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ON SOME INEQUALITIES CONCERNING GENERALIZED (α,β )

RELATIVE ORDER AND GENERALIZED (α,β ) RELATIVE TYPE OF

ENTIRE FUNCTION WITH RESPECT TO AN ENTIRE FUNCTION

TANMAY BISWAS AND CHINMAY BISWAS ∗

Abstract. In this paper, we intend to find out some inequalities relating to generalized (α ,β)
relative order, generalized (α ,β) relative type and generalized (α ,β) relative weak type of an
entire function f with respect to an entire function g when generalized (γ ,β) relative order,
generalized (γ ,β) relative type and generalized (γ ,β) relative weak type of f with respect to
another entire function h and generalized (γ ,α) relative order, generalized (γ ,α) relative type
and generalized (γ ,α) relative weak type of g with respect to h are given, where α , β and γ
are continuous non-negative slowly increasing functions defined on (−∞,+∞) .

1. Introduction, definitions and notations

We denote by C the set of all finite complex numbers. Let f be an entire function

defined on C . The maximum modulus function Mf (r) of f =
∞
∑

n=0
anzn on |z| = r

is defined as Mf (r) = max
|z|=r

| f (z)| . Moreover, if f is non-constant entire then Mf (r)

is also strictly increasing and continuous functions of r . Therefore its inverse M−1
f :(

Mf (0),∞
) → (0,∞) exists and is such that lim

s→∞
M−1

f (s) = ∞ . We use the standard

notations and definitions of the theory of entire functions which are available in [9] and
[10], and therefore we do not explain those in details.

Now let L be a class of continuous non-negative functions α defined on (−∞,+∞)
such that α(x) = α(x0) � 0 for x � x0 with α(x) ↑ +∞ as x → +∞ and α((1 +
o(1))x) = (1 + o(1))α(x) as x → +∞. We say that α ∈ L0 , if α ∈ L and α(cx) =
(1 + o(1))α(x) as x0 � x → +∞ for each c ∈ (0,+∞), i.e., α is slowly increasing
function. Clearly L0 ⊂ L.

Further we assume that throughout the present paper α, β and γ always denote
the functions belonging to L0 .

Considering this, the value

ρ(α ,β )[ f ] = limsup
r→+∞

α(logMf (r))
β (logr)

(α ∈ L,β ∈ L)
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is called [8] generalized (α,β ) order of an entire function f . For details about gen-
eralized (α,β ) order one may see [8]. During the past decades, several authors made
close investigations on the properties of entire functions related to generalized (α,β )
order in some different direction. For the purpose of further applications, Biswas et
al. [5] rewrote the definition of the generalized (α,β ) order of entire function in the
following way after giving a minor modification to the original definition (e.g. see, [8])
which considerably extend the definition of ϕ -order of entire function introduced by
Chyzhykov et al. [7]:

DEFINITION 1. [5] The generalized (α,β ) order and generalized (α,β ) lower
order denoted by ρ(α ,β )[ f ] and λ(α ,β )[ f ] respectively of an entire function f are de-
fined as:

ρ(α ,β )[ f ] = limsup
r→+∞

α(Mf (r))
β (r)

and λ(α ,β )[ f ] = liminf
r→+∞

α(Mf (r))
β (r)

.

The function f is said to be of regular generalized (α,β ) growth when general-
ized (α,β ) order and generalized (α,β ) lower order of f are the same. Functions
which are not of regular generalized (α,β ) growth are said to be of irregular general-
ized (α,β ) growth.

In order to refine the growth scale namely the generalized (α,β ) order of an entire
function, Biswas et al. [3] have introduced the definitions of other growth indicators,
called generalized (α,β ) type and generalized (α,β ) lower type respectively of an
entire function which are as follows:

DEFINITION 2. [3] The generalized (α,β ) type and generalized (α,β ) lower
type denoted by σ(α ,β )[ f ] and σ (α ,β )[ f ] respectively of an entire function f having
finite positive generalized (α,β ) order (0 < ρ(α ,β )[ f ] < ∞) are defined as:

σ(α ,β )[ f ] = limsup
r→+∞

exp(α(Mf (r)))

(exp(β (r))ρ(α,β) [ f ]
and σ (α ,β )[ f ] = liminf

r→+∞

exp(α(Mf (r)))

(exp(β (r))ρ(α,β) [ f ]
.

It is obvious that 0 � σ (α ,β )[ f ] � σ(α ,β )[ f ] � ∞ .

Analogously, to determine the relative growth of two entire functions having same
non zero finite generalized (α,β ) lower order, Biswas et al. [3] have introduced the
definitions of generalized (α,β ) weak type and generalized (α,β ) upper weak type of
an entire function f of finite positive generalized (α,β ) lower order in the following
way:

DEFINITION 3. [3] The generalized (α,β ) upper weak type and generalized (α,β )
weak type denoted by τ(α ,β )[ f ] and τ(α ,β )[ f ] respectively of an entire function f hav-
ing finite positive generalized (α,β ) lower order (0 < λ(α ,β )[ f ] < ∞) are defined as:

τ(α ,β )[ f ] = limsup
r→+∞

exp(α(Mf (r)))

(exp(β (r)))λ(α,β) [ f ]
and τ (α ,β )[ f ] = liminf

r→+∞

exp(α(Mf (r)))

(exp(β (r)))λ(α,β) [ f ]
.

It is obvious that 0 � τ (α ,β )[ f ] � τ(α ,β )[ f ] � ∞ .
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Mainly the growth investigation of entire functions has usually been done through
their maximum moduli function in comparison with those of exponential function. But
if one is paying attention to evaluate the growth rates of any entire function with respect
to a new entire function, the notions of relative growth indicators (see e.g. [1, 2]) will
come. Now in order to make some progress in the study of relative order, Biswas et al.
[4] have introduced the definitions of generalized (α,β ) relative order and generalized
(α,β ) relative lower order of an entire function with respect to another entire function
in the following way:

DEFINITION 4. [4] The generalized (α,β ) relative order and generalized (α,β )
relative lower order denoted by ρ(α ,β )[ f ]g and λ(α ,β )[ f ]g respectively of an entire func-
tion f with respect to an entire function g are defined as:

ρ(α ,β )[ f ]g = limsup
r→+∞

α(M−1
g (Mf (r)))
β (r)

and λ(α ,β )[ f ]g = liminf
r→+∞

α(M−1
g (Mf (r)))
β (r)

.

Further if generalized (α,β ) relative order and the generalized (α,β ) relative
lower order of an entire function f with respect to an entire function g are the same,
then f is called a function of regular generalized (α,β ) relative growth with respect to
g . Otherwise, f is said to be irregular generalized (α,β ) relative growth.with respect
to g .

Now in order to refine the above growth scale, Biswas et al. [4] have introduced
the definitions of other growth indicators, such as generalized (α,β ) relative type and
generalized (α,β ) relative lower type of entire function with respect to an entire func-
tion which are as follows:

DEFINITION 5. [4] The generalized (α,β ) relative type denoted by σ(α ,β )[ f ]g
and generalized (α,β ) relative lower type denoted by σ (α ,β )[ f ]g of an entire function
f with respect to an entire function g having non-zero finite generalized (α,β ) relative
order are defined as:

σ(α ,β )[ f ]g = limsup
r→+∞

exp(α(M−1
g Mf (r))))

(exp(β (r)))ρ(α,β) [ f ]g

and σ (α ,β )[ f ]g = liminf
r→+∞

exp(α(M−1
g Mf (r))))

(exp(β (r)))ρ(α,β) [ f ]g
.

Analogously, to determine the relative growth of an entire function f having same
non zero finite generalized (α,β ) relative lower order with respect to an entire function
g , Biswas et al. [4] have introduced the definitions of generalized (α,β ) relative upper
weak type denoted by τ(α ,β )[ f ]g and generalized (α,β ) relative weak type denoted by
τ(α ,β )[ f ]g of f with respect to g of finite positive generalized (α,β ) relative lower
order in the following way:
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DEFINITION 6. [4] The generalized (α,β ) relative upper weak type and general-
ized (α,β ) relative weak type of an entire function f with respect to an entire function
g having non-zero finite generalized (α,β ) relative lower order are defined as:

τ(α ,β )[ f ]g = limsup
r→+∞

exp(α(M−1
g (Mf (r))))

(exp(β (r)))λ(α,β) [ f ]g

and τ (α ,β )[ f ]g = liminf
r→+∞

exp(α(M−1
g (Mf (r))))

(exp(β (r)))λ(α,β) [ f ]g
.

In this paper, we intend to find out some inequalities relating to generalized (α,β )
relative order, generalized (α,β ) relative type and generalized (α,β ) relative weak
type of an entire function f with respect to an entire function g when generalized
(γ,β ) relative order, generalized (γ,β ) relative type and generalized (γ,β ) relative
weak type of f with respect to another entire function h and generalized (γ,α) relative
order, generalized (γ,α) relative type and generalized (γ,α) relative weak type of g
with respect to h are given, where α , β and γ are continuous non-negative slowly
increasing functions on (−∞,+∞) . In fact, the results presented in this paper have
been improved and extended some earlier results (see, e.g., [6]). We assume that all the
growth indicators are non-zero finite.

2. Main results

In this section we present the main results of the paper.

THEOREM 1. Let f , g and h be any three entire functions such that 0 < λ(γ,β )[ f ]h
� ρ(γ,β )[ f ]h < ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

λ(γ,β )[ f ]h
ρ(γ,α)[g]h

� λ(α ,β )[ f ]g � min
{λ(γ,β )[ f ]h

λ(γ,α)[g]h
,

ρ(γ,β )[ f ]h
ρ(γ,α)[g]h

}

� max
{λ(γ,β )[ f ]h

λ(γ,α)[g]h
,

ρ(γ,β )[ f ]h
ρ(γ,α)[g]h

}
� ρ(α ,β )[ f ]g �

ρ(γ,β )[ f ]h
λ(γ,α)[g]h

.

Proof. From the definitions of ρ(γ,β )[ f ]h and λ(γ,β )[ f ]h for all sufficiently large
values of r, we have

Mf (r) � Mh(γ−1((ρ(γ,β )[ f ]h + ε)β (r))), (1)

Mf (r) � Mh(γ−1((λ(γ,β )[ f ]h − ε)β (r))). (2)

For a sequence of values of r tending to infinity, we get

Mf (r) � Mh(γ−1((ρ(γ,β )[ f ]h − ε)β (r))). (3)

Again for a sequence of values of r tending to infinity, we get

Mf (r) � Mh(γ−1((λ(γ,β )[ f ]h + ε)β (r))). (4)
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Further from the definitions of ρ(γ,α)[g]h and λ(γ,α)[g]h for all sufficiently large
values of r, it follows that

Mg(r) � Mh(γ−1((ρ(γ,α)[g]h + ε)α(r)))

i.e., Mh(r) � Mg

(
α−1

( γ(r)
ρ(γ,α)[g]h + ε

))
(5)

and Mh(r) � Mg

(
α−1

( γ(r)
λ(γ,α)[g]h− ε

))
. (6)

From the definition of ρ(γ,α)[g]h , for a sequence of values of r tending to infinity, we
obtain

Mh(r) � Mg

(
α−1

( γ(r)
(ρ(γ,α)[g]h− ε)

))
. (7)

Also from the definition of λ(γ,α)[g]h, for a sequence of values of r tending to
infinity, we have

Mh(r) � Mg

(
α−1

( γ(r)
λ(γ,α)[g]h + ε

))
. (8)

Now from (3) and in view of (5) , for a sequence of values of r tending to infinity, we
get

α(M−1
g (Mf (r))) � α(M−1

g (Mh(γ−1((ρ(γ,β )[ f ]h − ε)β (r))))

α(M−1
g (Mf (r))) � α

(
M−1

g

(
Mg

(
α−1

((ρ(γ,β )[ f ]h − ε)β (r)
ρ(γ,α)[g]h + ε

))))
.

i.e., α(M−1
g (Mf (r))) �

(ρ(γ,β )[ f ]h − ε)β (r)
(ρ(γ,α)[g]h + ε)

i.e.,
α(M−1

g (Mf (r)))
β (r)

�
ρ(γ,β )[ f ]h − ε
ρ(γ,α)[g]h + ε

.

As ε(> 0) is arbitrary, it follows that

ρ(α ,β )[ f ]g �
ρ(γ,β )[ f ]h
ρ(γ,α)[g]h

. (9)

Analogously from (2) and in view of (8), it follows that

ρ(α ,β )[ f ]g �
λ(γ,β )[ f ]h
λ(γ,α)[g]h

. (10)

Again from (2) and in view of (5), we obtain

λ(α ,β )[ f ]g �
λ(γ,β )[ f ]h
ρ(γ,α)[g]h

. (11)
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Now in view of (6) we have from (1) for all sufficiently large values of r that

α(M−1
g (Mf (r))) � α(M−1

g (Mh(γ−1((ρ(γ,β )[ f ]h + ε)β (r)))))

α(M−1
g (Mf (r))) � α

(
M−1

g

(
Mg

(
α−1

(ρ(γ,β )[ f ]h + ε)β (r)
λ(γ,α)[g]h− ε

))))

i.e., α(M−1
g (Mf (r))) �

(ρ(γ,β )[ f ]h + ε)β (r)
(λ(γ,α)[g]h− ε)

i.e.,
α(M−1

g (Mf (r)))
β (r)

�
ρ(γ,β )[ f ]h + ε
λ(γ,α)[g]h− ε

.

Since ε(> 0) is arbitrary, we obtain that

ρ(α ,β )[ f ]g �
ρ(γ,β )[ f ]h
λ(γ,α)[g]h

. (12)

Similarly in view of (7), we get from (1) that

λ(α ,β )[ f ]g �
ρ(γ,β )[ f ]h
ρ(γ,α)[g]h

. (13)

Again from (4) and in view of (6) it follows that

λ(α ,β )[ f ]g �
λ(γ,β )[ f ]h
λ(γ,α)[g]h

. (14)

The theorem follows from (9), (10), (11), (12), (13) and (14). �

REMARK 1. From the conclusion of the above result, one may write ρ(α ,β )[ f ]g

=
ρ(γ,β) [ f ]h
ρ(γ,α) [g]h

and λ(α ,β )[ f ]g =
λ(γ,β) [ f ]h
λ(γ,α) [g]h

when λ(γ,α)[g]h = ρ(γ,α)[g]h . Similarly ρ(α ,β )[ f ]g

=
λ(γ,β)[ f ]h
λ(γ,α)[g]h

and λ(α ,β )[ f ]g =
ρ(γ,β)[ f ]h
ρ(γ,α) [g]h

when λ(γ,β )[ f ]h = ρ(γ,β )[ f ]h.

THEOREM 2. Let f , g and h be any three entire functions such that 0 < ρ(γ,β )[ f ]h
< ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

max
{(σ (γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

(σ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

}

� σ(α ,β )[ f ]g �
( σ(γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h .
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Proof. Let us consider that ε(> 0) is arbitrary number. Now from the definitions
of σ(γ,β )[ f ]h and σ (γ,β )[ f ]h, for all sufficiently large values of r, we have

Mf (r) � Mh(γ−1(log[(σ(γ,β )[ f ]h + ε)(exp(β (r)))ρ(γ,β) [ f ]h ])), (15)

Mf (r) � Mh(γ−1(log[(σ (γ,β )[ f ]h − ε)(exp(β (r)))ρ(γ,β) [ f ]h ])). (16)

Also for a sequence of values of r tending to infinity, we get

Mf (r) � Mh(γ−1(log[(σ(γ,β )[ f ]h − ε)(exp(β (r)))ρ(γ,β) [ f ]h ])). (17)

Again for a sequence of values of r tending to infinity, we get

Mf (r) � Mh(γ−1(log[(σ (γ,β )[ f ]h + ε)(exp(β (r)))ρ(γ,β) [ f ]h ])). (18)

Similarly from the definitions of σ(γ,α)[g]h and σ (γ,α)[g]h, it follows for all suffi-
ciently large values of r that

Mg(r) � Mh(γ−1(log[(σ(γ,α)[g]h + ε)(exp(α(r)))ρ(γ,α) [g]h ]))

i.e.,Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(σ(γ,α)[g]h + ε)

) 1
ρ(γ,α) [g]h

))
and (19)

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(σ (γ,α)[g]h− ε)

) 1
ρ(γ,α) [g]h

))
. (20)

For a sequence of values of r tending to infinity, we obtain

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(σ(γ,α)[g]h− ε)

) 1
ρ(γ,α) [g]h

))
(21)

and for a sequence of values of r tending to infinity, we get

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(σ (γ,α)[g]h + ε)

) 1
ρ(γ,α) [g]h

))
. (22)

Further from the definitions of τ(γ,β )[ f ]h and τ(γ,β )[ f ]h , for all sufficiently large
values of r, we have

Mf (r) � Mh(γ−1(log((τ(γ,β )[ f ]h + ε)(exp(β (r)))λ(γ,β) [ f ]h))), (23)

Mf (r) � Mh(γ−1(log((τ(γ,β )[ f ]h − ε)(exp(β (r)))λ(γ,β) [ f ]h))). (24)

Also for a sequence of values of r tending to infinity, we get

Mf (r) � Mh(γ−1(log((τ(γ,β )[ f ]h − ε)(exp(β (r)))λ(γ,β) [ f ]h))) (25)

and for a sequence of values of r tending to infinity, we get

Mf (r) � Mh(γ−1(log((τ (γ,β )[ f ]h + ε)(exp(β (r)))λ(γ,β) [ f ]h))). (26)
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Similarly from the definitions of τ(γ,α)[g]h and τ(γ,α)[g]h, it follows for all suffi-
ciently large values of r that

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(τ(γ,α)[g]h + ε)

) 1
λ(γ,α) [g]h

))
and (27)

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(τ(γ,α)[g]h− ε)

) 1
λ(γ,α) [g]h

))
(28)

Also for a sequence of values of r tending to infinity, we obtain

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(τ(γ,α)[g]h− ε)

) 1
λ(γ,α) [g]h

))
and (29)

Mh(r) � Mg

(
α−1

(
log

( exp(γ(r))
(τ (γ,α)[g]h + ε)

) 1
λ(γ,α) [g]h

))
. (30)

Now from (17) and in view of (27) , for a sequence of values of r tending to
infinity, we get

exp(α(M−1
g (Mf (r))))

� exp(α(M−1
g (Mh(γ−1(log((σ(γ,β )[ f ]h − ε)(exp(β (r)))ρ(γ,β) [ f ]h))))))

exp(α(M−1
g (Mf (r)))) �

( (σ(γ,β )[ f ]h − ε)(exp(β (r)))ρ(γ,β) [ f ]h

(τ(γ,α)[g]h + ε)

) 1
λ(γ,α) [g]h

i.e.,
exp(α(M−1

g (Mf (r))))

(exp(β (r)))
ρ(γ,β) [ f ]h
λ(γ,α) [g]h

�
(σ(γ,β )[ f ]h − ε

τ(γ,α)[g]h + ε

) 1
λ(γ,α) [g]h .

Since in view of Theorem 1,
ρ(γ,β)[ f ]h
λ(γ,α) [g]h

� ρ(α ,β )[ f ]g, and as ε(> 0) is arbitrary, it

follows from above that

limsup
r→∞

exp(α(M−1
g (Mf (r))))

(exp(β (r)))ρ(α,β) [ f ]g
�

(σ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

i.e., σ(α ,β )[ f ]g �
(σ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h . (31)

Analogously from (16) and (30) , we get

σ(α ,β )[ f ]g �
(σ (γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h . (32)

Again in view of (20) , we have from (15) for all sufficiently large values of r
that

exp(α(M−1
g (Mf (r)))) �

( (σ(γ,β )[ f ]h + ε)(exp(β (r)))ρ(γ,β) [ f ]h

(σ (γ,α)[g]h− ε)

) 1
ρ(γ,α) [g]h
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i.e.,
exp(α(M−1

g (Mf (r))))

(exp(β (r)))
ρ(γ,β) [ f ]h
ρ(γ,α) [g]h

�
( σ(γ,β )[ f ]h + ε

σ (γ,α)[g]h− ε

) 1
ρ(γ,α) [g]h .

Since in view of Theorem 1, it follows that
ρ(γ,β)[ f ]h
ρ(γ,α) [g]h

� ρ(α ,β )[ f ]g and ε(> 0) is

arbitrary, we get from above that

limsup
r→∞

exp(α(M−1
g (Mf (r))))

(exp(β (r)))
ρ(γ,β) [ f ]h
ρ(γ,α) [g]h

�
( σ(γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h

i.e., σ(α ,β )[ f ]g �
( σ(γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h . (33)

Thus the theorem follows from (31) , (32) and (33) . �
The proof of the following theorem can be carried out from (20) and (23) ; (23)

and (28) respectively after applying the same technique of Theorem 2 and with the
help of Theorem 1. Therefore its proof is omitted.

THEOREM 3. Let f , g and h be any three entire functions such that 0 < λ(γ,β )[ f ]h
< ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

σ(α ,β )[ f ]g � min
{( τ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

( τ(γ,β )[ f ]h
σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h

}
.

Similarly in the line of Theorem 2 and with the help of Theorem 1, one may easily
carry out the proof of following theorem from pairwise inequalities numbers (24) and
(27); (21) and (23) ; (20) and (26) respectively and therefore its proofs is omitted:

THEOREM 4. Let f , g and h be any three entire functions such that 0 < λ(γ,β )[ f ]h
� ρ(γ,β )[ f ]h < ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

(τ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

� τ(α ,β )[ f ]g � min
{( τ(γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

( τ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h

}
.

THEOREM 5. Let f , g and h be any three entire functions such that 0 < ρ(γ,β )[ f ]h
< ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

τ (α ,β )[ f ]g � max
{(σ (γ,β )[ f ]h

σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

(σ (γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

}
.

With the help of Theorem 1, the proof of the above theorem can be carried out from
(16), (19) and (16),(27) respectively after applying the same technique of Theorem
2 and therefore its proof is omitted.
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THEOREM 6. Let f , g and h be any three entire functions such that 0 < ρ(γ,β )[ f ]h
< ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

(σ (γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h � σ (α ,β )[ f ]g

� min
{(σ (γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

(σ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h

}
.

Proof. From (16) and in view of (27) , for all sufficiently large values of r, we
get

exp(α(M−1
g (Mf (r))))

� exp(α(M−1
g (Mh(γ−1(log((σ (γ,β )[ f ]h − ε)(exp(β (r)))ρ(γ,β) [ f ]h))))))

i.e.,exp(α(M−1
g (Mf (r)))) �

( (σ (γ,β )[ f ]h − ε)(exp(β (r)))ρ(γ,β) [ f ]h

(τ(γ,α)[g]h + ε)

) 1
λ(γ,α) [g]h

i.e.,
exp(α(M−1

g (Mf (r))))

(exp(β (r)))
ρ(γ,β) [ f ]h
λ(γ,α) [g]h

�
(σ (γ,β )[ f ]h − ε

τ(γ,α)[g]h + ε

) 1
λ(γ,α) [g]h .

Since in view of Theorem 1,
ρ(γ,β) [ f ]h
λ(γ,α) [g]h

� ρ(α ,β )[ f ]g , and ε(> 0) is arbitrary, we get

from above that

liminf
r→∞

exp(α(M−1
g (Mf (r))))

(exp(β (r)))ρ(α,β) [ f ]g
�

(σ (γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

i.e., σ (α ,β )[ f ]g �
(σ (γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h . (34)

Further in view of (21), we get from (15) for a sequence of values of r tending
to infinity that

exp(α(M−1
g (Mf (r)))) �

( (σ(γ,β )[ f ]h + ε)(exp(β (r)))ρ(γ,β) [ f ]h

(σ(γ,α)[g]h− ε)

) 1
ρ(γ,α) [g]h

i.e.,
exp(α(M−1

g (Mf (r))))

(exp(β (r)))
ρ(γ,β) [ f ]h
ρ(γ,α) [g]h

�
(σ(γ,β )[ f ]h + ε

σ(γ,α)[g]h− ε

) 1
ρ(γ,α) [g]h .

Again as in view of Theorem 1,
ρ(γ,β)[ f ]h
ρ(γ,α) [g]h

� ρ(α ,β )[ f ]g and ε(> 0) is arbitrary,

therefore we get from above that

liminf
r→∞

exp(α(M−1
g (Mf (r))))

(exp(β (r)))ρ(α,β) [ f ]g
�

(σ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h
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i.e., σ (α ,β )[ f ]g �
(σ(γ,β )[ f ]h

σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h . (35)

Similarly from (18) and (20) , we get

i.e., σ (α ,β )[ f ]g �
(σ (γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h . (36)

Thus the theorem follows from (34) , (35) and (36) . �

THEOREM 7. Let f , g and h be any three entire functions such that 0 < λ(γ,β )[ f ]h
< ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

σ (α ,β )[ f ]g � min
{(τ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

(τ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

( τ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

( τ(γ,β )[ f ]h
σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h

}
.

The proof of the above theorem can be carried out from pairwise inequalities num-
bered (20) and (26); (21) and (23); (26) and (28) ; (23) and (29) respectively after
applying the same technique of Theorem 6 and with the help of Theorem 1. Therefore
its proof is omitted.

Similarly in the line of Theorem 2 and with the help of Theorem 1, one may easily
carry out the following theorem from pairwise inequalities numbered (25) and (27);
(24) and (30) ; (20) and (23) respectively and therefore its proof is omitted:

THEOREM 8. Let f , g and h be any three entire functions such that 0 < λ(γ,β )[ f ]h
< ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

max
{(τ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

(τ (γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

}

� τ(α ,β )[ f ]g �
( τ(γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h .

THEOREM 9. Let f , g and h be any three entire functions such that 0 < λ(γ,β )[ f ]h
� ρ(γ,β )[ f ]h < ∞ and 0 < λ(γ,α)[g]h � ρ(γ,α)[g]h < ∞ . Then

τ(α ,β )[ f ]g � max
{(σ (γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

(σ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

(σ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

(σ (γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

}
.
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The proof of the above theorem can be carried out from pairwise inequalities num-
bered (17) and (19); (16) and (22); (17) and (27) ; (16) and (30) respectively after
applying the same technique of Theorem 6 and with the help of Theorem 1. Therefore
its proof is omitted.

THEOREM 10. Let f , g and h be any three entire functions such that 0 < ρ(γ,β )[ f ]h
< ∞ and 0 < ρ(γ,α)[g]h(= λ(γ,α)[g]h) < ∞ . Then

(σ (γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h � σ (α ,β )[ f ]g

� min
{(σ (γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

(σ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h

}

� max
{(σ (γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h ,

(σ(γ,β )[ f ]h
σ(γ,α)[g]h

) 1
ρ(γ,α) [g]h

}

� σ(α ,β )[ f ]g �
( σ(γ,β )[ f ]h

σ (γ,α)[g]h

) 1
ρ(γ,α) [g]h .

The proof of the above theorem can be carried out from pairwise inequalities num-
bered (16) and (19); (18) and (20); (15) and (21) ; (16) and (22); (17) and (19) ;
(15) and (20) respectively after applying the same technique of Theorem 6 and with
the help of Theorem 1. Therefore its proof is omitted.

REMARK 2. In Theorem 10, if we replace the conditions “0 < ρ(γ,β )[ f ]h < ∞
and 0 < ρ(γ,α)[g]h(= λ(γ,α)[g]h) < ∞” by “0 < ρ(γ,β )[ f ]h(= λ(γ,β )[ f ]h) < ∞ and 0 <
ρ(γ,α)[g]h < ∞” respectively, then Theorem10 remains valid with τ(α ,β )[ f ]g and τ(α ,β )[ f ]g
in place of σ (α ,β )[ f ]g and σ(α ,β )[ f ]g respectively.

THEOREM 11. Let f , g and h be any three entire functions such that 0 < ρ(γ,β )[ f ]h
(= λ(γ,β )[ f ]h) < ∞ and 0 < λ(γ,α)[g]h < ∞ . Then

(τ (γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h � σ (α ,β )[ f ]g

� min
{(τ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

(τ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

}

� max
{(τ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h ,

(τ(γ,β )[ f ]h
τ(γ,α)[g]h

) 1
λ(γ,α) [g]h

}

� σ(α ,β )[ f ]g �
( τ(γ,β )[ f ]h

τ(γ,α)[g]h

) 1
λ(γ,α) [g]h .

The proof of the above theorem can be carried out from pairwise inequalities num-
bered (24) and (27); (26) and (28); (23) and (29) ; (24) and (30); (25) and (27) ;
(23) and (28) respectively after applying the same technique of Theorem 6 and with
the help of Theorem 1. Therefore its proof is omitted.
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REMARK 3. In Theorem 11, if we replace the conditions “0 < ρ(γ,β )[ f ]h
(= λ(γ,β )[ f ]h) < ∞ and 0 < λ(γ,α)[g]h < ∞” by “0 < λ(γ,β )[ f ]h < ∞ and 0 < ρ(γ,α)[g]h
(= λ(γ,α)[g]h) < ∞” respectively, then Theorem 11 remains valid with τ (α ,β )[ f ]g and
τ(α ,β )[ f ]g in place of σ (α ,β )[ f ]g and σ(α ,β )[ f ]g respectively.
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