

COEFFICIENT PROBLEMS OF A CLASS OF q-STARLIKE FUNCTIONS ASSOCIATED WITH q-ANALOGUE OF AL-OBOUDI-AL-QAHTANI INTEGRAL OPERATOR AND NEPHROID DOMAIN

AYOTUNDE OLAJIDE LASODE* AND TIMOTHY OLOYEDE OPOOLA

Abstract. This investigation is on a set $SN_q^*(n,\tau;\eta)$ of q-starlike functions defined by using a newly defined q-analogue of Al-Oboudi-Al-Qahtani integral operator along with subordination and nephroid domain. This new q-operator generalizes some known integral operators. Results such as coefficient bounds, Fekete-Szegö problem (for real and complex parameters) and bounds of some Hankel determinants are presented. Our results generalize some known and new ones.

1. Introduction and definitions

In this work we let A represent the set of *normalized analytic* functions of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$
, $f(0) = 0$, $f'(0) = 1$ and $z \in E := \{z \in \mathbb{C} : |z| < 1\}$. (1.1)

Also, we let S represent the set of functions analytic and univalent in E. A function $f \in S$ that satisfies the geometric condition $Re\{zf'(z)/f(z)\} > 0$, $z \in E$, is called a starlike function. Let S^* represent the set of starlike functions in the unit disk E.

The convolution of two functions

$$f_1(z) = z + \sum_{j=2}^{\infty} a_j z^j, \ f_2(z) = z + \sum_{j=2}^{\infty} \alpha_j z^j \in A, \quad z \in E,$$
 (1.2)

is defined by the function $(f_1 \star f_2)(z) := z + \sum_{j=2}^{\infty} a_j \alpha_j z^j =: (f_2 \star f_1)(z) \in A$. Likewise, from (1.2), $f_1(z)$ is said to be *subordinate* to $f_2(z)$, notationally represented by $f_1(z) \prec f_2(z)$, $z \in E$, if there exists an analytic function

$$s(z) = s_1 z + s_2 z^2 + s_3 z^3 + \cdots$$
 $(s(0) = 0, |s(z)| \le |z| < 1, z \in E)$ (1.3)

such that

$$f_1(z) = f_2(z) \circ s(z) = f_2(s(z)).$$

Keywords and phrases: Starlike function, nephroid domain, Al-Oboudi-Al-Qahtani integral operator, *q*-calculus, convolution, subordination, Fekete-Szegö functional, coefficient bounds, Hankel determinants.

* Corresponding author.

Mathematics subject classification (2020): 30C45, 30C50.

In case $f_2(z)$ is univalent in E, then $f_1(z) \prec f_2(z) \implies f_1(0) = f_2(0)$ and $f_1(E) \subset f_2(E)$.

In the works of Pommerenke [35, 36], the *i*th-Hankel determinant

$$H_{i,j}(f) := \begin{vmatrix} a_j & a_{j+1} & \dots & a_{j+i-1} \\ a_{j+1} & a_{j+2} & \dots & a_{j+i} \\ a_{j+2} & a_{j+3} & \dots & a_{j+i+1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{j+i-1} & a_{j+i} & \dots & a_{j+2(i-1)} \end{vmatrix}$$

was reported for $i, j \in \mathbb{N}$ where all the $a_j s$ are the coefficients of z^j for $f \in S$ of the form (1.1). Observe that for some varied parameters we obtain

$$|H_{2,1}(f)| = |a_3 - a_2^2|, (1.4)$$

$$|H_{2,2}(f)| = |a_2 a_4 - a_3^2| \tag{1.5}$$

and

$$|H_{3,1}(f)| \le |a_3||H_{2,2}(f)| + |a_4||a_2a_3 - a_4| + |a_5||H_{2,1}(f)|. \tag{1.6}$$

In deed, Pommerenke [35] mentioned the application of Hankel determinants in the study of singularities of complex functions. Cantor [5] used Hankel determinants to solve some problems of power series with integral coefficients. Junod [18], Dilcher and Jiu [8], and Its and Krasovsky [13] reported that some specific types of problems of orthogonal polynomials can be solved by using Hankel determinants. Chu [7] applied Hankel determinants to solve some problems involving factorial fractions. The asymptotic behaviour of Hankel determinants were described in separate works of Noor [32], Charliera and Gharakhloo [6] and Ul-Haq and Noor [48]. Some notations and properties of Hankel matrices and their determinants were extensively discussed by Layman [29]. More properties of Hankel determinants can be found in [3, 4, 26, 34]. Another interesting aspect of (1.4) is its kin association with the well-known Fekete-Szegö functional

$$F_{\lambda}(f) = |a_3 - \lambda a_2^2| \tag{1.7}$$

in [10]. It can easily be verified that $|H_{2,1}(f)| = F_1(f)$. So (1.7) is a generalization of (1.4). See the works in [3, 4, 26] for more details.

Lately, geometric function theorists have been inspired to study different kinds of *natural* image domains such as circular domain [17], domain of lemniscate of Bernoulli [43], conic domain [21], stripe-like domain [25], shell-like domain [9], cardioid domain [42], lune-like domain [11], leaf-like domain [37], petal-like domain [31] and many others, for various subsets of A. In particular, Wani and Swaminathan [50, 51], Swaminathan and Wani [46] and Khan et al. [23] investigated the set

$$SN^*(\eta) := \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec \eta(z) = 1 + z - \frac{1}{3}z^3, \ z \in E \right\}$$
 (1.8)

where $\eta(z)$ is a function that *univalently* maps the boundary ∂E of the unit disk E onto a 2-cusped kidney-shaped curve called *nephroid*. It was also demonstrated in [50, 51]

that the function $\eta(z)$ maps the unit disk E onto the domain bounded by the nephroid curve

$$\left((u-1)^2 + v^2 - \left(\frac{2}{3}\right)^2 \right)^3 = \frac{4}{3}v^2.$$
 (1.9)

It is important to note that the nephroid curve in (1.9) is symmetric about the real axis and falls entirely on the *open-right-half-plane*. Interested readers can see [23, 46, 50, 51] for some illustrative diagrams and more properties of the nephroid curve.

Recent studies show that the concept of q-calculus has enticed many geometric function theorists. The concept of q-difference and q-integral were introduced in the works of Jackson [14, 15, 16] and since then, many researchers (for instance see [1, 12, 26, 27, 28, 38, 45]) have used it in various ways to define, extend and establish many properties of some subsets of A. In deed, Srivastava [44] and Kac and Cheung [19] extensively discussed some areas of applications of q-analysis in the fields of Pure and Applied Mathematics.

DEFINITION 1. ([14, 15, 19]) For function $f(z) \in A$ of the form (1.1) and for 0 < q < 1, the q-derivative operator $D_q : A \longrightarrow A$ of f(z) is defined by

$$D_q f(z) = \frac{f(z) - f(qz)}{z(1 - q)} = 1 + \sum_{j=2}^{\infty} [j]_q a_j z^{j-1} \quad (z \neq 0)$$

$$D_q f(0) = f'(0) = 1 \quad (z = 0) \quad \text{if it exists}$$

$$D_q^2 f(z) = D_q (D_q f(z)) = \sum_{j=2}^{\infty} [j]_q [j - 1]_q a_j z^{j-2}$$

$$\text{where } [j]_q = \frac{1 - q^j}{1 - q} = 1 + q + q^2 + \dots + q^{j-1} \quad \text{so that } \lim_{q \to 1^-} [j]_q = j.$$

The importance and uses of operators (and q-operators) in geometric function theory is not hidden anymore. In fact, many researchers (for example see [20, 33, 41, 49]) find it convenient to define q-operators by using the principle of convolution. In particular, Aldweby and Darus [1] introduced and studied the class

$$S_q^{\star}(M) := \left\{ f \in A : \frac{z D_q f(z)}{f(z)} \prec M(z) = 1 + \sum_{j=1}^{\infty} m_j z^j, \ 0 < q < 1, \ z \in E \right\}$$
 (1.11)

of Ma-Minda q-starlike functions. Note that $\lim_{q\to 1^-} S_q^\star(M) = S^\star(M)$ is the well-known class of Ma-Minda-starlike functions in E. Since M(z) is known to unify several subclasses of analytic-univalent functions, geometric function theorists have studied (1.11) by taking different forms of function M(z). For instance see [24, 38, 40, 45, 49] for some details.

Now using Definition 1 along with the concept of convolution, we define the q-Al-Oboudi-Al-Qahtani operator as follows.

DEFINITION 2. Let $n = \{0, 1, 2, \dots\}, \tau \ge 0$ and 0 < q < 1, then

$$L_q^{n,\tau} f(z) = f(z) \star \left(z + \sum_{j=2}^{\infty} \frac{1}{\{1 + ([j]_q - 1)\tau\}^n} z^j \right), \quad z \in E$$

where equivalently we have

$$L_q^{n,\tau} f(z) = z + \sum_{j=2}^{\infty} \frac{1}{\{1 + ([j]_q - 1)\tau\}^n} a_j z^j, \quad z \in E$$
 (1.12)

or

$$L_q^{n,\tau} f(z) = z + \sum_{j=2}^{\infty} \gamma_j a_j z^j, \quad z \in E$$
 (1.13)

where

$$\gamma_j = \frac{1}{\{1 + ([j]_q - 1)\tau\}^n}.$$

From (1.12), we observe that

1.
$$\lim_{q \to 1^-} L_q^{0,\tau} f(z) = \lim_{q \to 1^-} L_q^{n,0} f(z) = \lim_{q \to 1^-} L_q^{0,0} f(z) = f(z) \in A \text{ in (1.1)},$$

- 2. $\lim_{q\to 1^-} L_q^{n,1}f(z) = L^n f(z)$ is the Sălăgean integral operator studied in [39] and
- 3. $\lim_{q \to 1^-} L_q^{n,\tau} f(z) = L^{n,\tau} f(z)$ is the Al-Oboudi-Al-Qahtani integral operator studied in [2].

The new class investigated in this paper is therefore defined as follows.

DEFINITION 3. Let $n = \{0, 1, 2, ...\}$, $\tau \ge 0$ and 0 < q < 1. A function $f(z) \in A$ is said to be a member of the set $SN_a^*(n, \tau; \eta)$ if the q-differential subordination

$$\frac{zD_q(L_q^{n,\tau}f(z))}{L_q^{n,\tau}f(z)} \prec \eta(z), \quad z \in E$$
(1.14)

holds true where $L_q^{n,\tau}$ is the q-operator defined in (1.12) and $\eta(z)$ is defined in (1.8).

Note that from Definition 3,

$$\lim_{q\to 1^-}\mathit{SN}_q^\star(0,\tau;\eta) = \lim_{q\to 1^-}\mathit{SN}_q^\star(n,0;\eta) = \lim_{q\to 1^-}\mathit{SN}_q^\star(0,0;\eta) = \mathit{SN}^\star(\eta)$$

is the class earlier studied in [23, 46, 50, 51].

The purpose of our present investigation is to solve some coefficient problems such as the coefficient bounds, the Fekete-Szegö problem and some bounds of Hankel determinants.

2. Applicable lemmas

Let P be the well-known set of analytic functions of the form

$$c(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \dots, \quad z \in E$$
 (2.1)

that have positive real parts in E. Then the following lemmas hold for $c(z) \in P$.

LEMMA 1. ([47]) For $j \in \mathbb{N}$, $|c_j| \leq 2$.

LEMMA 2. ([47]) For $\kappa \in \mathbb{R}$,

$$\left|c_{2}-\kappa c_{1}^{2}\right| \leq \begin{cases} 2-4\kappa \text{ for } \kappa \leq 0, \\ 2 \text{ for } 0 \leq \kappa \leq 1, \\ 4\kappa-2 \text{ for } \kappa \geq 1. \end{cases}$$

LEMMA 3. ([22]) For $\varkappa \in \mathbb{C}$, $|c_2 - \varkappa c_1^2| \leq 2 \max\{1, |2\varkappa - 1|\}$.

LEMMA 4. ([23, 30]) For $i, j \in \mathbb{N}$; $|c_{i+j} - \lambda c_i c_j| \le 2$ for $0 \le \lambda \le 1$.

LEMMA 5. ([22, 23]) For $i, j \in \mathbb{N}$; $|c_{i+2j} - \sigma c_i c_j^2| \leq 2(1+2\sigma)$ where $\sigma \in \mathbb{R}$.

3. Main results

Henceforth, let $n = \{0, 1, 2, ...\} = \mathbb{N} \cup \{0\}$, $\tau \ge 0$ and 0 < q < 1 unless otherwise stated.

Theorem 1. Let $f(z) \in SN_q^*(n, \tau; \eta)$, then

$$|a_2| \le \frac{1}{([2]_q - 1)\gamma_2} \tag{3.1}$$

$$|a_3| \le \frac{1}{([2]_q - 1)([3]_q - 1)\gamma_3} \tag{3.2}$$

$$|a_4| \le 2(L+2J) \tag{3.3}$$

$$|a_5| \le 2(E + 4B). \tag{3.4}$$

where

$$J = \frac{1}{([4]_q - 1)\gamma_4} \left\{ \frac{3 - [2]_q (4 - [2]_q) + [3]_q ([2]_q - 1)}{8([2]_q - 1)^2 ([3]_q - 1)} - \frac{1}{12} \right\},$$

$$K = \frac{1}{([4]_q - 1)\gamma_4} \left\{ \frac{1}{2} - \frac{[3]_q + [2]_q - 2}{4([2]_q - 1)([3]_q - 1)} \right\},$$

$$L = \frac{1}{2([4]_q - 1)\gamma_4}$$

$$A = \frac{1}{([5]_q - 1)\gamma_5} \left[\frac{1}{16([2]_q - 1)^2} \left\{ \frac{(2 - [2]_q)^2}{([3]_q - 1)} + \frac{1}{([2]_q - 1)} + \frac{(2 - [2]_q)(2[2]_q + [3]_q - 3)}{([2]_q - 1)([3]_q - 1)} \right\} \right]$$

$$- \frac{([4]_q + [2]_q - 2)}{8([2]_q - 1)([4]_q - 1)} \left\{ \frac{3 - [2]_q (4 - [2]_q) + [3]_q ([2]_q - 1)}{2([2]_q - 1)^2 ([3]_q - 1)} - \frac{1}{3} \right\} \right]$$

$$B = \frac{1}{([5]_q - 1)\gamma_5} \left[\frac{([4]_q + [2]_q - 2)}{4([2]_q - 1)([4]_q - 1)} \left\{ 1 - \frac{[3]_q + [2]_q - 2}{2([2]_q - 1)([3]_q - 1)} \right\} + \frac{1}{4([2]_q - 1)([3]_q - 1)} \left\{ \frac{(2[2]_q + [3]_q - 3)}{2([2]_q - 1)} - (2 - [2]_q) \right\} - \frac{1}{4} \right]$$

$$C = \frac{1}{([5]_q - 1)\gamma_5} \left[\frac{1}{2} - \frac{([4]_q + [2]_q - 2)}{4([2]_q - 1)([4]_q - 1)} \right]$$

$$D = \frac{1}{([5]_q - 1)\gamma_5} \left[\frac{1}{4} - \frac{1}{4([3]_q - 1)} \right]$$

$$E = \frac{1}{2([5]_q - 1)\gamma_5}.$$

The results are non-sharp.

Proof. By the definition of subordination, (1.14) can be expressed as

$$\frac{zD_q(L_q^{n,\tau}f(z))}{L_q^{n,\tau}f(z)} = \eta(s(z)) = 1 + s(z) - \frac{1}{3}(s(z))^3, \quad z \in E$$
(3.6)

where s(z) is given in (1.3).

Simple computation shows that by using (1.13), the LHS of (3.6) can be binomially expanded as

$$\frac{zD_{q}(L_{q}^{\eta,\tau}f(z))}{L_{q}^{\eta,\tau}f(z)} = 1 + \{[2]_{q} - 1\}\gamma_{2}a_{2}z
+ \{([3]_{q} - 1)\gamma_{3}a_{3} - ([2]_{q} - 1)\gamma_{2}^{2}a_{2}^{2}\}z^{2}
+ \{(2 - [2]_{q} - [3]_{q})\gamma_{2}\gamma_{3}a_{2}a_{3} + ([2]_{q} - 1)\gamma_{2}^{3}a_{2}^{3} + ([4]_{q} - 1)\gamma_{4}a_{4}\}z^{3}
+ \{(2 - [2]_{q} - [4]_{q})\gamma_{2}\gamma_{4}a_{2}a_{4} + (1 - [3]_{q})\gamma_{3}^{2}a_{3}^{2} + (1 - [4]_{q})\gamma_{2}^{4}a_{2}^{4}
+ ([5]_{q} - 1)\gamma_{5}a_{5} + (2[2]_{q} + [3]_{q} - 3)\gamma_{2}^{2}\gamma_{3}a_{2}^{2}a_{3}\}z^{4}
+ \cdots$$
(3.7)

Now we expand the RHS of (3.6). Firstly, it is well-known that the relationship between s(z) in (1.3) and c(z) in (2.1) can be demonstrated as

$$s(z) = \frac{c(z) - 1}{c(z) + 1} = \frac{(1 + c_1 z + c_2 z^2 + c_3 z^3 + \dots) - 1}{(1 + c_1 z + c_2 z^2 + c_3 z^3 + \dots) + 1}$$
$$= \frac{1}{2}c_1 z + \frac{1}{2}\left(-\frac{1}{2}c_1^2 + c_2\right)z^2 + \frac{1}{2}\left(\frac{1}{2^2}c_1^3 - c_1c_2 + c_3\right)z^3 + \dots$$

so that

$$\eta(s(z)) = 1 + \frac{1}{2}c_1z + \frac{1}{2}\left(-\frac{1}{2}c_1^2 + c_2\right)z^2 + \frac{1}{2}\left(\frac{1}{6}c_1^3 - c_1c_2 + c_3\right)z^3 + \frac{1}{2}\left(\frac{1}{2}c_1^2c_2 - c_1c_3 - \frac{1}{2}c_2^2 + c_4\right)z^4 + \cdots$$
(3.8)

Now comparing of coefficients in (3.7) and (3.8) shows that

$$([2]_q - 1)\gamma_2 a_2 = \frac{1}{2}c_1, \tag{3.9}$$

$$([3]_q - 1)\gamma_3 a_3 - ([2]_q - 1)\gamma_2^2 a_2^2 = \frac{1}{2} \left(-\frac{1}{2}c_1^2 + c_2 \right), \tag{3.10}$$

$$(2 - [2]_q - [3]_q)\gamma_2\gamma_3a_2a_3 + ([2]_q - 1)\gamma_2^3a_2^3 + ([4]_q - 1)\gamma_4a_4 = \frac{1}{2}\left(\frac{1}{6}c_1^3 - c_1c_2 + c_3\right)$$
(3.11)

and

$$(2 - [2]_q - [4]_q)\gamma_2\gamma_4a_2a_4 + (1 - [3]_q)\gamma_3^2a_3^2 + (1 - [2]_q)\gamma_2^4a_2^4 + ([5]_q - 1)\gamma_5a_5 + (2[2]_q + [3]_q - 3)\gamma_2^2\gamma_3a_2^2a_3 = \frac{1}{2}\left(\frac{1}{2}c_1^2c_2 - c_1c_3 - \frac{1}{2}c_2^2 + c_4\right).$$
(3.12)

By simple calculation, (3.9) simplifies to

$$a_2 = \frac{c_1}{2([2]_q - 1)\gamma_2} \tag{3.13}$$

so that by applying triangle inequality and Lemma 1 we obtain (3.1). Using (3.13) in (3.10) leads to

$$a_3 = \frac{c_1^2(2 - [2]_q) + 2c_2([2]_q - 1)}{4([2]_q - 1)([3]_q - 1)\gamma_3}$$
(3.14)

so that by applying triangle inequality and Lemma 1 we obtain (3.2). Using (3.13) and (3.14) in (3.11) leads to

$$a_{4} = -\frac{c_{1}^{3}}{([4]_{q} - 1)\gamma_{4}} \left\{ \frac{3 - [2]_{q}(4 - [2]_{q}) + [3]_{q}([2]_{q} - 1)}{8([2]_{q} - 1)^{2}([3]_{q} - 1)} - \frac{1}{12} \right\} - \frac{c_{1}c_{2}}{([4]_{q} - 1)\gamma_{4}} \left\{ \frac{1}{2} - \frac{[3]_{q} + [2]_{q} - 2}{4([2]_{q} - 1)([3]_{q} - 1)} \right\} + \frac{c_{3}}{2([4]_{q} - 1)\gamma_{4}}$$
(3.15)

and for simplicity we have

$$a_4 = -Jc_1^3 - Kc_1c_2 + Lc_3 (3.16)$$

where J, K and L are defined in (3.5). To obtain bound for a_4 , from (3.16),

$$|a_4| = |-Jc_1^3 - Kc_1c_2 + Lc_3|$$

$$= \left| \frac{L}{2} \left(c_3 - \frac{2K}{L} c_1c_2 \right) + \frac{L}{2} \left(c_3 - \frac{2J}{L} c_1^3 \right) \right|$$

so that by applying triangle inequality and Lemmas 4 and 5 we obtain (3.3). Lastly, using (3.13), (3.14) and (3.16) in (3.12) leads to

$$\begin{split} a_5 = & \frac{c_1^4}{([5]_q - 1)\gamma_5} \left[\frac{1}{16([2]_q - 1)^2} \left\{ \frac{(2 - [2]_q)^2}{([3]_q - 1)} + \frac{1}{([2]_q - 1)} + \frac{(2 - [2]_q)(2[2]_q + [3]_q - 3)}{([2]_q - 1)([3]_q - 1)} \right\} \right. \\ & \left. - \frac{([4]_q + [2]_q - 2)}{8([2]_q - 1)([4]_q - 1)} \left\{ \frac{3 - [2]_q(4 - [2]_q) + [3]_q([2]_q - 1)}{2([2]_q - 1)^2([3]_q - 1)} - \frac{1}{3} \right\} \right] \\ & \left. - \frac{c_1^2 c_2}{([5]_q - 1)\gamma_5} \left[\frac{([4]_q + [2]_q - 2)}{4([2]_q - 1)([4]_q - 1)} \left\{ 1 - \frac{[3]_q + [2]_q - 2}{2([2]_q - 1)([3]_q - 1)} \right\} \right. \\ & \left. + \frac{1}{4([2]_q - 1)([3]_q - 1)} \left\{ \frac{(2[2]_q + [3]_q - 3)}{2([2]_q - 1)} - (2 - [2]_q) \right\} - \frac{1}{4} \right] \right. \\ & \left. - \frac{c_1 c_3}{([5]_q - 1)\gamma_5} \left[\frac{1}{2} - \frac{([4]_q + [2]_q - 2)}{4([2]_q - 1)([4]_q - 1)} \right] \right. \\ & \left. - \frac{c_2^2}{([5]_q - 1)\gamma_5} \left[\frac{1}{4} - \frac{1}{4([3]_q - 1)} \right] \right. \\ & \left. + \frac{c_4}{2([5]_q - 1)\gamma_5} \right. \end{split}$$

and for simplicity we have

$$a_5 = Ac_1^4 - Bc_1^2c_2 - Cc_1c_3 - Dc_2^2 + Ec_4$$
(3.17)

where A, B, C, D and E are defined in (3.5). To obtain bound for a_5 , from (3.17),

$$|a_5| = |Ac_1^4 - Bc_1^2c_2 - Cc_1c_3 - Dc_2^2 + Ec_4|$$

$$= \left| \frac{E}{2} \left(c_4 - \frac{2C}{E}c_1c_3 \right) + \frac{E}{2} \left(c_4 - \frac{2D}{E}c_2^2 \right) - Bc_1^2 \left(c_2 - \frac{A}{B}c_1^2 \right) \right|$$

so that by applying triangle inequality and Lemmas 1 and 4 we obtain (3.4). \Box

REMARK 1. By setting n=0 (or $\tau=0$) and letting $q \to 1^-$ make (3.1), (3.2), (3.4), (3.13), (3.14), (3.16) and (3.17) to become the results of Khan et al. [23]. Moreover, $|a_4| = \frac{5}{18}$ in (3.3) gives a better estimate when compared with the estimate given by Khan et al. [23].

Theorem 2. Let $f(z) \in SN_q^*(n, \tau; \eta)$. Then for $u \in \mathbb{R}$,

$$\begin{aligned} \left|a_3-ua_2^2\right| & \leq \left\{ \begin{array}{ll} \frac{1}{([3]_q-1)\gamma_3} \left\{ \frac{(2-[2]_q)([2]_q-1)\gamma_2^2-u([3]_q-1)\gamma_3}{([2]_q-1)^2\gamma_2^2} + 1 \right\} & for \ \ u \leq U_1 \\ \frac{1}{([3]_q-1)\gamma_3} & for \ \ U_1 \leq u \leq U_2 \\ \frac{1}{([3]_q-1)\gamma_3} \left\{ \frac{u([3]_q-1)\gamma_3-(2-[2]_q)([2]_q-1)\gamma_2^2}{([2]_q-1)^2\gamma_2^2} - 1 \right\} & for \ \ u \geq U_2 \\ \end{array} \end{aligned} \right.$$

where

$$U_1 = \frac{(2 - [2]_q - 1)([2]_q - 1)\gamma_2^2}{([3]_q - 1)\gamma_3} \quad and \quad U_2 = \frac{([2]_q - 1)\gamma_2^2\{2([2]_q - 1) + (2 - [2]_q)\}}{([3]_q - 1)\gamma_3}.$$

Proof. For $u \in \mathbb{R}$ and using (3.13) and (3.14) in (1.7) leads to

$$\left|a_3 - ua_2^2\right| = \frac{1}{2([3]_q - 1)\gamma_3} \left|c_2 - \left\{\frac{u([3]_q - 1)\gamma_3 - (2 - [2]_q)([2]_q - 1)\gamma_2^2}{2([2]_q - 1)^2\gamma_2^2}\right\}c_1^2\right|$$

which equivalently implies that

$$\left|a_3 - ua_2^2\right| = \frac{1}{2([3]_a - 1)\gamma_3} \left|c_2 - \kappa c_1^2\right| \tag{3.18}$$

where

$$\kappa = \frac{u([3]_q - 1)\gamma_3 - (2 - [2]_q)([2]_q - 1)\gamma_2^2}{2([2]_q - 1)^2\gamma_2^2}.$$
(3.19)

Now applying Lemma 2 implies that

$$|a_3 - ua_2^2| \le \frac{1}{([3]_q - 1)\gamma_3} \left\{ \frac{(2 - [2]_q)([2]_q - 1)\gamma_2^2 - u([3]_q - 1)\gamma_3}{([2]_q - 1)^2\gamma_2^2} + 1 \right\}$$

for $u \le \frac{(2-[2]_q-1)([2]_q-1)\gamma_2^2}{([3]_q-1)\gamma_3}$,

$$|a_3 - ua_2^2| \le \frac{1}{([3]_q - 1)\gamma_3}$$

for $0 \le u \le \frac{([2]_q - 1)\gamma_2^2 \{2([2]_q - 1) + (2 - [2]_q)\}}{([3]_q - 1)\gamma_3}$ and

$$|a_3 - ua_2^2| \le \frac{1}{([3]_q - 1)\gamma_3} \left\{ \frac{u([3]_q - 1)\gamma_3 - (2 - [2]_q)([2]_q - 1)\gamma_2^2}{([2]_q - 1)^2\gamma_2^2} - 1 \right\}$$

for $u \ge \frac{([2]_q - 1)\gamma_2^2 \{2([2]_q - 1) + (2 - [2]_q)\}}{([3]_q - 1)\gamma_3}$ and the proof completes. \square

Theorem 3. Let $f(z) \in SN_q^*(n,\tau;\eta)$. Then for $v \in \mathbb{C}$,

$$\left| a_3 - v a_2^2 \right| \le \frac{1}{([3]_q - 1)\gamma_3} \max \left\{ 1, \left| \frac{v([3]_q - 1)\gamma_3 - (2 - [2]_q)([2]_q - 1)\gamma_2^2}{([2]_q - 1)^2 \gamma_2^2} - 1 \right| \right\}. \tag{3.20}$$

Proof. For $v \in \mathbb{C}$, using (3.18) and (3.19) in (1.7) and applying Lemma 3 implies that

$$\left|a_3 - va_2^2\right| \le \frac{1}{2([3]_q - 1)\gamma_3} \times 2\max\left\{1, \left|2\left(\frac{v([3]_q - 1)\gamma_3 - (2 - [2]_q)([2]_q - 1)\gamma_2^2}{2([2]_q - 1)^2\gamma_2^2}\right) - 1\right|\right\}$$

and simple computation gives inequality (3.20).

REMARK 2. Setting n = 0 (or $\tau = 0$) and letting $q \longrightarrow 1^-$ make Theorems 2 and 3 to become the results of Khan et al. [23].

THEOREM 4. Let $f(z) \in SN_q^*(n, \tau; \eta)$. Then

$$|H_{2,2}(f)| \le 4(Q+P+2M)$$
 (3.21)

where

$$M = \frac{J}{2([2]_q - 1)\gamma_2} + \frac{(2 - [2]_q)^2}{16([2]_q - 1)^2([3]_q - 1)^2\gamma_3^2}$$

$$N = \frac{K}{2([2]_q - 1)\gamma_2} + \frac{(2 - [2]_q)}{4([3]_q - 1)^2\gamma_3^2}$$

$$Q = \frac{L}{2([2]_q - 1)\gamma_2}$$

$$P = \frac{1}{4([3]_q - 1)^2\gamma_3^2}$$

$$(3.22)$$

and J, K and L are defined in (3.5).

Proof. By using (3.13), (3.14) and (3.16) in (1.5) we have

$$|a_2a_4 - a_3^2| = \left| -c_1^4 \left\{ \frac{J}{2([2]_q - 1)\gamma_2} + \frac{(2 - [2]_q)^2}{16([2]_q - 1)^2([3]_q - 1)^2\gamma_3^2} \right\} - c_1^2 c_2 \left\{ \frac{K}{2([2]_q - 1)\gamma_2} + \frac{(2 - [2]_q)}{4([3]_q - 1)^2\gamma_3^2} \right\} + c_1 c_3 \left\{ \frac{L}{2([2]_q - 1)\gamma_2} \right\} - c_2^2 \left\{ \frac{1}{4([3]_q - 1)^2\gamma_3^2} \right\} \right|.$$

By equivalence we have

$$|a_2a_4 - a_3^2| = \left| -Mc_1^4 - Nc_1^2c_2 + Qc_1c_3 - Pc_2^2 \right|$$

$$= \left| \frac{Qc_1}{2} \left(c_3 - \frac{2M}{Q}c_1^3 \right) + \frac{Qc_1}{2} \left(c_3 - \frac{2N}{Q}c_1c_2 \right) - Pc_2^2 \right|$$

where M, N, Q and P are defined in (3.22). Now applying Lemmas 1, 4 and 5 leads to (3.21). \square

THEOREM 5. Let $f(z) \in SN_q^*(n, \tau; \eta)$. Then

$$|a_2a_3 - a_4| \le 2(L + 2R) \tag{3.23}$$

where

$$R = \frac{(2-[2]_q)}{8([2]_q-1)^2([3]_q-1)\gamma_2\gamma_3} + J$$

$$S = \frac{1}{4([2]_q-1)([3]_q-1)\gamma_2\gamma_3} + K$$
(3.24)

and J, K and L are defined in (3.5).

Proof. Recall by using (3.13), (3.14) and (3.16) that

$$\begin{aligned} |a_2a_3 - a_4| &= \left| c_1^3 \left\{ \frac{(2 - [2]_q)}{8([2]_q - 1)^2([3]_q - 1)\gamma_2\gamma_3} + J \right\} \right. \\ &+ c_1c_2 \left\{ \frac{1}{4([2]_q - 1)([3]_q - 1)\gamma_2\gamma_3} + K \right\} - Lc_3 \right|. \end{aligned}$$

By equivalence we have

$$|a_2a_3 - a_4| = |Rc_1^3 + Sc_1c_2 - Lc_3| = \left| -\left\{ \frac{L}{2} \left(c_3 - \frac{2S}{L} c_1c_2 \right) + \frac{L}{2} \left(c_3 - \frac{2R}{L} c_1^3 \right) \right\} \right|$$

where R, S and L are defined in (3.24) and (3.5). Now applying Lemmas 1, 4 and 5 leads to (3.23). \square

THEOREM 6. Let $f(z) \in SN_a^*(n, \tau; \eta)$. Then

$$|H_{3,1}(f)| \le \frac{4(Q+P+2M)}{([2]_q-1)([3]_q-1)\gamma_3} + \frac{2(E+4B)}{([3]_q-1)\gamma_3} + 4(L+2J)(L+2R). \tag{3.25}$$

Proof. Putting (3.2), (3.3), (3.4), (3.20), (3.21) and (3.23) into (1.6) and simplifying leads to (3.25). \Box

Acknowledgement. The authors thank the anonymous referee(s) and the editor for their combined efforts and advice that added immense values to this work.

REFERENCES

- [1] H. ALDWEBY AND M. DARUS, Coefficient estimates of classes of q-starlike and q-convex functions, Adv. Stud. Contemp. Math., 26, 1 (2016), 21–26.
- [2] F. M. AL-OBOUDI AND Z. M. AL-QAHTANI, Application of differential subordinations to some properties of linear operators, Internat. J. Open Probl. Complex Anal., 2, 3 (2010), 189–202.
- [3] R. O. AYINLA AND T. O. OPOOLA, The Fekete Szegö functional and second Hankel determinant for a certain subclass of analytic functions, Appl. Math., 10, (2019), 1071–1078.
- [4] R. A. BELLO AND T. O. OPOOLA, Upper bounds for Fekete-Szegö functions and the second Hankel determinants for a class of starlike functions, Internat. J. Math., 13, 2 (2017), 34–39.
- [5] D. G. CANTOR, Power series with integral coefficients, Bull. Amer. Math. Soc., 69, (1963), 362–366.

- [6] C. CHARLIERA AND R. GHARAKHLOO, Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher-Hartwig singularities, Adv. Math., 383, (2021), 69 pp.
- [7] W. Chu, Hankel determinants of factorial fractions, Bull. Aust. Math. Soc., 105, 1 (2022), 46-57.
- [8] K. DILCHER AND L. JIU, Orthogonal polynomials and Hankel determinants for certain Bernoulli and Euler polynomials, J. Math. Anal. Appl., 497, 1 (2021), 124–855.
- [9] J. DZIOK, R. K. RAINA AND J. SOKÓŁ, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comp. Model., 57, (2013), 1203–1211.
- [10] M. FEKETE AND G. SZEGÖ, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc., 8, (1933), 85–89.
- [11] S. GANDHI AND V. RAVICHANDRAN, Starlike functions associated with a lune, Asian-Eur. J. Math., 10, 3 (2017), 1–12.
- [12] M. E. H. ISMAIL, E. MERKES AND D. STYER, A generalization of starlike functions, Comp. Var., Theory Appl., 14, (1990), 77–84.
- [13] A. ITS AND I. KRASOVSKY, Hankel determinant and orthogonal polynomial for the Gaussian weight with a jump, Contemp. Math., 458, (2008), 215–248.
- [14] F. H. JACKSON, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb., 46, 2 (1908), 253–281.
- [15] F. H. JACKSON, On q-difference equation, Amer. J. Math., 32, 4 (1910), 305–314.
- [16] F. H. JACKSON, On q-definite integrals, Quart. J. Pure Appl. Math., 41, (1910), 193–203.
- [17] W. JANOWSKI, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28, 3 (1973), 297–326.
- [18] A. JUNOD, Hankel determinants and orthogonal polynomials, Expo. Math., 21, (2003), 63-74.
- [19] V. KAC AND P. CHEUNG, Quantum Calculus, Springer-Verlag Inc, New York, 2002.
- [20] S. KANAS AND D. RĂDUCANU, Some classes of analytic functions related to conic domains, Math. Slovaca, 64, 5 (2014), 1183–1196.
- [21] S. KANAS AND A. WIŚNIOWSKA, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105, (1999), 327–336.
- [22] F. R. KEOGH AND E. P. MERKES, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, 1 (1969), 8–12.
- [23] M. G. KHAN, B. AHMAD, W. K. MASHWANI, T. G. SHABA AND M. ARIF, Third Hankel determinant problem for certain subclasses of analytic functions associated with nephroid domain, Earthline J. Math. Sci., 6, 2 (2021), 293–308.
- [24] B. KHAN, H. M. SRIVASTAVA, N. KHAN, M. DARUS, Q. Z. AHMAD AND M. TAHIR, Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, 13, 574 (2021), 18 pp.
- [25] K. KUROKI AND S. OWA, Notes on new class for certain analytic functions, Adv. Math. Sci. J., 1, 2 (2012), 127–131.
- [26] A. O. LASODE AND T. O. OPOOLA, Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by q-differential operator, Gulf J. Math., 11, 2 (2021), 36–43.
- [27] A. O. LASODE AND T. O. OPOOLA, On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal., 5, 2 (2021), 46–52.
- [28] A. O. LASODE AND T. O. OPOOLA, Some investigations on a class of analytic and univalent functions involving q-differentiation, Eur. J. Math. Anal., 2, 12 (2022), 1–9.
- [29] J. W. LAYMAN, The Hankel transform and some of its properties, J. Integer Seq., 4, (2001), 1-11.
- [30] A. E. LIVINGSTON, *The coefficients of multivalent close-to-convex functions*, Proc. Amer. Math. Soc., **21**, (1969), 545–552.
- [31] R. K. MAURYA AND P. SHARMA, A class of starlike functions associated with petal like region on the positive half of complex plane, J. Indian Math. Soc., 87, 3 (2020), 165–172.
- [32] K. I. NOOR, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures. Et. Appl., 28, (1983), 731–739.
- [33] K. I. NOOR, Some classes of analytic functions associated with q-Ruscheweyh differential operator, Facta Univ. Ser. Math. Inform., 33, (2018), 531–538.
- [34] E. A. OYEKAN AND S. O. ADERIBOLE, New results on the Chebyshev polynomial bounds for classes of univalent functions, Asia Pac. J. Math., 7, (2020), 1–10.

- [35] C. POMMERENKE, On the coefficients and Hankel determinants of univalent functions, Proc. Lond. Math. Soc., 41, 1 (1966), 111–122.
- [36] C. POMMERENKE, On the Hankel determinants of univalent functions, Mathematik., 14, 1 (1967), 108–112.
- [37] M. H. PRIYA AND R. B. SHARMA, On a class of bounded turning functions subordinate to a leaf-like domain, J. Phy. Conf. Ser., 1000, 1 (2018), 1–14.
- [38] C. RAMACHANDRAN, T. SOUPRAMANIEN AND B. A. FRASIN, New subclasses of analytic functions associated with q-difference operator, Eur. J. Pure Appl. Math., 10, 2 (2017), 348–362.
- [39] G. S. SĂLĂGEAN, Subclasses of univalent functions, Lect. Notes Math., 1013, (1983), 362–372.
- [40] T. M. SEOUDY AND M. K. AOUF, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10, 1 (2016), 135–145.
- [41] T. M. SEOUDY AND A. E. SHAMMAKY, Certain subclasses of spiral-like functions associated with q-analogue of Carlson-Shaffer operator, AIMS Math., 6, 3 (2020), 2525–2538.
- [42] K. SHARMA, N. K. JAIN AND V. RAVICHANDRAN, Starlike functions associated with a cardioid, Afr. Math., 27, 5 (2016), 923–939.
- [43] J. SOKÓŁ AND J. STANKIEWICZ, Radius of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej. Math., 19, (1996), 101–105.
- [44] H. M. SRIVASTAVA, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci. Review paper, (2019).
- [45] R. SRIVASTAVA AND H. M. ZAYED, Subclasses of analytic functions of complex order defined by q-derivative operator, Stud. Univ. Babés-Bolyai Math., 64, 1 (2019), 71–80.
- [46] A. SWAMINATHAN AND L. A. WANI, Sufficiency for nephroid starlikeness using hypergeometric functions, Math Meth Appl Sci. (2021), 1–14.
- [47] D. K. THOMAS, N. TUNESKI AND A. VASUDEVARAO, Univalent Functions: A Primer, Walter de Gruyter, Inc, Berlin, 2018.
- [48] W. UL-HAQ AND K. I. NOOR, A certain class of analytic functions and the growth rate of Hankel determinant, J. Inequal. Appl., 2012, 1 (2012), 1–11.
- [49] Z. WANG, S. HUSSAIN, M. NAEEM, T. MAHMOOD AND S. KHAN, A subclass of univalent functions associated with q-analogue of Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat., 49, 4 (2020), 1471–1479.
- [50] L. A. WANI AND A. SWAMINATHAN, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc., 44, 1 (2020), 79–104.
- [51] L. A. WANI AND A. SWAMINATHAN, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM., 114, 4 (2020), 20 pp.

(Received March 1, 2022)

Ayotunde Olajide Lasode Department of Mathematics Faculty of Physical Sciences, University of Ilorin PMB 1515, Ilorin, Nigeria e-mail: lasode_ayo@yahoo.com

Timothy Oloyede Opoola Department of Mathematics Faculty of Physical Sciences, University of Ilorin PMB 1515, Ilorin, Nigeria e-mail: opoola.to@unilorin.edu.com