $\hat{z}_{\mu} = a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)} z_{\mu}^*$. Since $\rho_{\mu} \to 0$, $\hat{z}_{\mu} \in \mathbb{B}_n$ for sufficiently large μ . Then, by the hypothesis, there exists M > 0 such that

$$|D^J f(\hat{z}_{\mu})| \leqslant M$$

for $0 \le |J| \le k-1$. Since $\varphi : [0,1) \to (0,\infty)$ is a smoothly increasing function, we obtain

$$D^J G_{\mu}(\boldsymbol{z}_{\mu}^*) = \left(\frac{\rho_{\mu}}{\phi(\|\boldsymbol{a}_{\mu}\|)}\right)^{|J|} D^J f(\hat{\boldsymbol{z}}_{\mu}) \leqslant \left(\frac{\rho_{\mu}}{\phi(0)}\right)^{|J|} D^J f(\hat{\boldsymbol{z}}_{\mu}).$$

This and (11) imply that $D^JG(z_0)=0$ for $0\leqslant |J|\leqslant k-1$. Thus all zeros of G(z), if any, have multiplicity at least k, and $D^JG\not\equiv 0$. Suppose $z_0\in\mathbb{C}^n$ such that $G(z_0)=a\in E$, then by (10) and applying Lemma 4 (see [10], p.316), there exists $z_\mu^*\to z_0$ such that

$$f\Big(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}z_{\mu}^*\Big) = G_{\mu}(z_{\mu}^*) = a.$$

Then, by the assumption, there exists M > 0 such that

$$\frac{1}{\varphi(\|\hat{z}_{\mu}\|)^{k}} \frac{|D^{I} f(\hat{z}_{\mu})|}{1 + |f(\hat{z}_{\mu})|^{k+1}} \leqslant M$$

for sufficiently large μ . Thus, we obtain

$$\frac{|D^I G_{\mu}(z_{\mu}^*)|}{1 + |G_{\mu}(z_{\mu}^*)|^{k+1}} = \left(\frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}\right)^k \frac{|D^I f(\hat{z}_{\mu})|}{1 + |f(\hat{z}_{\mu})|^{k+1}} \leqslant (\rho_{\mu})^k \left(\frac{\varphi(\|\hat{z}_{\mu}\|)}{\varphi(\|a_{\mu}\|)}\right)^k M$$

for sufficiently large μ . From (5) and letting $\mu \to \infty$, we obtain $\frac{|D^IG(z_0)|}{1+|G(z_0)|^{k+1}}=0$. It implies that z_0 is a zero of $D^IG(z)$. Thus, $D^IG(z)=0$, $z\in f^{-1}(E)$, |I|=k.

We next prove that G(z) is constant. For any $b \in \mathbb{C}^n$, we define

$$g_b(\xi) := G(\xi b) = G(\xi b_1, \xi b_2, \dots, \xi b_n), \quad \xi \in \mathbb{C}.$$

Then, the zero multiplicity of $g_b(\xi)$ is at least k and $g_b^{(k)} \not\equiv 0$. For $I = (i_1, i_2, \dots, i_n)$,

$$g_b^{(k)}(\xi) = \sum_{i_1,i_2,\cdots,i_n=1}^n b_{i_1}b_{i_2}\cdots b_{i_n} \frac{\partial^{|I|}G}{\partial \xi_{i_1}\partial \xi_{i_2}\cdots \partial \xi_{i_n}}(\xi b), \quad |I| = k.$$

Suppose that $G(\xi_0 b) \in E$, then $g_b(\xi_0) \in E$. From $D^I G(\xi_0 b) = 0$ with |I| = k, we get $g_b^{(k)}(\xi_0) = 0$. This implies that

$$\sum_{i=1}^{3} \overline{N} \Big(r, \frac{1}{g_b - a_i} \Big) \leqslant \overline{N} \Big(r, \frac{1}{g_b^{(k)}} \Big)$$

Suppose that the entire function g_b is not constant, by standard symbols and fundamental results of Nevanlinna theory (for details, see for example [16]), we obtain

$$2T(r,g_{b}) \leq \sum_{i=1}^{3} \overline{N}\left(r, \frac{1}{g_{b} - a_{i}}\right) + S(r,g_{b}) \leq \overline{N}\left(r, \frac{1}{g_{b}^{(k)}}\right) + S(r,g_{b})$$

$$\leq T(r,g_{b}^{(k)}) + S(r,g_{b}) \leq T(r,g_{b}) + S(r,g_{b}).$$
(12)

So, $T(r,g_h) \leq S(r,g_h)$, which is a contradiction. Thus,

$$g_b(\xi) = C(b),$$

where C(b) is constant with respect to ξ (but depends on b). Therefore

$$C(b) = g_b(\xi) = g_b(0) = G(0), \quad \xi \in \mathbb{C}.$$

In particular, $G(b) = g_b(1) = G(0)$. Since $b \in \mathbb{C}^n$ is taken arbitrarily, we then have $G(z) \equiv G(0)$, a contradiction.

5. Proof of Theorem 3

In order to prove Theorem 3, we first give the following lemma.

LEMMA 5. Let f(z) be a holomorphic function in \mathbb{C}^n , and the integer k=2 or 3. If there exists a subset E of \mathbb{C} containing 5-k distinct points such that

$$D^{I}f(z) = 0$$
, $|I| = 1, \dots, k-1$, $z \in f^{-1}(E)$.

Then f is constant.

Proof. For any $b \in \mathbb{C}^n$, we define

$$g_b(\xi) := f(\xi b) = f(\xi b_1, \xi b_2, \dots, \xi b_n), \quad \xi \in \mathbb{C}.$$

Suppose that f is not constant and $f(\xi_0 b) \in E$, then g_b is not constant and $g_b(\xi_0) \in E$. Moreover,

$$g_b'(\xi_0) = \sum_{i=1}^n b_i \frac{\partial f}{\partial \xi_i}(\xi_0 b), \tag{13}$$

$$g_b''(\xi_0) = \sum_{i,j=1}^n b_i b_j \frac{\partial^2 f}{\partial \xi_i \partial \xi_j}(\xi_0 b). \tag{14}$$

If k = 2, by the assumption $D^I f(\xi_0 b) = 0$, |I| = 1, together with (13), we have

$$g_b'(\xi_0) = 0.$$

This means that ξ_0 is a *a*-point of g_b with multiplicity at least 2. Applying Nevanlinna theory for meromorphic functions, it is clear that

$$\begin{split} 2T(r,g_b) \leqslant \sum_{i=1}^3 \overline{N}\Big(r,\frac{1}{g_b-a_i}\Big) + S(r,g_b) \leqslant \frac{1}{2}\sum_{i=1}^3 N\Big(r,\frac{1}{g_b-a_i}\Big) + S(r,g_b) \\ \leqslant \frac{3}{2}T(r,g_b) + S(r,g_b). \end{split}$$

So, $\frac{1}{2}T(r,g_b) \leq S(r,g_b)$, which is a contradiction. Thus,

$$g_b(\xi) = C(b),$$

where C(b) is constant with respect to ξ (but depends on b). Therefore, $C(b) = g_b(\xi) = g_b(0) = f(0)$. Similar to the argument in Proof of Theorem 2 we have f is constant.

If k = 3, by the assumption $D^I f(\xi_0 b) = 0$, |I| = 1, 2, combination with (13) and (14), it implies that

$$g_h'(\xi_0) = g_h''(\xi_0) = 0.$$

Then ξ_0 is a *a*-point of g_b with multiplicity at least 3. Similarly, applying Nevanlinna theory for meromorphic functions, we obtain

$$T(r,g_b) \leqslant N(r,g) + \sum_{i=1}^{2} \overline{N} \left(r, \frac{1}{g_b - a_i} \right) + S(r,g_b) = \sum_{i=1}^{2} \overline{N} \left(r, \frac{1}{g_b - a_i} \right) + S(r,g_b)$$

$$\leqslant \frac{1}{3} \sum_{i=1}^{2} N \left(r, \frac{1}{g_b - a_i} \right) + S(r,g_b) \leqslant \frac{2}{3} T(r,g_b) + S(r,g_b).$$

So, $\frac{1}{3}T(r,g_b) \leq S(r,g_b)$, which is a contradiction. Thus, $g_b(\xi) = C(b)$, where C(b) is constant. Again, similar to the argument in Proof of Theorem 2 we get f is constant.

Proof of Theorem 3. Assume for a contradiction. If f is not φ -normal in \mathbb{B}_n . From Lemma 2, the family $\mathscr{F} = \{g_{\mu}(z)\}$ is not normal at $z_0 \in \mathbb{B}_n$, by Lemma 3, there exist sequences $\{g_{\mu}(z)\}$ (without loss of generality, we still denote by $\{g_{\mu}\}$ for convenience) $\in \mathscr{F}$, $z_{\mu} \to z_0$, $\rho_{\mu} \to 0$ such that

$$G_{\mu}(z) = g_{\mu}(z_{\mu} + \rho_{\mu}z) = f\left(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}z\right) \to G(z)$$
 (15)

uniformly on compact subsets of \mathbb{C}^n , where G(z) is a nonconstant holomorphic function on \mathbb{C}^n . Therefore, for $1 \le i \le n$,

$$\frac{\partial G_{\mu}(z)}{\partial z_{i}} = \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)} \frac{\partial f}{\partial z_{i}} \left(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)} z \right) \to \frac{\partial G(z)}{\partial z_{i}}$$
(16)

uniformly on compact subsets of \mathbb{C}^n .

Let K be a compact set containing z_0 . Suppose $z_0 \in \mathbb{C}^n$ such that $G(z_0) = a \in E$, then by (15) and applying Lemma 4, there exists a sequence $\{z_{\mu}^*\} \to z_0$ such that

$$f\left(a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)}z_{\mu}^{*}\right) = G_{\mu}(z_{\mu}^{*}) = a.$$

For brevity, set $\hat{z}_{\mu} = a_{\mu} + \frac{z_{\mu}}{\varphi(\|a_{\mu}\|)} + \frac{\rho_{\mu}}{\varphi(\|a_{\mu}\|)} z_{\mu}^*$. Clearly, $\hat{z}_{\mu} \in \mathbb{B}_n$ for sufficiently large μ . Then, by the assumption, for sufficiently large μ , there exists M > 0 such that

$$\sup_{z \in f^{-1}(E)} \frac{f^{\#}(\hat{z}_{\mu})}{\varphi(\|\hat{z}_{\mu}\|)} \leqslant M. \tag{17}$$

Thus,

$$G_{\mu}^{\#}(z_{\mu}^{*}) = \frac{\rho_{\mu}}{\phi(\|a_{\mu}\|)} f^{\#}(\hat{z}_{\mu}) = \rho_{\mu} \frac{f^{\#}(\hat{z}_{\mu})}{\phi(\|\hat{z}_{\mu}\|)} \cdot \frac{\phi(\|\hat{z}_{\mu}\|)}{\phi(\|a_{\mu}\|)} \leqslant \rho_{\mu} M \frac{\phi(\|\hat{z}_{\mu}\|)}{\phi(\|a_{\mu}\|)}.$$

From (5), taking the limit, we have $G^{\#}(z_0) = \lim_{\mu \to \infty} G^{\#}_{\mu}(z_{\mu}^*) = 0$. Hence, $\frac{\partial G}{\partial z_i}(z_0) = \lim_{\mu \to \infty} \frac{\partial G_{\mu}}{\partial z_i}(z_{\mu}^*) = 0$ for all $1 \le i \le n$. By the definition of $f^{\#}$ and (17), we have

$$\left| \frac{\partial f}{\partial z_i}(\hat{z}_{\mu}) \right| \leqslant (1 + |f(\hat{z}_{\mu})|^2) f^{\#}(\hat{z}_{\mu}) \leqslant M(1 + \max_{b \in E} |b|^2) \varphi(\|\hat{z}_{\mu}\|). \tag{18}$$

Therefore.

$$\begin{split} \frac{|\frac{\partial^{2}G_{\mu}}{\partial z_{i}\partial z_{j}}(z_{\mu}^{*})|}{1+|\frac{\partial G_{\mu}}{\partial z_{i}}(z_{\mu}^{*})|^{2}} &= \frac{\rho_{\mu}^{2}}{\varphi^{2}(\|a_{\mu}\|)} \cdot \frac{|\frac{\partial^{2}f}{\partial z_{i}\partial z_{j}}(\hat{z}_{\mu})|}{1+\frac{\rho_{\mu}^{2}}{\varphi^{2}(\|a_{\mu}\|)}|\frac{\partial f}{\partial z_{i}}(\hat{z}_{\mu})|^{2}} \\ &= \frac{\rho_{\mu}^{2}}{\varphi^{2}(\|a_{\mu}\|)} \cdot \frac{|\frac{\partial^{2}f}{\partial z_{i}\partial z_{j}}(\hat{z}_{\mu})|}{1+|\frac{\partial f}{\partial z_{i}}(\hat{z}_{\mu})|^{2}} \cdot \frac{1+|\frac{\partial f}{\partial z_{i}}(\hat{z}_{\mu})|^{2}}{1+\frac{\rho_{\mu}^{2}}{\varphi^{2}(\|a_{\mu}\|)}|\frac{\partial f}{\partial z_{i}}(\hat{z}_{\mu})|^{2}} \\ &\leqslant M \frac{\rho_{\mu}^{2}}{\varphi^{2}(\|a_{\mu}\|)} \left(1+|\frac{\partial f}{\partial z_{i}}(\hat{z}_{\mu})|^{2}\right) \\ &\leqslant M \frac{\rho_{\mu}^{2}}{\varphi^{2}(\|a_{\mu}\|)} \left(1+[M(1+\max_{b\in E}|b|^{2})]^{2}\varphi^{2}(\|\hat{z}_{\mu}\|)\right) \\ &\leqslant \rho_{\mu}^{2} M \left(1+[M(1+\max_{b\in E}|b|^{2})]^{2}\right) \left(\frac{\varphi(\|\hat{z}_{\mu}\|)}{\varphi(\|a_{\mu}\|)}\right)^{2} \end{split}$$

for all $1 \le i, j \le n$. From (5) and (16), it implies that

$$\left(\frac{\partial G}{\partial z_i}\right)^{\#}(z_0) = \lim_{\mu \to \infty} \left(\frac{\partial G_{\mu}}{\partial z_i}\right)^{\#}(z_{\mu}^*) = 0, \quad 1 \leqslant i \leqslant n.$$

Hence, $\frac{\partial^2 G}{\partial z_i \partial z_j}(z_0) = \lim_{\mu \to \infty} \frac{\partial^2 G_{\mu}}{\partial z_i \partial z_j}(z_{\mu}^*) = 0$ for all $1 \le i, j \le n$. It follows from Lemma 5 that G(z) is constant, a contradiction.

Acknowledgement. The authors wish to thank the referees for their helpful comments and useful suggestions.

REFERENCES

- R. AULASKARI AND J. RÄTTYÄ, Properties of meromorphic φ-normal functions, Michigan Math. J., 60, (2011), 93–111.
- [2] P. V. DOVBUSH, Applications of Zalcman's lemma in \mathbb{C}^n , arXiv:1907.00925.

- [3] P. V. DOVBUSH, Normal functions of many complex variables, Mosc Univ Math Bull., 36, (1981), 44–48.
- [4] P. V. DOVBUSH, Zalcman's lemma in \mathbb{C}^n , Complex Var. Elliptic Equ., 65, (2020), 796–800.
- [5] P. LAPPAN, The spherical derivative and normal functions, Ann. Acad. Sci. Fenn. Ser. A IMath., 3, (1977), 301–310.
- [6] P. LAPPAN, A criterion for a meromorphic function to be normal, Comment. Math. Helv., 49, (1974), 492–495.
- [7] O. LEHTO AND K. VIRTANEN, Boundary behaviour and normal meromorphic functions, Acta Math., 97, (1957), 47–56.
- [8] J. SCHIFF, Normal Families, Springer, Berlin, 1993.
- [9] J. H. Shi, Fundamentals of Several Complex Variables Theory, Higher Education Press, Beijing, 1996.
- [10] S. G. KRANTZ, Function Theory of Several Complex Variables, Ams Chelsea Publishing, Providence, Rhode Island, 1992.
- [11] T. NISHINO, Function Theory in Several Complex Variables, University of Tokyo Press, Tokyo, Japan, 1996.
- [12] T. V. TAN AND N. V. THIN, On Lappan's five-point theorem, Comput. Methods Funct. Theory., 17, (2017), 47–63.
- [13] Y. Xu, On the five-point theorems due to Lappan, Ann. Pol. Math., 101, (2011), 227–235.
- [14] Y. Xu AND H. L. QIU, Two results on φ-normal functions, C. R. Math. Acad. Sci. Paris., 352, (2014), 21–25.
- [15] Y. Xu and H. L. Qiu, Normal functions and shared sets, Filomat, 30, (2016), 287–292.
- [16] L. YANG, Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993.

(Received March 30, 2020)

Ting Zhu School of Mathematics & Physics Science and Engineering Anhui University of Technology Ma'anshan, 243032, P.R. China e-mail: TingZhu3@hotmail.com

Shengyao Zhou

School of Mathematics & Physics Science and Engineering
Anhui University of Technology
Ma'anshan, 243032, P.R. China
e-mail: z1721519915@163.com

Liu Yang

School of Mathematics & Physics Science and Engineering
Anhui University of Technology
Ma'anshan, 243032, P.R. China
e-mail: yangliu6@ahut.edu.cn