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COEFFICIENT PROBLEMS OF A CLASS OF q–STARLIKE FUNCTIONS

ASSOCIATED WITH q–ANALOGUE OF AL–OBOUDI–AL–QAHTANI

INTEGRAL OPERATOR AND NEPHROID DOMAIN

AYOTUNDE OLAJIDE LASODE ∗ AND TIMOTHY OLOYEDE OPOOLA

Abstract. This investigation is on a set SN ∗
q(n,τ ;η) of q -starlike functions defined by using a

newly defined q -analogue of Al-Oboudi-Al-Qahtani integral operator along with subordination
and nephroid domain. This new q -operator generalizes some known integral operators. Results
such as coefficient bounds, Fekete-Szegö problem (for real and complex parameters) and bounds
of some Hankel determinants are presented. Our results generalize some known and new ones.

1. Introduction and definitions

In this work we let A represent the set of normalized analytic functions of the
form

f (z) = z+
∞

∑
j=2

a jz
j, f (0) = 0, f ′(0) = 1 and z ∈ E := {z ∈ C : |z| < 1}. (1.1)

Also, we let S represent the set of functions analytic and univalent in E . A function
f ∈ S that satisfies the geometric condition R e{z f ′(z)/ f (z)} > 0, z ∈ E , is called a
starlike function. Let S� represent the set of starlike functions in the unit disk E .

The convolution of two functions

f1(z) = z+
∞

∑
j=2

a jz
j, f2(z) = z+

∞

∑
j=2

α jz
j ∈ A, z ∈ E , (1.2)

is defined by the function ( f1 � f2)(z) := z+
∞
∑
j=2

a jα jz j =: ( f2 � f1)(z) ∈ A . Likewise,

from (1.2), f1(z) is said to be subordinate to f2(z) , notationally represented by f1(z)≺
f2(z) , z ∈ E , if there exists an analytic function

s(z) = s1z+ s2z
2 + s3z

3 + · · · (s(0) = 0, |s(z)| � |z| < 1, z ∈ E) (1.3)

such that
f1(z) = f2(z)◦ s(z) = f2(s(z)).
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In case f2(z) is univalent in E , then f1(z) ≺ f2(z) =⇒ f1(0) = f2(0) and f1(E) ⊂
f2(E) .

In the works of Pommerenke [35, 36], the i th-Hankel determinant

Hi, j( f ) :=

∣∣∣∣∣∣∣∣∣∣∣

a j a j+1 . . . . . . a j+i−1

a j+1 a j+2 . . . . . . a j+i

a j+2 a j+3 . . . . . . a j+i+1
...

...
...

...
...

a j+i−1 a j+i . . . . . . a j+2(i−1)

∣∣∣∣∣∣∣∣∣∣∣
was reported for i, j ∈ N where all the a js are the coefficients of z j for f ∈ S of the
form (1.1). Observe that for some varied parameters we obtain

|H2,1( f )| = |a3−a2
2|, (1.4)

|H2,2( f )| = |a2a4−a2
3| (1.5)

and
|H3,1( f )| � |a3||H2,2( f )|+ |a4||a2a3−a4|+ |a5||H2,1( f )|. (1.6)

In deed, Pommerenke [35] mentioned the application of Hankel determinants in the
study of singularities of complex functions. Cantor [5] used Hankel determinants to
solve some problems of power series with integral coefficients. Junod [18], Dilcher and
Jiu [8], and Its and Krasovsky [13] reported that some specific types of problems of
orthogonal polynomials can be solved by using Hankel determinants. Chu [7] applied
Hankel determinants to solve some problems involving factorial fractions. The asymp-
totic behaviour of Hankel determinants were described in separate works of Noor [32],
Charliera and Gharakhloo [6] and Ul-Haq and Noor [48]. Some notations and proper-
ties of Hankel matrices and their determinants were extensively discussed by Layman
[29]. More properties of Hankel determinants can be found in [3, 4, 26, 34]. Another
interesting aspect of (1.4) is its kin association with the well-known Fekete-Szegö func-
tional

Fλ ( f ) =
∣∣a3−λa2

2

∣∣ (1.7)

in [10]. It can easily be verified that |H2,1( f )| = F1( f ) . So (1.7) is a generalization of
(1.4). See the works in [3, 4, 26] for more details.

Lately, geometric function theorists have been inspired to study different kinds of
natural image domains such as circular domain [17], domain of lemniscate of Bernoulli
[43], conic domain [21], stripe-like domain [25], shell-like domain [9], cardioid do-
main [42], lune-like domain [11], leaf-like domain [37], petal-like domain [31] and
many others, for various subsets of A . In particular, Wani and Swaminathan [50, 51],
Swaminathan and Wani [46] and Khan et al. [23] investigated the set

SN ∗(η) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ η(z) = 1+ z− 1
3
z3, z ∈ E

}
(1.8)

where η(z) is a function that univalently maps the boundary ∂E of the unit disk E onto
a 2-cusped kidney-shaped curve called nephroid. It was also demonstrated in [50, 51]
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that the function η(z) maps the unit disk E onto the domain bounded by the nephroid
curve (

(u−1)2 + v2−
(

2
3

)2
)3

=
4
3
v2. (1.9)

It is important to note that the nephroid curve in (1.9) is symmetric about the real axis
and falls entirely on the open-right-half-plane. Interested readers can see [23, 46, 50,
51] for some illustrative diagrams and more properties of the nephroid curve.

Recent studies show that the concept of q -calculus has enticed many geometric
function theorists. The concept of q -difference and q -integral were introduced in the
works of Jackson [14, 15, 16] and since then, many researchers (for instance see [1, 12,
26, 27, 28, 38, 45]) have used it in various ways to define, extend and establish many
properties of some subsets of A . In deed, Srivastava [44] and Kac and Cheung [19]
extensively discussed some areas of applications of q -analysis in the fields of Pure and
Applied Mathematics.

DEFINITION 1. ([14, 15, 19]) For function f (z) ∈ A of the form (1.1) and for
0 < q < 1, the q -derivative operator Dq : A −→ A of f (z) is defined by

Dq f (z) = f (z)− f (qz)
z(1−q) = 1+

∞
∑
j=2

[ j]qa jz j−1 (z 
= 0)

Dq f (0) = f ′(0) = 1 (z = 0) if it exists

D2
q f (z) = Dq(Dq f (z)) =

∞
∑
j=2

[ j]q[ j−1]qa jz j−2

where [ j]q = 1−q j

1−q = 1+q+q2+ · · ·+q j−1 so that lim
q→1−

[ j]q = j.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.10)

The importance and uses of operators (and q -operators) in geometric function
theory is not hidden anymore. In fact, many researchers (for example see [20, 33, 41,
49]) find it convenient to define q -operators by using the principle of convolution. In
particular, Aldweby and Darus [1] introduced and studied the class

S�
q (M ) :=

{
f ∈ A :

zDq f (z)
f (z)

≺ M (z) = 1+
∞

∑
j=1

mjz
j, 0 < q < 1, z ∈ E

}
(1.11)

of Ma-Minda q -starlike functions. Note that lim
q→1−

S�
q (M ) = S�(M ) is the well-known

class of Ma-Minda-starlike functions in E . Since M (z) is known to unify several
subclasses of analytic-univalent functions, geometric function theorists have studied
(1.11) by taking different forms of function M (z) . For instance see [24, 38, 40, 45, 49]
for some details.

Now using Definition 1 along with the concept of convolution, we define the
q -Al-Oboudi-Al-Qahtani operator as follows.
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DEFINITION 2. Let n = {0,1,2, . . .} , τ � 0 and 0 < q < 1, then

Ln,τ
q f (z) = f (z)�

(
z+

∞

∑
j=2

1
{1+([ j]q−1)τ}n z j

)
, z ∈ E

where equivalently we have

Ln,τ
q f (z) = z+

∞

∑
j=2

1
{1+([ j]q−1)τ}n a jz

j, z ∈ E (1.12)

or

Ln,τ
q f (z) = z+

∞

∑
j=2

γ ja jz
j, z ∈ E (1.13)

where

γ j =
1

{1+([ j]q−1)τ}n .

From (1.12), we observe that

1. lim
q→1−

L0,τ
q f (z) = lim

q→1−
Ln,0

q f (z) = lim
q→1−

L0,0
q f (z) = f (z) ∈ A in (1.1),

2. lim
q→1−

Ln,1
q f (z) = Ln f (z) is the Sǎlǎgean integral operator studied in [39] and

3. lim
q→1−

Ln,τ
q f (z) = Ln,τ f (z) is the Al-Oboudi-Al-Qahtani integral operator studied

in [2].

The new class investigated in this paper is therefore defined as follows.

DEFINITION 3. Let n = {0,1,2, . . .} , τ � 0 and 0 < q < 1. A function f (z) ∈ A
is said to be a member of the set SN �

q(n,τ;η) if the q -differential subordination

zDq(L
n,τ
q f (z))

Ln,τ
q f (z)

≺ η(z), z ∈ E (1.14)

holds true where Ln,τ
q is the q -operator defined in (1.12) and η(z) is defined in (1.8).

Note that from Definition 3,

lim
q→1−

SN �
q(0,τ;η) = lim

q→1−
SN �

q(n,0;η) = lim
q→1−

SN �
q(0,0;η) = SN �(η)

is the class earlier studied in [23, 46, 50, 51].
The purpose of our present investigation is to solve some coefficient problems

such as the coefficient bounds, the Fekete-Szegö problem and some bounds of Hankel
determinants.
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2. Applicable lemmas

Let P be the well-known set of analytic functions of the form

c(z) = 1+ c1z+ c2z
2 + c3z

3 + · · · , z ∈ E (2.1)

that have positive real parts in E . Then the following lemmas hold for c(z) ∈ P .

LEMMA 1. ([47]) For j ∈ N , |c j| � 2 .

LEMMA 2. ([47]) For κ ∈ R ,

∣∣c2−κc2
1

∣∣�
⎧⎪⎪⎨
⎪⎪⎩

2−4κ for κ � 0,

2 for 0 � κ � 1,

4κ −2 for κ � 1.

LEMMA 3. ([22]) For κ ∈ C ,
∣∣c2 −κc2

1

∣∣� 2max
{
1,
∣∣2κ−1

∣∣}.
LEMMA 4. ([23, 30]) For i, j ∈ N; |ci+ j −λcic j| � 2 for 0 � λ � 1 .

LEMMA 5. ([22, 23]) For i, j ∈ N; |ci+2 j −σcic2
j | � 2(1+2σ) where σ ∈ R .

3. Main results

Henceforth, let n = {0,1,2, . . .}= N∪{0} , τ � 0 and 0 < q < 1 unless otherwise
stated.

THEOREM 1. Let f (z) ∈ SN ∗
q(n,τ;η) , then

|a2| � 1
([2]q −1)γ2

(3.1)

|a3| � 1
([2]q −1)([3]q−1)γ3

(3.2)

|a4| � 2(L+2J) (3.3)

|a5| � 2(E +4B). (3.4)
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where

J = 1
([4]q−1)γ4

{
3−[2]q(4−[2]q)+[3]q([2]q−1)

8([2]q−1)2([3]q−1) − 1
12

}
,

K = 1
([4]q−1)γ4

{
1
2 −

[3]q+[2]q−2
4([2]q−1)([3]q−1)

}
,

L = 1
2([4]q−1)γ4

A = 1
([5]q−1)γ5

[
1

16([2]q−1)2

{
(2−[2]q)2

([3]q−1) + 1
([2]q−1) + (2−[2]q)(2[2]q+[3]q−3)

([2]q−1)([3]q−1)

}

− ([4]q+[2]q−2)
8([2]q−1)([4]q−1)

{
3−[2]q(4−[2]q)+[3]q([2]q−1)

2([2]q−1)2([3]q−1) − 1
3

}]

B = 1
([5]q−1)γ5

[
([4]q+[2]q−2)

4([2]q−1)([4]q−1)

{
1− [3]q+[2]q−2

2([2]q−1)([3]q−1)

}

+ 1
4([2]q−1)([3]q−1)

{
(2[2]q+[3]q−3)

2([2]q−1) − (2− [2]q)
}
− 1

4

]

C = 1
([5]q−1)γ5

[
1
2 −

([4]q+[2]q−2)
4([2]q−1)([4]q−1)

]

D = 1
([5]q−1)γ5

[
1
4 − 1

4([3]q−1)

]

E = 1
2([5]q−1)γ5

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

The results are non-sharp.

Proof. By the definition of subordination, (1.14) can be expressed as

zDq(L
n,τ
q f (z))

Ln,τ
q f (z)

= η(s(z)) = 1+ s(z)− 1
3
(s(z))3, z ∈ E (3.6)

where s(z) is given in (1.3).
Simple computation shows that by using (1.13), the LHS of (3.6) can be binomially

expanded as

zDq(L
n,τ
q f (z))

Ln,τ
q f (z)

= 1+{[2]q−1}γ2a2z

+{([3]q−1)γ3a3− ([2]q−1)γ2
2a2

2}z2

+{(2− [2]q− [3]q)γ2γ3a2a3 +([2]q−1)γ3
2a3

2 +([4]q−1)γ4a4}z3

+{(2− [2]q− [4]q)γ2γ4a2a4 +(1− [3]q)γ2
3a2

3 +(1− [4]q)γ4
2a4

2

+([5]q−1)γ5a5 +(2[2]q +[3]q−3)γ2
2γ3a

2
2a3}z4

+ · · · . (3.7)
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Now we expand the RHS of (3.6). Firstly, it is well-known that the relationship between
s(z) in (1.3) and c(z) in (2.1) can be demonstrated as

s(z) =
c(z)−1
c(z)+1

=
(1+ c1z+ c2z2 + c3z3 + · · ·)−1
(1+ c1z+ c2z2 + c3z3 + · · ·)+1

=
1
2
c1z+

1
2

(
−1

2
c2
1 + c2

)
z2 +

1
2

(
1
22 c3

1 − c1c2 + c3

)
z3 + · · ·

so that

η(s(z)) = 1+
1
2
c1z+

1
2

(
−1

2
c2
1 + c2

)
z2 +

1
2

(
1
6
c3
1− c1c2 + c3

)
z3

+
1
2

(
1
2
c2
1c2 − c1c3 − 1

2
c2
2 + c4

)
z4 + · · · . (3.8)

Now comparing of coefficients in (3.7) and (3.8) shows that

([2]q −1)γ2a2 =
1
2
c1, (3.9)

([3]q−1)γ3a3− ([2]q−1)γ2
2a2

2 =
1
2

(
−1

2
c2
1 + c2

)
, (3.10)

(2− [2]q− [3]q)γ2γ3a2a3 +([2]q−1)γ3
2a3

2 +([4]q−1)γ4a4 =
1
2

(
1
6
c3
1− c1c2 + c3

)
(3.11)

and

(2− [2]q− [4]q)γ2γ4a2a4 +(1− [3]q)γ2
3a2

3 +(1− [2]q)γ4
2a4

2 +([5]q−1)γ5a5

+(2[2]q +[3]q−3)γ2
2γ3a

2
2a3 =

1
2

(
1
2
c2
1c2 − c1c3 − 1

2
c2
2 + c4

)
. (3.12)

By simple calculation, (3.9) simplifies to

a2 =
c1

2([2]q−1)γ2
(3.13)

so that by applying triangle inequality and Lemma 1 we obtain (3.1). Using (3.13) in
(3.10) leads to

a3 =
c2
1(2− [2]q)+2c2([2]q−1)
4([2]q−1)([3]q−1)γ3

(3.14)

so that by applying triangle inequality and Lemma 1 we obtain (3.2). Using (3.13) and
(3.14) in (3.11) leads to

a4 = − c3
1

([4]q−1)γ4

{
3− [2]q(4− [2]q)+ [3]q([2]q−1)

8([2]q−1)2([3]q−1)
− 1

12

}

− c1c2

([4]q−1)γ4

{
1
2
− [3]q +[2]q−2

4([2]q−1)([3]q−1)

}
+

c3

2([4]q−1)γ4
(3.15)
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and for simplicity we have

a4 = −Jc3
1−Kc1c2 +Lc3 (3.16)

where J , K and L are defined in (3.5). To obtain bound for a4 , from (3.16),

|a4| = |− Jc3
1−Kc1c2 +Lc3|

=
∣∣∣∣L2
(

c3− 2K
L

c1c2

)
+

L
2

(
c3− 2J

L
c3
1

)∣∣∣∣
so that by applying triangle inequality and Lemmas 4 and 5 we obtain (3.3). Lastly,
using (3.13), (3.14) and (3.16) in (3.12) leads to

a5 =
c4
1

([5]q−1)γ5

[
1

16([2]q−1)2

{
(2−[2]q)2

([3]q−1)
+

1
([2]q−1)

+
(2−[2]q)(2[2]q+[3]q−3)

([2]q−1)([3]q−1)

}

− ([4]q +[2]q−2)
8([2]q−1)([4]q−1)

{
3− [2]q(4− [2]q)+ [3]q([2]q−1)

2([2]q−1)2([3]q−1)
− 1

3

}]

− c2
1c2

([5]q−1)γ5

[
([4]q +[2]q−2)

4([2]q−1)([4]q−1)

{
1− [3]q +[2]q−2

2([2]q−1)([3]q−1)

}

+
1

4([2]q−1)([3]q−1)

{
(2[2]q +[3]q−3)

2([2]q−1)
− (2− [2]q)

}
− 1

4

]

− c1c3

([5]q−1)γ5

[
1
2
− ([4]q +[2]q−2)

4([2]q−1)([4]q−1)

]

− c2
2

([5]q−1)γ5

[
1
4
− 1

4([3]q−1)

]

+
c4

2([5]q−1)γ5
.

and for simplicity we have

a5 = Ac4
1−Bc2

1c2 −Cc1c3−Dc2
2 +Ec4 (3.17)

where A , B , C , D and E are defined in (3.5). To obtain bound for a5 , from (3.17),

|a5| =
∣∣Ac4

1−Bc2
1c2−Cc1c3−Dc2

2 +Ec4
∣∣

=
∣∣∣∣E2
(

c4 − 2C
E

c1c3

)
+

E
2

(
c4 − 2D

E
c2
2

)
−Bc2

1

(
c2 − A

B
c2
1

)∣∣∣∣
so that by applying triangle inequality and Lemmas 1 and 4 we obtain (3.4). �

REMARK 1. By setting n = 0 (or τ = 0) and letting q −→ 1− make (3.1), (3.2),
(3.4), (3.13), (3.14), (3.16) and (3.17) to become the results of Khan et al. [23]. More-
over, |a4| = 5

18 in (3.3) gives a better estimate when compared with the estimate given
by Khan et al. [23].
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THEOREM 2. Let f (z) ∈ SN ∗
q(n,τ;η) . Then for u ∈ R ,

∣∣a3−ua2
2

∣∣�
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
([3]q−1)γ3

{
(2−[2]q)([2]q−1)γ2

2−u([3]q−1)γ3

([2]q−1)2γ2
2

+1
}

for u � U1

1
([3]q−1)γ3

for U1 � u � U2

1
([3]q−1)γ3

{
u([3]q−1)γ3−(2−[2]q)([2]q−1)γ2

2
([2]q−1)2γ2

2
−1
}

for u � U2

where

U1 =
(2− [2]q−1)([2]q−1)γ2

2

([3]q−1)γ3
and U2 =

([2]q−1)γ2
2{2([2]q−1)+ (2− [2]q)}

([3]q−1)γ3
.

Proof. For u ∈ R and using (3.13) and (3.14) in (1.7) leads to

∣∣a3−ua2
2

∣∣= 1
2([3]q−1)γ3

∣∣∣∣c2−
{

u([3]q−1)γ3− (2− [2]q)([2]q−1)γ2
2

2([2]q−1)2γ2
2

}
c2
1

∣∣∣∣
which equivalently implies that

∣∣a3−ua2
2

∣∣= 1
2([3]q−1)γ3

∣∣c2−κc2
1

∣∣ (3.18)

where

κ =
u([3]q−1)γ3− (2− [2]q)([2]q−1)γ2

2

2([2]q−1)2γ2
2

. (3.19)

Now applying Lemma 2 implies that

∣∣a3−ua2
2

∣∣� 1
([3]q−1)γ3

{
(2− [2]q)([2]q−1)γ2

2 −u([3]q−1)γ3

([2]q−1)2γ2
2

+1

}

for u � (2−[2]q−1)([2]q−1)γ2
2

([3]q−1)γ3
,

∣∣a3−ua2
2

∣∣� 1
([3]q−1)γ3

for 0 � u � ([2]q−1)γ2
2{2([2]q−1)+(2−[2]q)}

([3]q−1)γ3
and

∣∣a3−ua2
2

∣∣� 1
([3]q−1)γ3

{
u([3]q−1)γ3− (2− [2]q)([2]q −1)γ2

2

([2]q−1)2γ2
2

−1

}

for u � ([2]q−1)γ2
2{2([2]q−1)+(2−[2]q)}

([3]q−1)γ3
and the proof completes. �

THEOREM 3. Let f (z) ∈ SN ∗
q(n,τ;η) . Then for v ∈ C ,

∣∣a3− va2
2

∣∣� 1
([3]q −1)γ3

max

{
1,

∣∣∣∣v([3]q−1)γ3− (2− [2]q)([2]q −1)γ2
2

([2]q −1)2γ2
2

−1

∣∣∣∣
}

.

(3.20)
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Proof. For v ∈ C , using (3.18) and (3.19) in (1.7) and applying Lemma 3 implies
that

∣∣a3−va2
2

∣∣� 1
2([3]q−1)γ3

×2max

{
1,

∣∣∣∣2
(

v([3]q−1)γ3−(2−[2]q)([2]q−1)γ2
2

2([2]q−1)2γ2
2

)
−1

∣∣∣∣
}

and simple computation gives inequality (3.20). �

REMARK 2. Setting n = 0 (or τ = 0) and letting q−→ 1− make Theorems 2 and
3 to become the results of Khan et al. [23].

THEOREM 4. Let f (z) ∈ SN ∗
q(n,τ;η) . Then

|H2,2( f )| � 4(Q+P+2M) (3.21)

where

M = J
2([2]q−1)γ2

+ (2−[2]q)2

16([2]q−1)2([3]q−1)2γ2
3

N = K
2([2]q−1)γ2

+ (2−[2]q)
4([3]q−1)2γ2

3

Q = L
2([2]q−1)γ2

P = 1
4([3]q−1)2γ2

3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.22)

and J , K and L are defined in (3.5).

Proof. By using (3.13), (3.14) and (3.16) in (1.5) we have

|a2a4−a2
3| =

∣∣∣∣− c4
1

{
J

2([2]q−1)γ2
+

(2− [2]q)2

16([2]q−1)2([3]q−1)2γ2
3

}

− c2
1c2

{
K

2([2]q−1)γ2
+

(2− [2]q)
4([3]q−1)2γ2

3

}

+ c1c3

{
L

2([2]q−1)γ2

}
− c2

2

{
1

4([3]q−1)2γ2
3

}∣∣∣∣.
By equivalence we have

|a2a4−a2
3| =

∣∣∣∣−Mc4
1−Nc2

1c2 +Qc1c3−Pc2
2

∣∣∣∣
=
∣∣∣∣Qc1

2

(
c3 − 2M

Q
c3
1

)
+

Qc1

2

(
c3− 2N

Q
c1c2

)
−Pc2

2

∣∣∣∣
where M , N , Q and P are defined in (3.22). Now applying Lemmas 1, 4 and 5 leads
to (3.21). �
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THEOREM 5. Let f (z) ∈ SN ∗
q(n,τ;η) . Then

|a2a3−a4| � 2(L+2R) (3.23)

where
R = (2−[2]q)

8([2]q−1)2([3]q−1)γ2γ3
+ J

S = 1
4([2]q−1)([3]q−1)γ2γ3

+K

⎫⎬
⎭ (3.24)

and J , K and L are defined in (3.5).

Proof. Recall by using (3.13), (3.14) and (3.16) that

|a2a3−a4| =
∣∣∣∣c3

1

{
(2− [2]q)

8([2]q−1)2([3]q−1)γ2γ3
+ J

}

+ c1c2

{
1

4([2]q−1)([3]q−1)γ2γ3
+K

}
−Lc3

∣∣∣∣.
By equivalence we have

|a2a3−a4| = |Rc3
1 +Sc1c2 −Lc3| =

∣∣∣∣−
{

L
2

(
c3− 2S

L
c1c2

)
+

L
2

(
c3− 2R

L
c3
1

)}∣∣∣∣
where R , S and L are defined in (3.24) and (3.5). Now applying Lemmas 1, 4 and 5
leads to (3.23). �

THEOREM 6. Let f (z) ∈ SN ∗
q(n,τ;η) . Then

|H3,1( f )| � 4(Q+P+2M)
([2]q−1)([3]q−1)γ3

+
2(E +4B)
([3]q−1)γ3

+4(L+2J)(L+2R). (3.25)

Proof. Putting (3.2), (3.3), (3.4), (3.20), (3.21) and (3.23) into (1.6) and simplify-
ing leads to (3.25). �
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[39] G. S. SǍLǍGEAN, Subclasses of univalent functions, Lect. Notes Math., 1013, (1983), 362–372.
[40] T. M. SEOUDY AND M. K. AOUF, Coefficient estimates of new classes of q -starlike and q-convex

functions of complex order, J. Math. Inequal., 10, 1 (2016), 135–145.
[41] T. M. SEOUDY AND A. E. SHAMMAKY, Certain subclasses of spiral-like functions associated with

q-analogue of Carlson-Shaffer operator, AIMS Math., 6, 3 (2020), 2525–2538.
[42] K. SHARMA, N. K. JAIN AND V. RAVICHANDRAN, Starlike functions associated with a cardioid,

Afr. Math., 27, 5 (2016), 923–939.
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