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ON NORMAL FUNCTIONS IN SEVERAL COMPLEX VARIABLES

TING ZHU, SHENGYAO ZHOU AND LIU YANG*

Abstract. In this paper, we generalize the conception of ¢ -normal to holomorphic functions of
several complex variables. Extensions of some classical criteria for normality of holomorphic
functions of several complex variables are also given.

1. Introduction

Let D = {z;|z| < 1} be the unit disc in the complex plane C. A meromorphic
function f in DD is called normal if

sup(1 — |2*) /*(2) < oo,

zeD
where f#(z) = |f'(z)|/(1+]f(z)|?) is the spherical derivative of f. Lappan [6] showed
that there exists a set E consisting of five distinct points such that if f is a meromorphic
in D then the condition that sup,¢ ;1) (1 — 12[%) f#(z) < oo implies that sup,.p)(1 —
12]2)f#(z) < o i.e., f is a normal function. This well-known result of Lappan is called
five-point theorem. For a meromorphic function f in D and a positive integer k£ the
expression | f*) (z)|/(1+|f(z)[F*!) is an extension of the spherical derivative of f. For
this expression involves higher derivatives, some interesting results related to normal
functions were obtained.

THEOREM A. ([5]) If f is a normal function in D, then for each integer k > 0,

sup(l _ ‘Z|2)k ‘f(k) (Z>|

— 7 o
zeD L+ |f @)

THEOREM B. ([13]) Let k be a positive integer, and let [ be a meromorphic
function in D, and suppose that there exists M > 0 such that max << |f (z)] <M

whenever f(z) = 0. If there exists a subset E of CU{e} containing at least k+ 4
distinct points such that

1f 0 (2)]
sup (1 — [z ) —F = < oo,
e A R we A
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then f is a normal function.

In [1], R. Aulaskari and J. Rdttyd introduced the concept of smoothly increas-
ing functions and enlarged the class of normal functions. An increasing function ¢ :
[0,1) — (0,e0) is called smoothly increasing if

@r)(1—r) —ee, as r—17, (1)
and
,(c) = 2laxz/elaDl)

¢ (|al)

uniformly on compact subsets of C. For a given such ¢, we call a function f is ¢-
normal if f is meromorphic in D, and

as |a|— 17 (2)

*(2)
b ()

Applying Nevanlinna theory of meromorphic functions, Xu and Qiu [14] improved
Theorems A and B and establish analogues for ¢-normal functions. In [12], condition
(1) was replaced by a weaker one as

@(r)(1—=r)=1Lrel0,1). 3)

So the function ¢y (r) = ﬁ is smoothly increasing and the concept of ¢ -normal func-
tions coincides with the concept of normal functions. In addition, the authors in [12]
obtained the four-point theorem on the ¢-normal criteria for meromorphic functions

via bounding some quantities related to spherical derivatives of f and f’.

THEOREM C. ([12]) Let ¢: [0,1) — (0,) be a smoothly increasing function,
and let f be a meromorphic function in D. Assume that there is a subset E :={a,,az,
as,as} C CU{eo} such that

#
sup S"(2) <o, and sup  (f)*(z) <o
ef~1(E) o(lz]) zef~HE\{=})

Then f is a ¢ -normal function.

2. Preliminaries and results
To state our main results, we first introduce some standard notations. Let
C'"={z=(z, " ); 21, ",z € C}

be the complex space of dimension 7.

Denote the unit ball with respect norm || || in C" to by B, = {z € C"; ||z|| < 1}.
The boundary of B, will be denoted by S, and is called the unit sphere in C". Thus
Su={z€C"; ||z|]| = 1}.
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Let Q C C" be a domain and .7 (Q2) the collection of all holomorphic functions
in Q. Let

Vi@ =(f1@), - fu(2), z€Q

d
where f;,(z) = a—Z(Z)
For every function F of class 42(Q), we define at each point z € Q a Hermitian
form

9*F(z) ) o
811821

L.(Fv) = 2
i,j=1

and call it the Levi form of the function F at z. For a holomorphic function f in Q,
set

D=

F4(2) = sup (L:(log(1+1f12).v)) .

v[=1

where v= (vi,---,v,) € C", | = (X1, \vj\z)%.

REMARK 1. Let Q C C" be a domain and f € .7 (Q2). Then

e — sup SV (Sl @)

= sup = , € Q.
=1 1+ If ()1 L+1f()P
where (z,w) = ¥_,z;Wj is the Hermitian scalar product for z = (z1,...,2n),w =

(Wl,.. )E(Cn

Proof. Since f(z) = f(z1,-..,2x) is holomorphic on Q, we have f = f;;(z) =0
for every z € Q and 1 < j < n. An easy computation shows that

) Q740 _ 1T
77, VDO = T = T

and

9* R0 E)

350z, 21+ DE = 708 = Gx oy

for z€ Q and 1 <i,j < n. Hence, for each v= (v1,---,v,) € C", we get

LoPlog(l+ 1)) & fa@vilf@vy)
Z 9507 ‘2: A+1F QP (1+|f 2‘Zf“ S
(V(2),7)

T+ If@P?

This shows that V()5
7),v
1@ = s TR
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Now we prove the second identity. If Vf(z) = (0,0,---,0), there is nothing to
prove. We assume that Vf(z) # (0,0,---,0). We have, from Cauchy-Buniakowsky-
Schwarz inequality, that [(Vf(z),V)] < \V f(2)|-[v]. On the other hand, fix any z € Q,
we take

[

. < [ (2) ) fal2) )
V@I VIR VR

It is obvious that v* € C",[v*| = 1 and

_ fa®) _
(V1671 = 3 2.0 iy = V@)

This leads that supj,_; [(Vf(z),v)| = [Vf(z)|. And hence,

sup = , Z€Q.

VP Eilf@P)?
vt LHIf(2)2 L+|f(2)]?

We have completed the proof of Remark 1.
Let I = (iy,...,in) € N". We call I a multi-index and define |I| =X, _,iy. For
z € C" and a multi-index I we define the partial derivative operators

ol
D=—.
azll azln

Now we extend the concepts of smoothly increasing functions and ¢ -normal func-
tions to the case of several complex variables.

DEFINITION 1. An increasing function ¢ : [0,1) — (0,°) is called smoothly in-
creasing if
o(r)(l-=r) =1, relo,1), 4)
" (la+2/o ()]}
o(llatz/o(||a
RHa(2) = — 1
‘ o(llal)

uniformly on compact subsets of C".

as |la|| — 1~ (5)

DEFINITION 2. For a smoothly increasing function ¢, a function f € 52 (B,) is
called ¢-normal if

B *(2)
llvo 2= sup Sy

The class of all ¢-normal functions is denoted by .4 ?(1B,,).

< oo, (6)

We generalize Theorems A, B and C to holomorphic functions of several complex
variables. More precisely, we have the following results.
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THEOREM 1. If fis a ¢-normal function in B, then, for each multi-index I =
(i1y.-,in), there exists a constant My > 0 such that

1 D' f(z)]
o(||z[F 14| f (z) [+

<M17 ZGIBVH

where k = |I|.

THEOREM 2. Let ¢ be a smoothly increasing function, and let k be a positive
integer. Suppose f € J(B,) such that

sup{|D’f(2)]; z€ £ ({0}),7 e N", 1 < | <k —1} <o, (7
If there exists a set E of three distinct points in C such that

ID'f(z)|
S“p{<p<||z||>k I+ fQFT

Then f is ¢ -normal.

zef—l(E)} < oo, T€N"with |I] = k.

We notice that the number of points in £ has nothing to do with k£ which is related
to the order of the derivatives. In particular, when k£ = 1, we get the following corollary:

COROLLARY 1. Let ¢ be a smoothly increasing function and f € (B,). If
there exists a set E of three distinct points in C such that

#
sup —f (Z) <
A (ED)

Then f is @-normal.

THEOREM 3. Let @ be a smoothly increasing function and f € € (By,). If there
exists a subset E of C containing two distinct points such that

# #
sup @ nd sup (8_f) (2) <o, 1<i<n.
s TR ce-1(5) 9%

Then fis @-normal.

3. Proof of Theorem 1

The theory of normal family is used to prove our main results. For the relationship
between normal family and normal function, see [8].

DEFINITION 3. A family .% of holomorphic functions on Q C C" is normal in
Q if every sequence of functions {f,} C .# contains either a subsequence which con-
verges to a limit function f # e uniformly on each compact subset of Q, or a subse-
quence which converges uniformly to e on each compact subset.
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LEMMA 1. ([3]) A family .7 of functions holomorphic on Q C C" is normal on
Q if and only if for each compact subset K C Q there exists a constant M(K) > 0 such
that at each point z € K, f*(z) < M(K) forall f € F

LEMMA 2. Let @ be a smoothly increasing function and f € 7€ (B,). Then f €
N P (B,) if and only if for every sequence {ay} C B, with ||ay|| — 1, the family

T :{gu(z) ::f<au+mz>; u:1,2,...}

is normal in B,,.

Proof. Since ¢ is a smoothly increasing function, from (4) we have luH) <
1 —|lay|| for @ =1,2,3,.... Thus, for each z € B,,

1 [ 1
llap + 2l <llapll+ <llaull + <L
“ o(llagll) 5 o(laul) T o((faul))
Then gy (z) := f(ay o(lan H)z) is well-defined and holomorphic on B,,.

Suppose that f € JV ‘P(IB%H) Then ||f||_y» < eo. An easy computation shows that
# z
o(llay + \HHH H) [ lay + olax

)
w(llcmH) o(lay+ 51D

o 1 u z _
400 = ey (ot )

@(llanll)
(P(Hau \HuH H)
(P(||auH)

Together with (5), this implies that {g,(z)} is bounded uniformly on compact subsets
of B". Hence, it follows from Lemma 1 that {g,(z)} is a normal family in B,,.

Conversely assume, to the contrary, that f & .4/ ?(B,). Then by (2), there exist
{by} C B, with ||b,|| — 1, such that

NS lyo=Ray (2)- 1| f [|.xo

fim 0w _

8
T ®

Now, we investigate the family

fz{g“(z) :zf(b“—i-mz); ,u:1,2,...}.

It follows from (8) that

fH(by)
_—
@([1bul)

as [l — oo. Because of Lemma 1, we get the family {g,(z) = f(bu + mz); u=

gh(0)=

1,2,...} is not normal in B,,.
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REMARK 2. Ifthe function ¢ satisfies condition (1) instead of (4), thatis lim,_,;-
¢(r)(1 —r) = o, we have a similar fact. Take R > 0. It follows from |jay|| — 1~ that
1 I—lay |l

ol < —¢ for sufficiently large y. Thus, we have

[kl R

1
(el olllae) < Nl oy <!

for ||z|| <R and sufficiently large u. Therefore, for each compactset K in C", g, (z) :=
f (au + mz) is well-defined and holomorphic on K for sufficiently large 1. By the

lay + z|| < apl| +

proof of Lemma 2, we obtain f € A4 ?(B,) if and only if for every sequence {a, } C B,
with ||ay|| — 1, the family {gy(z) := f(ay + mz); w=1,2,...} isnormal in C".

Proof of Theorem 1. If k=1, there really isn’t anything to do once we notice
the definition of f as a ¢-normal function. It suffices to prove the theorem in the
case where k > 2. Suppose the conclusion is not valid, then there exists a sequence
{zu} C By, such that

L @)
olzulDF T+ G FFT

Since f is ¢@-normal in B,, by Lemma 2, we get

{gﬂ(z) :f<Zu+ﬁ@)Z>» zEIEBn}

is a normal family. Then, for each sequence {gﬂ}7 in view of Definition 3, there exists
a subsequence of {g,} (without loss of generality, we still denote by {g,} for con-
venience) which either converges locally uniformly to holomorphic function g(z) or
tends locally uniformly to infinity in B,,.

We distinguish two cases.

Case 1. g(z) € H(B,).

Then g(z) is holomorphicin B,, = {z: ||z|]| < ro}, where 0 < ry < 1. Weierstrass
Theorem of several complex variables (see [11], p.16) implies that

L — oo, )

Dlgﬂ(z) —Dlg(z), ze By,-

Then, we have
Dlgu(a)l  _ID'g(z)]
T+ [gu(z) At 1+ g(z)[F

7€ By,.

Since g is holomorphic, then |g(z)| and |D’g(z)| is bounded in B, = {z: ||z|| < ro},
obviously, there exists Q > 0 such that

ID'g(2)|

max ——————— < Q.
2B, 1 + |g(2)[FH!
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Then, for sufficiently large i, we obtain

D' gu(2)]

ZGEVO 1 + |glvl( )
In particular, for sufficiently large u, taking z =0, we get

Dlgu© 1 D) 1
T ga O~ ol F T+ Gt S2T T

we get a contradiction with (9).
Case 2. g(z) = oo.
Then % =0 in B,. For sufficiently large u, Lﬂ is holomorphic and rm

B,. Next we prove that 254 — 0 by using induction on k = |].
y

If k=1, set D! = ai for some i € {1,2,---,n}, we deduce that é% _
oL

—aiz’: —0,i=1,2,---,n, z€B,.

. . L. Do
By the induction principle, we have to prove that % — 0 when |I| = m under
Su

the induction hypothesis tha le < k] <m—1. Itis easy to check that
8u
for each I with |I| =

11
Dlgﬂ D (g_) . D’ Su
—h = —=t— + a polynomial of WSk 1< <m—1.
8u 8u 8u

HenceDm—H—>0 z€B,, |I|=

Obv1ously,
DI DI
Pasl ey,
1+gu(2)] |gu(2)]
Taking z =0, we obtain
Dgu©) 1 D)

L+ [gu (O o(llza [)F 1+ |f () [

which is also a contradiction with (9).

4. Proof of Theorem 2

Zalcman’s Rescalling Lemma in several complex variables plays an important role
in the proofs of Theorems 2 and 3 .
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LEMMA 3. ([4]) Suppose that a family .F of functions holomorphic on Q C C"
is not normal at some point zo € Q. Then there exist sequences {fu} € F, zu — 2o,
Pu = l/fﬁt (zu) — O such that the sequence

8u(2) = fu(zu + puz)

converges locally uniformly in C" to a non-constant entire function g satisfying g*(z) <
#
g'(0)=1.

LEMMA 4. ([9, 10]) Let Q C C" be open. Let f; be holomorphic functions on £
for j=1,2,--- n. Suppose that f is holomorphic on Q and that f; — f normally. If
each f; is zero-free, then prove that either f is zero-free or f =0 on Q.

Proof. Because the reference [9] is written in Chinese, we give here a detailed
proof of Lemma 4. Assume that f # 0. For any a € Q, we prove f(a) # 0. Take
polydisc P(a,r) C Q, and take oy, -, o, and A such that |ej| < r, [A| < 1. Then
(a1 +oud,---,a,+0uA) € Pla,r) C Q. Select a group of a; that satisfies the above
conditions so that (1) = f(a1+ oA, -+ ,a,+0,A) Z0 in |A| < 1. This can be done,
otherwise f =0 in P(a,r). Let

Wk(a’) :fk(al +alx’7"'7an+anx).

Thus, y; converges locally uniformly to v in |A| < 1, and w # 0. From Hurwitz’s
theorem of one complex variable, v is not equal to 0 everywhere in |A| < 1. In partic-

ular, y(0) # 0, thatis, f(a) #0.

Proof of Theorem 2. Suppose f is not ¢ -normal. Then, by Lemma 2, the family
# ={gu(z)} is not normal at some point zg € B,. In view of Lemma 3, there exist
sequences {gy(z)} C .# (we still denote by {g,} for convenience), a sequence {z, } C
B" with z, — zo, py — 0 such that

_ — f(a Zu Pu .
60 =suten ) =1 (0 + G+ ) @ (10

uniformly on compact subsets of C", where G(z) is a nonconstant holomorphic func-
tion on C". Therefore, for each J € N",

_ Pu VI u Zu Pu .
Y6, = (i) 27 (% Gliamy * wllamd) ~2'60 0D

uniformly on compact subsets of C".
Let K be a compact set containing zo and assume that G(zp) = 0. Lemma 4
implies that there exists a sequence z;; — zo such that

2u Pu
_|_
lagll) @ (llayl

f(aﬂ+¢( )zz>=Gy(zZ):0.
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. A Zu Pu ¥ . ~ .
For brevity, set 2, = ay + oTanh + ollaay % Since py — 0, Z, € B, for sufficiently

large . Then, by the hypothesis, there exists M > 0 such that
D' f(eu)l <M

for 0 < |[J| <k—1. Since ¢ :[0,1) — (0,) is a smoothly increasing function, we

obtain " "
DGulzg) = (=) D fe) < (25) D/ f(2).
AR Vo (flagll) #e(0) !
This and (11) imply that D’G(z9) = 0 for 0 < |J| < k— 1. Thus all zeros of G(z), if
any, have multiplicity at least k, and D'G # 0. Suppose zo € C" such that G(z9) =a €
E, then by (10) and applying Lemma 4 (see [10], p.316), there exists z;, — zo such
that

Zu Pu ) =G Y — .
7ot ooy + plaayn) = Gulai =a

Then, by the assumption, there exists M > 0 such that

! D" f (2|
<M
O(I12u]NF 1+ (Zu) < <

for sufficiently large u. Thus, we obtain

ID'Gu(z)| pu \E D) e o)\
GG~ ) <o () M

L4 1f () ! (llaxll)
for sufficiently large p. From (5) and letting (1 — oo, we obtain HIIDGI?% =0. It

implies that zg is a zero of D'G(z). Thus, D'G(z) =0, ze€ f~Y(E), |l|=*k.
p O b b
We next prove that G(z) is constant. For any b € C", we define

gv(§) :=G(Eb) = G(Eby,Eby, -+ ,EDy), E€C.

Then, the zero multiplicity of g,(&) is at least k and gék) #£0. For I = (iy,ip,",in),

n Il
(k) NG
= E bibiy b, ===
% ) inig,yin=1 b 989G, -+ 9Gi,

Suppose that G({pb) € E, then g,(&y) € E. From D'G(&yb) =0 with |I| =k, we get
gék) (&) = 0. This implies that

3

(Eb), =k

1

N(n ghl—al-> S N(n j)

Suppose that the entire function g; is not constant, by standard symbols and fun-
damental results of Nevanlinna theory (for details, see for example [16]), we obtain

1

3
— 1
27 (rgy) < X N(n

i=1 gb_al

— 1
+S(7‘7g )<N =y +S(I’,g)
) b ( gék)> b (12)

<T(rg) +5(r,8s) < T(r,g0) +S(r,20)-
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So, T(r,g») < S(r,8»), which is a contradiction. Thus,

where C(b) is constant with respect to £ (but depends on b). Therefore

C(b) = g»(5) = 85(0) = G(0), &€C.

In particular, G(b) = g,(1) = G(0). Since b € C" is taken arbitrarily, we then have
G(z) = G(0), a contradiction.
5. Proof of Theorem 3

In order to prove Theorem 3, we first give the following lemma.

LEMMA 5. Let f(z) be a holomorphic function in C", and the integer k =2 or
3. If there exists a subset E of C containing 5 — k distinct points such that

D'f(z)=0, I|=1,--,k—1, zefYE).

Then f is constant.

Proof. For any b € C", we define

8n(8) := f(8b) = f(Eb1,8ba, -+, Eby), £ €C.

Suppose that f is not constant and f(&yb) € E, then g, is not constant and g,(&y) € E
Moreover,

Zb 351 éob (13)
n a2f
0= 2 bibiseag (Gob) (14)

If k = 2, by the assumption D' f(Eyb) =0, |I| =1, together with (13), we have

85(80) =0

This means that &) is a a-point of g, with multiplicity at least 2. Applying Nevanlinna
theory for meromorphic functions, it is clear that

Mm

2T (r,8p) < N( gbl—a,->+s(rgb %iN< ! >+S(”»gb)

1 i=1 8b — ai

T(r,8p) +S(r,8)-

<

l\Jle
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So, %T(r, g») < S(r,8»), which is a contradiction. Thus,

where C(b) is constant with respect to & (but depends on b). Therefore, C(b) =
g»(&) = g»(0) = f(0). Similar to the argument in Proof of Theorem 2 we have f is
constant.

If k = 3, by the assumption D! f(Eyb) =0, |I| = 1,2, combination with (13) and

(14), it implies that
85(&0) = £5(&) =0

Then & is a a-point of g, with multiplicity at least 3. Similarly, applying Nevanlinna
theory for meromorphic functions, we obtain

2

— 1
T(r, <N(r,g)+ ) Nir )—l—Sr = ( >—|—Sr,
(r.8n) (r.8) 1_21 ( — 8») E a (r.85)
S 12N< : ) (r.8p) < 3T (r,8p) (r.8p)
< 7, +S(r, < =T(r,gp)+S(r,8p)-
3,‘ 1 b : 8b 3 8b 8b

So, %T(r,g;,) < S(r,gp), which is a contradiction. Thus, g,(&) = C(b), where C(b) is
constant. Again, similar to the argument in Proof of Theorem 2 we get f is constant.

Proof of Theorem 3. Assume for a contradiction. If f is not ¢-normal in B,.
From Lemma 2, the family .# = {g,(z)} is not normal at zy € B,, by Lemma 3,
there exist sequences {g,(z)} (without loss of generality, we still denote by {g,} for
convenience) € ., zy — 2o, py — 0 such that

. —a Zu Pu .
Gul0) =t +90) = (0 oy + Giamy?) OO 09

uniformly on compact subsets of C", where G(z) is a nonconstant holomorphic func-
tion on C". Therefore, for 1 <i < n,

aGu()_ pu_ of
9z o(laul) oz

Z
(au—f— ( L+

Pu . dG(z)
o(laul) ~ e(laul) ) (16)

07

uniformly on compact subsets of C".
Let K be a compact set containing zo. Suppose zp € C" such that G(z9) =a € E,
then by (15) and applying Lemma 4, there exists a sequence {z},} — zo such that

a Zﬂ pIJ _ * —a.
P+ e ey ) = Ol

. A Zu Pu ¥ ~ .
For brevity, set 2, = ay + oanl) + —fp_(HuuH)Zﬂ' Clearly, Z; 6. B, for sufficiently large
. Then, by the assumption, for sufficiently large tt, there exists M > 0 such that

y L)
ef1(E) o(llzull) ~

<M. (17)



NORMAL FUNCTIONS IN SEVERAL COMPLEX VARIABLES 57

Thus,

o Pu e PG ez o (1)
Gula) = Staay” ) =P o ollan) < M olaul)

From (5), taking the limit, we have G*(zg) = I}I_IEQ Gfl (z;;) = 0. Hence, g—ZG’_(zO) =

l}l_r}r; aaG” (z L) =0 forall 1 <i< n. By the definition of f# and (17), we have

S| < 0+ 1A G) <MO+maxloPiollel). a9)

Therefore,

G, A
Frattnl o ‘az,az, (Zu)l

9G 2T o2 TP
L4+ |52 ()] 0*(laul)) l+(p2(Ha H)‘a_f(zﬂ)‘z

pii \m(fu)\ 1+\3Z (2u)l?
O(laul) 1+1ZE)P 2 H| £ (202

Pi af . 2
M (1 155 )] )

@ (llayl| Zi
2
<M (1 MO+ max PP (1))
@*(llaul) beE
5 2
<p2M(1+M(1 JRENE @(l[2ull)
forall 1 < < n. From (5) and (16), it implies that
dG\*# . (9GuN\*#
P — = *) = <i<n.
<8Zi> (ZO) ;}Lrgo<8zl> (Z'u> 07 l\l\n
2
Hence, 3‘9 977 (z0) _,}L 1 gz,ggj (z) =0 forall 1 <i,j<n. It follows from Lemma 5

that G(z) is constant, a contradiction.
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