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REFINED NORMAL APPROXIMATIONS
FOR THE STUDENT DISTRIBUTION

FREDERIC OUIMET

Abstract. In this paper, we develop a local limit theorem for the Student distribution. We use it
to improve the normal approximation of the Student survival function given in [23] and to derive
asymptotic bounds for the corresponding maximal errors at four levels of approximation. As a
corollary, approximations for the percentage points (or quantiles) of the Student distribution are
obtained in terms of the percentage points of the standard normal distribution.

1. Introduction

For any v > 2, the density function of the Student ¢, distribution is defined by
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For all v > 2, the mean and variance of X ~ ¢, are well known to be
Y
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The first goal of our paper (Lemma 1) is to establish a local asymptotic expansion
for the ratio of the Student density (1) to the normal density with the same mean and
variance, namely:
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mq)(éx), where ¢(z) := Word and O, := m

The second goal of the paper (Theorem 1) is to prove a refined approximation of
the survival function of the Student #, distribution and derive asymptotic bounds on the
corresponding maximal errors. The most relevant publication in that direction is [23],
where the authors prove that, as v — oo,
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for some universal constant Cy > 0, where

=1 [7+5V2

In Theorem 1, we expand on this result by adding (asymptotic) correction terms to
the lower end point of the Gaussian integral in (2). In total, we present four levels of
approximation, up to an &(v~*) precision.

The third goal of the paper (Theorem 2) is to obtain approximations for the per-
centage points (or quantiles) of the Student distribution in terms of the percentage points
of the standard normal distribution, the latter of which is usually more readily available.
[24] makes a compendium of the known percentage point approximations for the non-
central Student distribution up to that point in time and compares them. Some of the
approximations are based on the works of [11, 12, 10, 7, 22, 13, 9, 21]. The best ap-
proximations at that time turns out to be related to those in [10], [11] and [7].

NOTATION 1. Throughout the paper, the notation u = O(v) means that
limsup |u/v| < C, as v — oo, where C > 0 is a universal constant. Whenever C might
depend on some parameters, we add a subscript (for example, u= Oy (v)).

2. Normal approximations to the Student distribution

First, we need local approximations for the ratio of the Student density to the
normal density function with the same mean and variance.

LEMMA 1. (Local approximation) Forany v >2 and 1 € (0,1), define

O¢ -
By(n):= {xER: ‘m‘ <nv 1/4},

denote the bulk of the Student distribution. Then, as Vv — oo and uniformly for x €
By (M), we have
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Furthermore,
fv (x) _ —1 {1 22 i}
v/zwz) B =1+v 418 6 4 )
{3_255 245"6 165’? 52 32}
{384512 17 5104 12158 _ 457 5)?} “4)
135754 _ 65152 81

1+\6\16

For the interested reader, local approximations in the same vein as Lemma | were
derived for the Poisson, binomial, negative binomial, multinomial, Dirichlet, Wishart
and multivariate hypergeometric distributions in [14, Lemma 2.1], [17, Lemma 3.1],
[16, Lemma 2.1], [15, Theorem 2.1], [18, Theorem 1], [20, Theorem 1], [19, Theo-
rem 1], respectively. See also earlier references such as [8] (based on Fourier analysis
results from [3]) for the Poisson, binomial and negative binomial distributions, and [2]
for the binomial distribution. Another approach, using Stein’s method, is used to study
the variance-gamma distribution in [4]. Also, Kolmogorov and Wasserstein distance
bounds are derived in [6, 5] for the Laplace and variance-gamma distributions.

By integrating the above local approximations, we can approximate the survival
function of the Student ¢, distribution, i.e.,

a) :/:fv(x)dx, a€eR,

using the survival function of the normal distribution with the same mean and variance.

THEOREM 1. (Survival function approximations) As v — oo, we have

Order 0 approximation:
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Order 1 approximation:
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Order 2 approximation:
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Order 3 approximation:
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where ¥ denotes the survival function of the standard normal distribution, C;, i €
{0,1,2,3}, are universal constants, and

8
dy == 1(6112_3)7
dy = _3_2(135;‘ — 8857 +195),
dy = — 3‘;4 (358% — 29387 + 102582 — 1767),
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My = maﬁgm\lsy“ —88y? +195/¢(y) = 0.353017 ...,
ye

M, = ma]llé(MBSy —293y* +1025y* — 1767|¢(y) = 0.758112......
ye

The constants My, M», M5 are illustrated in Figure 1 along with the corresponding rates
of convergence.

As a corollary to Theorem 1, we obtain asymptotic expansions for the percentage
points (or quantiles) of the Student distribution in terms of the percentage points of the
standard normal distribution.

THEOREM 2. (Percentage point approximations) Let v > 2, andlet o, € (0,1) be
such that oo = Sy (A) for some A € By(n) and n € (0,1). As v — oo, we have
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We approximate the 100 - (1 — a)% percentile of the Student distribution by solving
numerically for A in one of the three equations above (ignoring the O'(-) terms).
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Figure 1: Numerical illustration of the asymptotic constants M; (on the left) and the log-log
plot for the maximum absolute errors as a function of v (on the right) for the first three levels of
approximation.

3. Proofs

Proof of Lemma 1. By taking the logarithm in (1), we have

(i) = () (1 ()
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Using the expansions
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we can rewrite (9) as
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Using the Taylor expansions
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which proves (3). To obtain (4) and conclude the proof, we take the exponential on both

sides of the last equation and we expand the right-hand side with

2 3
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For v large enough and uniformly for x € B, (7)), the right-hand side of (11) is &'(1).
When this bound is taken as y in (12), it explains the errorin (4). O

Proof of Theorem 1. By large deviation bounds, the approximations are trivial
when a & By(1/2). Therefore, for the remainder of the proof, we assume that a €
By(1/2). Let

d  d d
e=" it
\%

where d,d,,d; € R are to be chosen later, then we have the Taylor expansion
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We also have the straightforward large deviation bounds
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where 8 > 0 is a small enough constant, and the local approximation in Lemma 1
yields
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where Wi (34) := [5, ¥ k¢ (y)dy. Now, using the fact that
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where W denotes the survival function of the standard normal distribution, equations
(13), (14) and (15) together yield
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which proves (5). If we select d; = ‘Z—“ (62 —3) and dr = d3 = 0 to cancel the first brace
in (16), then
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ds = 0 to cancel the first two braces in (16), then
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which proves (7). If we select dy = % (82 —3), d» = — (135} — 8862 + 195) and
dy = —24(3580 — 29387 + 102582 — 1767) to cancel the three braces in (16), then

| s [ o] =00,

which proves (8). This ends the proof. [
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Proof of Theorem 2. Let a = Sy(A4) for some A € By(n) and 1 € (0,1). By
Theorem 1, we have, as v — oo,

/
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i
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for some universal constants C.. A Taylor expansion for ¥ at A yields, for x = A +
ov,
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By applying these formulas with x = 51725'{ Ve together with the fact that
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This ends the proof. [
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